説明

半導体光素子を作製する方法

【課題】製造の過程において臨界膜を越えることを避けることが可能な、半導体光素子を作製する方法を提供する。
【解決手段】第1の領域11a上の半導体メサ11d上および第2の領域11b上のそれぞれに、クラッドおよび歪み量子井戸構造のための複数の半導体膜21a、23a、25a、27aを成長するので、第1の領域11a上に成長される半導体膜21a、23a、25a、27aは、第2の領域11b上に成長される複数の半導体膜から実質的に分離される。これ故に、半導体メサ11d上には、実質的に分離された半導体膜21a、23a、25a、27aが堆積される。歪みを内包した量子井戸構造のための半導体膜23aの結晶が弾性的に変形でき、実質的に分離された半導体膜23aの応力が転位等の発生無しに低減される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、歪み量子井戸構造を有する半導体光素子を作製する方法に関する。
【背景技術】
【0002】
非特許文献1には、臨界歪を規定する理論式が記載されている。この式によれば、着目する半導体層の臨界歪は、当該半導体層よりも上に形成された半導体層における平均歪みとこれらの層の厚みとを用いて表される。当該半導体層の歪みが上記式の臨界歪み値を越えるとき、この半導体層において歪みを緩和するために転位が発生する。
【非特許文献1】Matthews, J. W., and Blakeslee, A. E. (1974) J. Crystal Growth 32,265
【発明の開示】
【発明が解決しようとする課題】
【0003】
半導体光素子の多層構造体内のいずれの半導体層の歪みも臨界歪み値を越えることはできない。非特許文献1は、多層構造体内の半導体層の歪みが臨界歪みを越えるか否かを見積もることができる理論式を示す。したがって、想定される半導体積層体を有する半導体光素子の作製に先立って、この理論式を用いて、半導体積層体内のいずれの半導体層も臨界歪みを越えないことを予め見積もることができる。この見積もりでは、全層の堆積が完了した半導体積層体において、半導体積層体内の半導体層の歪みを求める。
【0004】
しかしながら、半導体積層体内のいずれの半導体層も臨界歪みを越えないことを、この理論的な見積もり結果が示す場合でも、半導体積層体のための半導体層全ての形成が完了する前に、半導体光素子の作製途中において半導体層の歪みが臨界歪み値を越えることがある。なぜなら、半導体光素子のための多層構造体を作製するとき平坦な基板上に所望の半導体結晶膜を順に成長するので、半導体光素子の作製中では、着目する半導体層上に未だ半導体層が成長されていないからである。これ故に、上記見積もりに反して、所望の数の半導体層の形成が完了する前に半導体層の歪みが臨界歪み値を越えてしまうことがある。半導体層の歪みが臨界歪み値を越えると、良好な結晶成長が実現されない。
【0005】
本発明は、このような事情を鑑みて為されたものであり、製造の過程において臨界膜を越えることを避けることが可能な、半導体光素子を作製する方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一側面は、歪み量子井戸構造を有する半導体光素子を作製する方法である。この方法は、(a)III−V化合物半導体領域の第1の領域に設けられ所定の高さを有する第1の半導体メサ上および前記III−V化合物半導体領域の前記第1の領域と異なる第2の領域上のそれぞれに、歪み量子井戸構造のための複数の半導体膜を成長する工程と、(b)前記複数の半導体膜を成長した後に、一または複数のIII−V化合物半導体膜を前記第第1の半導体メサおよび前記第2の領域上のそれぞれに成長して、複数の半導体層を含む積層体を前記第2の領域上に形成する工程とを備え、前記積層体はクラッドのためのIII−V化合物半導体膜を含む。
【0007】
この方法によれば、III−V化合物半導体領域の第1の領域上の第1の半導体メサ上およびIII−V化合物半導体領域の第2の領域上のそれぞれに、歪み量子井戸構造のための複数の半導体膜を成長するので、第1の領域上に成長される複数の半導体膜は、第2の領域上に成長される複数の半導体膜から実質的に分離される。これ故に、第1の半導体メサ上には、実質的に分離された複数の半導体膜が堆積される。したがって、歪みを内包した量子井戸構造のための半導体膜の結晶が弾性的に変形することができ、実質的に分離された半導体膜の応力が、転位等の発生無しに低減される。
【0008】
本発明に係る方法では、前記第1の半導体メサの幅は3マイクロメートル以下であることが好ましい。この方法によれば、この程度の幅であれば、メサの中央部においても十分な応力緩和が生じる。
【0009】
本発明に係る方法は、(c)前記積層体上にマスクを形成する工程と、(d)前記マスクを用いて前記積層体をエッチングし第2の半導体メサを形成する工程と、(e)前記第2の半導体メサを埋め込むための半導体を堆積する工程と
を更に備えることができる。前記半導体の格子定数は、前記III−V化合物半導体領域の格子定数と実質的に同じである。
【0010】
この方法によれば、III−V化合物半導体領域の格子定数と実質的に同じ格子定数を持つ半導体結晶で埋め込むことにより、埋め込み用の半導体は、実質的に分離された半導体膜の側面に応力を加える。これ故に、活性層には若干の横方向緩和が無くなり、所望の歪を有する活性層が形成できる。
【0011】
本発明に係る方法は、(f)炭化水素を用いたエッチングにより前記III−V化合物半導体領域の前記第1の領域に前記第1の半導体メサを形成する工程を更に備えることができる。
【0012】
この方法によれば、炭化水素を用いたエッチングにより、第1の半導体メサの側面に炭素系堆積物が生じるので、第1の半導体メサの側面への結晶成長が抑制される。
【0013】
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
【発明の効果】
【0014】
以上説明したように、本発明によれば、製造の過程において臨界膜を越えることを避けることが可能な、半導体光素子を作製する方法が提供される。
【発明を実施するための最良の形態】
【0015】
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の、歪み量子井戸構造を有する半導体光素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
【0016】
図1、図2および図3は、歪み量子井戸構造を有する半導体光素子を作製する方法における主要な工程を示す図面である。半導体光素子としては、例えば半導体レーザである。
【0017】
まず、半導体基板11を準備する。半導体基板11としては、第1導電型のIII−V化合物半導体基板を用いることができ、例えば、n型InPウエハ、或いはn型InPウエハ上にInP膜が形成されたエピタキシャル基板等を用いることができる。図1(A)に示されるように、半導体メサを作成するためのマスク13を半導体基板11の第1の領域11a上に形成する。マスク13は、例えばシリコン無機化合物からなり、具体的にはシリコン酸化物、シリコン窒化物等が用いられる。マスク13の幅は、作製される半導体メサの幅を規定しており、例えば2マイクロメートル程度である。半導体メサの幅は、3マイクロメートル以下であれば、この半導体メサ上に堆積されたIII−V化合物半導体結晶において十分な応力緩和が生じる。半導体メサの幅の下限は、半導体メサ上に形成される導波路構造に光導波モードと関連しており、例えば1マイクロメートル程度である。
【0018】
図1(B)に示されるように、マスク13を用いて半導体基板11の第2の領域11bをエッチングする。エッチング装置15を用いて、エッチング17が行われる。半導体基板11cは半導体メサ11dを含む。本実施例では、マスク13の形状はストライプ状である。ドライエッチングを用いるとき、エッチングのためのガスとして、例えば炭化水素、または塩素を使用できる。炭化水素(例えばCH及びH)を用いたエッチングにより、炭素系薄膜といった炭素系堆積物が半導体メサ11dの側面11eに生じるので、引き続く工程で行われる結晶成長において、半導体メサ11dの側面への結晶成長が抑制される。
【0019】
半導体メサ11dの高さH1は、例えば2マイクロメート程度である。半導体メサ11dの高さH1は1マイクロメートル以上であることが好ましい。また、半導体メサ11dの高さは3マイクロメートル以下であることが好ましい。或いは、半導体メサ11dの高さH1は、引き続く工程で堆積される半導体膜の厚みのと同等以上であることが好ましい。
【0020】
図1(C)に示されるように、半導体メサ11dを形成した後に、結晶成長装置19を用いて、第1の領域11aの半導体メサ11d上および第2の領域11b上のそれぞれに、III−V化合物半導体膜21を堆積する。結晶成長装置19としては、例えば有機金属気相成長炉を使用できる。半導体メサ11d上に成長される半導体膜21aは、第2の領域11b上に成長される半導体膜21bから実質的に分離される。III−V化合物半導体膜21は、例えば第1導電型のクラッド層のために成長される。
【0021】
次いで、図1(C)に示されるように、半導体メサ11dを形成した後に、結晶成長装置19を用いて、第1の領域11aの半導体メサ11d上および第2の領域11b上のそれぞれに、III−V化合物半導体23を堆積する。半導体メサ11d上に成長される半導体層23aは、第2の領域11b上に成長される半導体層23bから実質的に分離される。III−V化合物半導体23は、例えば歪み量子井戸構造のための複数の半導体膜(井戸層および障壁層)を含む。
【0022】
図2(A)に示されるように、III−V化合物半導体領域23を形成した後に、結晶成長装置19を用いて、第1の領域11aの半導体メサ11d上および第2の領域11b上のそれぞれに、III−V化合物半導体膜25を堆積する。半導体メサ11d上に成長される半導体膜25aは、第2の領域11b上に成長される半導体膜25bから実質的に分離される。III−V化合物半導体膜25は、例えば第2導電型のクラッド層のために成長される。
【0023】
次いで、図2(A)に示されるように、III−V化合物半導体膜25を形成した後に、結晶成長装置19を用いて、第1の領域11aの半導体メサ11d上および第2の領域11b上のそれぞれに、III−V化合物半導体膜27を堆積する。半導体メサ11d上に成長される半導体膜27aは、第2の領域11b上に成長される半導体膜27bから実質的に分離される。III−V化合物半導体膜27は、例えば第2導電型のコンタクト層のために成長される。これらの結晶成長工程により、エピタキシャル基板29が形成される。エピタキシャル基板29は、半導体メサ29aを含む。半導体メサ29aは、半導体メサ11dおよび半導体膜21a、23a、25a、27aを含む。
【0024】
この方法によれば、第1の領域11a上の半導体メサ11d上および第2の領域11b上のそれぞれに、クラッドおよび歪み量子井戸構造のための複数の半導体膜21、23、25、27を成長するので、第1の領域11a上に成長される半導体膜21a、23a、25a、27aは、第2の領域11b上に成長される複数の半導体膜21b、23b、25b、27bから実質的に分離される。これ故に、半導体メサ11d上には、実質的に分離された半導体膜21a、23a、25a、27aが堆積される。したがって、歪みを内包した量子井戸構造のための半導体膜23aの結晶が弾性的に変形でき、実質的に分離された半導体膜23aの応力が転位等の発生無しに低減される。
【0025】
一例のエピタキシャル基板29は、
半導体基板11c:n型InP基板
III−V化合物半導体膜21:Siドープn型InP半導体、350マイクロメートル厚
III−V化合物半導体(井戸層/障壁層)23:歪み多重量子井戸構造、
アンドープGaInAsP/GaInAsP、井戸層6nm、バンドギャップ波長1.36マイクロメートル、0.8%の圧縮歪みとなる格子定数、障壁層10nm、バンドギャップ波長1.1マイクロメートル、InP基板と同じ格子定数、井戸層の層数8層、
III−V化合物半導体膜25:Znドープp型InP半導体、2マイクロメートル厚
III−V化合物半導体膜27:Znドープp型GaInAs半導体、0.2マイクロメートル厚
である。
【0026】
III−V化合物半導体(井戸層/障壁層)23は、InP基板との格子不整合△a/aが0.8%の圧縮歪を有するGaInAsP井戸層(厚み6nm)と、InP基板とほぼ同じ格子定数を有するGaInAsP障壁層(厚さ10nm)からなる歪み多重量子井戸構造であり、井戸層の層数は8層である。従来の方法で、InP基板上に、InP基板との格子不整合△a/aが0.8%の圧縮歪を有するGaInAsP井戸層(厚み6nm)と、InP基板とほぼ同じ格子定数を有するGaInAsP障壁層(厚さ10nm)からなる歪み多重量子井戸構造を形成した場合、井戸層が5層までの場合は、結晶成長により量子井戸構造を作成しても、成長中に臨界膜厚に達しないので転位は発生しない。しかし、このように井戸層に0.8%の比較的大きな歪を有する多重井戸構造を作成する場合、井戸層の層数が6層を超えると、量子井戸構造を結晶成長により形成する過程において、臨界膜厚を越えてしまい、転位が結晶中に導入され、結晶性が著しく劣化することとなる。
【0027】
一方、第1の領域11a上に成長される半導体膜21a、23a、25a、27aは、第2の領域11b上に成長される複数の半導体膜21b、23b、25b、27bから実質的に分離されるので、結晶成長過程においても、歪みを内包した量子井戸構造のための半導体膜23aは結晶が弾性的に変形でき、半導体膜23aの応力が低減される。この結果、井戸層に0.8%の比較的大きな圧縮歪を有し、6層以上の井戸層、例えば8層の井戸層を備えた多重井戸構造を、結晶中にミスフィット転位等を生じることなく得ることができる。
【0028】
図2(B)に示されるように、必要な場合には、光導波路構成を形成するためのマスク31を半導体メサ29a上に形成する。マスク31は、例えばシリコン無機化合物からなり、具体的にはシリコン酸化物、シリコン窒化物等が用いられる。マスク31の幅は、作製される光導波路メサの幅を規定しており、例えば1.5マイクロメートル程度である。マスク31を用いて半導体メサ29aをエッチングして、半導体メサ29bを形成する。エッチング装置33を用いて、エッチング35が行われる。エッチング35は、ドライエッチングにより行われることが好ましい。このエッチング35により、半導体基板11gの半導体メサ11f上には、半導体膜21b、23b、25b、27bが位置する。
【0029】
図3(A)に示されるように、埋め込みのための半導体領域37をマスク31を用いて成長し、半導体メサ29bを埋め込む。結晶成長装置19を用いて半導体領域37を成長すると、半導体領域37はマスク31上には実質的に堆積されない。半導体領域37の格子定数は、III−V化合物半導体21または半導体基板11の格子定数と実質的に同じである。III−V化合物半導体膜21または半導体基板11の格子定数と実質的に同じ格子定数を持つ半導体結晶で半導体メサ29b埋め込むことにより、埋め込み用の半導体37は、実質的に分離された半導体膜23bの側面に応力を加えることができる。これ故に、若干の横方向緩和が活性層には無くなり、InP基板の格子定数と井戸層の格子定数で決定される所望の、より大きな歪を有する活性層23cが形成できる。この場合においても、多重量子井戸構造を含む活性層に転位を生じること無く、良好な結晶を得ることができる。半導体領域37を堆積した後に、マスク31を除去する。
【0030】
図3(A)に示されるように、マスク31を除去した後に、コンタクト層27bおよび半導体領域37上に絶縁膜41を形成する。絶縁膜41は、半導体メサ29bの位置に対応した開口を有する。絶縁膜41およびコンタクト層27上に第1の電極(アノード)43を形成すると共に、半導体基板11gの裏面11hに第2の電極(カソード)45を形成する。これらの工程により、半導体光素子が作製される。
【0031】
本実施例では、半導体光素子のための半導体結晶膜を成長するとき半導体メサの側面に結晶が成長されないように、側壁上の付着物を利用している。これにより、量子井戸構造のための活性領域の応力緩和が容易になる。しかしながら、側壁に結晶が成長されるときでも、活性領域の応力緩和の利点は維持される。
【0032】
また、本実施例では、光導波路のための半導体メサが、結晶成長のための半導体メサと別個に形成されているけれども、結晶成長のための半導体メサをそのまま光導波路のための半導体メサとして利用することもできる。このとき、光導波路のための半導体メサを改めて作製することなく、埋め込み成長を行う。
【0033】
図4を参照しながら、上記の結晶成長の一例と歪み緩和との関係を説明する。図4(A)に示されるように、クラッド領域のための半導体膜21a上に歪み量子井戸構造のための半導体領域23aを堆積する。半導体膜21aの格子定数は、半導体領域23aの井戸層および/または障壁層の格子定数と異なる。半導体膜23aの一端は半導体領域21aと接合しており、半導体膜23aの他端は解放されている。このとき、半導体領域23aの幅は、半導体メサ11dのボトムの幅に比べて広がる。この広がりにより、成長が完了したとき、半導体領域23aの応力は緩和された状態にある。また、好適な状況では、歪み量子井戸構造には、平坦な半導体表面に成長された歪み量子井戸構造のための半導体領域に比べて、半導体領域23aが小さいので、半導体領域23aは、比較的大きな歪みを許容する。本実施の形態に係る方法は、臨界歪を超える歪を内包する活性領域を作製するときに好適である。
【0034】
図4(B)に示されるように、歪み緩和が生じている半導体領域23a上に、クラッド領域のための半導体膜25aを成長する。半導体膜25aの格子定数は、半導体領域23aの井戸層および/または障壁層の格子定数と異なる。半導体膜25aの一端は半導体領域23aと接合しており、半導体膜25aの他端は解放されている。このとき、半導体領域23aの幅は、半導体膜25aの他端の幅に比べて広がる。この広がりにより、半導体膜25aの成長が完了したときでも、半導体領域23aの応力緩和の状態は維持されている。半導体領域23aがクラッド領域のための半導体膜21a、25aによって挟まれるけれども、比較的小さいサイズの3つの半導体膜21a、23a、25aが適切に歪むことによって、大きな歪みを内包すると共に良好な結晶性を示す導波路構造が形成可能になる。
【0035】
図4(C)に示されるように、導波路構造を埋め込むことによって、歪みが緩和されている半導体領域23bの側面に埋め込み半導体領域37からの力が加わり、所望の歪みを内包する活性層のための半導体膜23cが形成される。
【0036】
以上の説明から理解されるように、活性領域のための歪半導体領域23aには、半導体メサを含まない平坦な半導体表面上に成長される半導体膜の臨界歪を超える歪を導入するときに、本実施の形態に係る方法は特に有用である。また、結晶成長のための半導体メサが完成したとき、全歪量は臨界歪を越えないことが好ましい。しかしながら、全歪量が臨界歪を超えるときでも、歪み構造の半導体領域の結晶性が改善される。
【0037】
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。また、本実施の形態では、半導体レーザについて例示的に説明しているけれども、半導体光素子は、半導体光増幅素子、発光ダイオード、光変調器、或いはこれらの集積素子等であることもできる。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
【図面の簡単な説明】
【0038】
【図1】図1は、歪み量子井戸構造を有する半導体光素子を作製する方法における主要な工程を示す図面である。
【図2】図2は、歪み量子井戸構造を有する半導体光素子を作製する方法における主要な工程を示す図面である。
【図3】図3は、歪み量子井戸構造を有する半導体光素子を作製する方法における主要な工程を示す図面である。
【図4】図4は、結晶成長工程における歪み緩和と結晶成長との関係を説明する図面である。
【符号の説明】
【0039】
11、11c、11g…半導体基板、11a…半導体基板の第1の領域、11b…半導体基板の第1の領域、11d、11f…半導体メサ、11e…半導体メサの側面、13…マスク、15…エッチング装置、H1…半導体メサの高さ、19…結晶成長装置、21…III−V化合物半導体膜、21a…半導体膜、21b…半導体膜、23…III−V化合物半導体、23a…半導体層、23b…半導体層、23c…歪みが内包された半導体層、25…III−V化合物半導体膜、25a…半導体膜、25b…半導体膜、27…III−V化合物半導体膜、27a…半導体膜、27b…半導体膜、29…エピタキシャル基板、29a、29b…半導体メサ、31…マスク、33…エッチング装置、35…エッチング、37…埋め込み用の半導体領域、41…絶縁膜

【特許請求の範囲】
【請求項1】
歪み量子井戸構造を有する半導体光素子を作製する方法であって、
III−V化合物半導体領域の第1の領域に設けられ所定の高さを有する第1の半導体メサ上および前記III−V化合物半導体領域の前記第1の領域と異なる第2の領域上のそれぞれに、歪み量子井戸構造のための複数の半導体膜を成長する工程と、
前記複数の半導体膜を成長した後に、一または複数のIII−V化合物半導体膜を前記第第1の半導体メサおよび前記第2の領域上のそれぞれに成長して、複数の半導体層を含む積層体を前記第2の領域上に形成する工程と
を備え、
前記積層体はクラッドのためのIII−V化合物半導体膜を含む、ことを特徴とする方法。
【請求項2】
前記第1の半導体メサの幅は3マイクロメートル以下である、ことを特徴とする請求項1に記載された方法。
【請求項3】
前記積層体上にマスクを形成する工程と、
前記マスクを用いて前記積層体をエッチングし第2の半導体メサを形成する工程と、
前記第2の半導体メサを埋め込むための半導体を堆積する工程と
を更に備え、
前記半導体の格子定数は、前記III−V化合物半導体領域の格子定数と実質的に同じである、ことを特徴とする請求項1または請求項2に記載された方法。
【請求項4】
前記III−V化合物半導体領域の前記第1の領域に前記第1の半導体メサを炭化水素を用いたエッチングにより形成する工程を更に備える、ことを特徴とする請求項1〜請求項3のいずれか一項に記載された方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2008−66326(P2008−66326A)
【公開日】平成20年3月21日(2008.3.21)
【国際特許分類】
【出願番号】特願2006−239193(P2006−239193)
【出願日】平成18年9月4日(2006.9.4)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】