説明

樹脂製容器,樹脂製容器の製造方法及びその方法により製造された樹脂製容器

【課題】 複数の素材を組み合わせる必要が無く、また、無機フィラーの含有率に制限があったとしても断熱性に優れた樹脂製容器を提供すること。
【解決手段】 容器の内面側における単位体積当たりの無機フィラーの個数である分散密度よりも容器の厚さ方向の外面側における無機フィラーの分散密度が高くなる密度分布を有することとした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、射出成形により製造される樹脂製容器に関する。
【背景技術】
【0002】
従来、樹脂製容器の断熱性を高める技術として特許文献1が知られている。この公報には、熱伝導率の低い無機フィラー含有率を高めた樹脂は、断熱性が高くなるものの機械的物性が悪化するので、これを解消するために、無機フィラーの含有率を所定の範囲に規定する、もしくは、無機フィラーを含有した高発泡体シートと非発泡体熱可塑性樹脂シートとの積層シートを用いることで、機械的物性を確保しつつ断熱性を確保している。尚、機械的物性とは、耐荷重性、耐久性、加工性、耐衝撃性、弾力性等を示す。
【特許文献1】特開平6−321265号
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、特許文献1に記載の技術では、機械的物性による制限により無機フィラーの含有率を上げることができない。また、無機フィラーの含有率を上げた場合、機械的物性を補うために他の樹脂シートとの積層等の工程を必要とするため、製造コストが高くなるという問題があった。
【0004】
本発明は、上記のような従来技術の問題点に鑑み、複数の素材を組み合わせる必要が無く、また、無機フィラーの含有率に制限があったとしても断熱性に優れた樹脂製容器,樹脂製容器の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
第1の発明に係る樹脂製容器にあっては、容器の内面側における単位体積当たりの無機フィラーの個数である分散密度よりも、容器の厚さ方向の外面側における無機フィラーの分散密度が高くなる密度分布を有することを特徴とする。
【0006】
第2の発明に係る樹脂製容器の製造方法にあっては、容器内面側金型を第1の所定温度に昇温し、容器外面側金型を第1の所定温度よりも低い第2の所定温度に昇温した状態で、射出手段により無機フィラーと熱可塑性樹脂とを混合して加熱溶融させた樹脂を充填することを特徴とする。
【発明の効果】
【0007】
第1の発明に係る樹脂製容器にあっては、無機フィラーの分散密度が容器の内面側よりも容器の外面側において高い。即ち、容器内面と容器外面との間で分散密度の異なる密度分布を有することで、容器外面のように需要者等が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面側では無機フィラーの分散密度を下げることで容器の機械的物性を確保することができる。また、容器自体が分散密度の異なる密度分布を持っているため、複数種の材料を組み合わせる工程等を経ることがなく、製造コストを抑制することができる。
【0008】
第2の発明に係る樹脂製容器の製造方法にあっては、射出成形時の容器内面側金型温度よりも容器外面側金型温度を低くすることとした。一般に、射出成形時の両金型温度は、比較的樹脂の流動性を確保可能な温度に昇温させるため、金型内での無機フィラーの流動性に異方性は無く、無機フィラー密度も均等に分布する。これに対し、第2の発明にあっては、容器内面側金型温度を高くして樹脂の流動性を確保し、一方、容器外面側金型温度を低くして樹脂の流動性を低下させる。温度の低い容器外面側金型の表面に溶融樹脂内に混練された無機フィラーが一旦接すると、この無機フィラーは流動しにくくなる。この現象が繰り返されると、流動性の高い容器内面側金型では無機フィラーの密度が低くなり、一方、流動性の低い容器外面側金型では無機フィラーの密度が高くなる。
【0009】
上記作用により、容器内面と容器外面との間に密度分布を持たせることが可能となり、容器外面のように需要者が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面側では無機フィラーの密度を下げることで容器の機械的物性を確保することができる。また、射出成形時の2つの金型温度を異なった温度に昇温させるのみで密度分布の異方性を得ることができるため、複数の製造工程を経ることがなく、製造コストを抑制することができる。
【発明を実施するための最良の形態】
【0010】
以下、本発明の最良の実施形態について図面に基づいて説明する。
【実施例1】
【0011】
図1は実施例1における樹脂製容器1の斜視図、図2は樹脂製容器1の領域Aの部分拡大断面図である。樹脂製容器1は、上方が下方に比べて拡径された円筒部10と、円筒部10の下端を閉塞する底部15と、円筒部10の上端から拡径された飲み口部14を有する。円筒部10,底部15,飲み口部14は、それぞれ肉厚1.0mmに均一な厚みで形成されている。また、円筒部10,底部15及び飲み口部14は、内容物と接触する容器内面12と、この容器内面12の裏面である容器外面11を有する。例えば、熱い飲料等を樹脂製容器1に注ぎ、円筒部10の容器外面11の適当な場所を把持するため、樹脂製容器1の断熱性確保が重要となる。
【0012】
(樹脂材料について)
樹脂製容器1は、熱可塑性樹脂として生分解性樹脂であるポリ乳酸を採用している。尚、その他の熱可塑性樹脂としては、ポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、アクリレート系樹脂、液晶ポリマー(LCP)等が挙げられる。また、上記熱可塑性樹脂を適宜混合することが出来る。
【0013】
(無機フィラーについて)
このポリ乳酸には、無機フィラーとして中空のガラスビーズ13(以下、ガラスビーズ13)が重量比で10%混練されている。このガラスビーズ13は、ソーダ石灰ホウ珪酸ガラスから構成され、主成分は二酸化珪素(SiO2),酸化カルシウム(CaO),酸化ナトリウム(Na2O),酸化ホウ素(B2O3)である。この無機フィラーを混練することで断熱性を向上する。基本的には、混練量が高まれば高まるほど断熱性は高くなるが、機械的物性としては悪化する方向であるため、これらの二律背反を考慮した量が混練される。
【0014】
尚、無機フィラーとしては、上記ガラスビーズ13以外にも、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、カオリン、マイカ、酸化亜鉛、ドロマイト、シリカ、チョーク、タルク、ピグメント、二酸化チタン、二酸化珪素、ベントナイト、クレー、珪藻土及びそれらから成る群より選ばれる無機鉱物粉末が挙げられる。
【0015】
ただし、上記各無機鉱物粉末はガラスビーズ13に比べて比重が大きい。以下、参考までにガラスビーズと、タルクと、炭酸カルシウムと、ガラス繊維と、二酸化チタンの比重を記す。
ガラスビーズ 0.6
タルク 2.9
炭酸カルシウム 2.7
ガラス繊維 2.5
二酸化チタン 4.1
【0016】
上記のように、ガラスビーズ13の比重は非常に小さく、言い換えると、他の無機フィラーは比重が大きい。この場合、樹脂製容器1自体の重量の増加や、衝撃に対する脆性破壊の懸念がある。また、重量増は搬送コストの増加を招き、焼却エネルギーの増大に伴う環境面への負荷の高まりも懸念される。このことから、無機フィラーとして中空のガラスビーズ13を採用することで、樹脂製容器1の軽量化、衝撃に対する耐久性の向上、搬送コストの低減、環境負荷の軽減を図ることができる。
【0017】
(密度分布について)
図2の拡大断面図に示すように、実施例1の樹脂製容器1にあっては、円筒部10,底部15及び飲み口部14の容器内面12側におけるガラスビーズ13の分散密度よりも樹脂製容器1の厚さ方向の容器外面11側におけるガラスビーズ13の分散密度が高く構成されている。ここで、分散密度とは、無機フィラーを含む樹脂の単位体積当たりの無機フィラーの個数を表す。よって、分散密度が高ければ無機フィラーを含む樹脂の単位体積当たりの無機フィラーの個数が多く、分散密度が低ければ無機フィラーを含む樹脂の単位体積当たりの無機フィラーの個数が少ない。
【0018】
この分散密度の測定に関しては、例えば、厚さ1.0mmの樹脂製容器1の場合、容器内面12から一片が0.3mmの立方体を切り取り(以下、第1立方体)、この第1立方体の体積Vと重量Wを測定する。同様に、容器外面11から一片が0.3mmの立方体を切り取り(以下、第2立方体)、この第2立方体の体積V'と重量W'を測定する。
【0019】
そして、ガラスビーズ13の比重aと、ポリ乳酸の比重bとから第1及び第2立方体に含まれるガラスビーズ13の個数を推定する。以下、第1立方体に含まれるガラスビーズ13の個数推定方法について説明する。
【0020】
ガラスビーズ13の比重をa,ポリ乳酸の比重をbとし、第1立方体の体積をV,重量をW,第1立方体に含まれるガラスビーズ13の体積をV1,重量をW1,第1立方体に含まれるポリ乳酸の体積をV2,重量をW2とすると、下記に示す関係を得る。
V=V1+V2
W=W1+W2
V1=a・W1
V2=b・W2
よって、
V=a・w1+b(W-W1)
となり、V,W,a,bは既知の値であるから、ガラスビーズ13の体積W1は、
W1=(V−b・W)/(a−b)
となる。
【0021】
ガラスビーズ13の平均粒径からガラスビーズ13一個あたりの体積(以下、ビーズ体積)W11を算出する。ガラスビーズ13の体積W1をビーズ体積W11で除した値が、この切り取られた第1立方体に含まれるガラスビーズ13の個数と推定する。同様の方法で、第2立方体に含まれるガラスビーズ13の個数を推定する。この推定個数が多いときは分散密度が高く、推定個数が少ないときは分散密度が低いといえる。よって、実施例1の樹脂製容器1にあっては、第1立方体に含まれる推定個数より第2立方体に含まれる推定個数が多い。
【0022】
上述したように、無機フィラーの混練率が高まるほど断熱性が高くなる一方で、機械的物性の悪化が問題となる。そこで、容器外面11のように需要者が直接触れる箇所についてのみ無機フィラーの分散密度を高めることで断熱性を確保し、それ以外の部分では無機フィラーの分散密度を低くすることで機械的物性の悪化を回避する。尚、複数の材料を組み合わせて密度分布を作るのではなく、1つの材料の中で密度分布を持っているため、製造コストが増大することはない。
【0023】
(表面粗さについて)
また、容器外面11は、容器内面12よりも粗く構成されている。すなわち、容器外面11は、ガラスビーズ13の密度が高く、ガラスビーズ13自体が直接又は間接的に容器外面11に露出した状態となる。
【0024】
実施例1の表面粗さは、
外面側表面粗さ(Rz):15.90μm
内面側表面粗さ(Rz);10.70μm
である。Rzとは、表面粗さの定義で「十点表面粗さ」のことである。上記表面粗さは、株式会社キーエンス製のレーザー変位センサ(LT9030)により測定した。
【0025】
容器外面11は、需要者が直接触れる箇所であり、皮膚表面と容器外面11との接触面積が高いと、それだけ熱を伝えやすくなり好ましくない。そこで、容器外面11の表面粗さを意図的に粗くし、接触面積を低下させる、あるいは皮膚表面と容器外面11との間に多くの空気層を設け、それだけ容器内容物の熱さを伝えにくくする。
【0026】
(樹脂製容器の製造方法について)
次に、実施例1の樹脂製容器1の製造方法について説明する。図3は樹脂製容器1の製造装置を表す概略説明図である。図3(a)に示すように、温度設定手段201からの指令信号に基づいて金型表面温度を設定した値に昇温可能であって、容器の内面12を成形する容器内面側金型22を有する。また、射出成形金型2は分割された金型であり開閉手段(図示省略)を有する。
【0027】
容器内面側金型22内には、金型の特に内面側を昇温するように配策された線状の発熱体206と、金型表面温度を検出可能な温度センサ205が備えられている。また、電源204から発熱体206に供給する電流値を、温度設定手段201により設定された温度と温度センサ205により検出された金型表面温度に基づいてフィードバック制御する電流制御ユニット202を有する。また、電流制御ユニット202からの制御信号に基づいて電源204と発熱体206との電気的接続状態を断接するスイッチング素子203が設けられている。
【0028】
温度設定手段201により目標温度が設定されると、温度センサ205により検出された金型表面温度と目標温度との偏差に基づいて目標電流値が設定され、発熱体206に電流が供給される。すると、発熱体206は発熱し、容器内面側金型22を昇温する。そして、金型表面温度が目標温度となるように電流値が適宜制御される。
【0029】
また、温度設定手段201からの指令信号に基づいて金型表面温度を設定した値に昇温可能であって、容器の表面を成形する容器外面側金型21を有する。この容器外面側金型21にも、容器内面側金型22と同様に、温度設定手段201,電流値制御ユニット202,スイッチング素子203,電源204,温度センサ205及び発熱体206が備えられている。尚、制御内容については上述したため省略する。
【0030】
また、熱可塑性樹脂を加熱溶融状態に保持可能であって、無機フィラーであるガラスビーズ13が混練された溶融樹脂を容器内面側金型22と容器外面側金型21との間に充填する射出手段23を有する。
【0031】
実施例1の製造装置では、容器の内面を形成する金型と、容器の表面を形成する金型とを異なる金型とし、両金型を組み合わせて樹脂製容器1の形状を形成している。また、各金型の温度を独自に設定できるように構成されている。
【0032】
次に、図3(a)に示すように、上下(または左右)に開いた射出成形金型2を図3(b)に示すように射出成形金型2を閉じ、容器内面側金型22と容器外面側金型21とを組み合わせて樹脂製容器1の形状となる空間24を形成する。そして、温度設定手段201により容器内面側金型22を110℃(第1の所定温度)に設定し、容器外面側金型21を35℃(第1の所定温度よりも低い第2の所定温度)に設定する。すると、容器内面側金型22及び容器外面側金型21の表面温度は、発熱体206により第1及び第2の所定温度まで昇温される。そして、昇温された後は、その温度を維持した状態で、射出手段23により溶融樹脂を空間24内に充填され、所定形状の容器に成形される。上記のように射出成形されて、中空容器を冷却した後に射出成形金型2を開けば、所定形状に成形された樹脂製容器1が取り出される。
【0033】
(一般的な射出成形技術との対比)
一般に、射出成型時の両金型温度は、密度分布を均一にするために、比較的樹脂の流動性を確保可能な温度に昇温する。例えば、容器内面側金型22及び容器外面側金型21の両温度を110℃に昇温する。このため、金型内での無機フィラーの流動性に異方性は無く、無機フィラー密度も均等に分布する。
【0034】
ここで、実施例1の樹脂製容器1と両金型温度を同じに昇温した通常の無機フィラー含有樹脂製容器とを対比する。図4は通常の無機フィラー含有樹脂製容器(以下、比較例)の拡大断面図である。尚、比較のため、実施例1と同じ肉厚1.0mmとし、無機フィラーとしては実施例1と同じガラスビーズ13を採用し、含有率も実施例1と同じ重量比で10%混練した。
【0035】
図4に示すように、比較例では、樹脂製容器1の容器内面12側におけるガラスビーズ13の分散密度と容器外面11側におけるガラスビーズ13の分散密度とはほぼ均一に分布している。言い換えると、ガラスビーズ13の流動性において容器内面12側と容器外面11側とで特段の異方性はない。
【0036】
比較例の表面粗さは、
外面側表面粗さ(Rz):10.20μm
内面側表面粗さ(Rz):10.20μm
と、両面ともに同じ表面粗さであって、実施例1の内面側表面粗さと同等、もしくは若干平滑化されている。
【0037】
この場合、容器外面11における密度はさほど高くないため、十分な断熱性を確保することができない。また、容器外面11における粗さも低いため、需要者が把持した際に皮膚表面との接触面積が大きく、熱を伝えやすい。
【0038】
これに対し、実施例1の製造方法にあっては、容器内面側金型22の温度を高くして樹脂の流動性を確保し、一方、容器外面側金型21の温度を低くして樹脂の流動性を低下させる。温度の低い容器外面側金型21の表面に溶融樹脂内に混練されたガラスビーズ13が一旦接すると、このガラスビーズ13は流動しにくくなる。この現象が繰り返されると、流動性の高い容器内面側金型22ではガラスビーズ13の分散密度が低くなり、一方、流動性の低い容器外面側金型21ではガラスビーズ13の分散密度が高くなる。
【0039】
上記作用により、容器内面12と外面11との間に分散密度が異なる密度分布を持たせることが可能となり、容器外面11のように需要者が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面側ではガラスビーズ13の密度を下げることで容器の機械的物性を確保することができる。
【0040】
(製造コストの優位性について)
次に、製造コストの優位性について説明する。断熱性を持たせた容器としては、例えば、特開2004-26227号に記載の技術が知られている。この公報には、発泡性樹脂層を容器外面に形成されることにより断熱効果を持たせている。しかしながら、このような樹脂を樹脂容器に利用した場合、十分な断熱効果を得るためには、中空の微粒子を樹脂に添加して塗布する工程と、樹脂フィルムを用いる工程が必要であり、製造コストが増加するため実用性に欠ける。
【0041】
また、特開2001-270571号に記載の技術も知られている。この公報には、樹脂製容器の外面に発泡と同調する同調インクを塗布して、この同調インクの成分配合を特定し、容器胴部部材を構成する各部材の厚みを特定することで容器重量を抑えつつ断熱性を持たせている。しかしながら、発泡インクを塗布する工程が必要であり、製造コストが増加するため実用性に欠ける。
【0042】
また、実用新案登録第3119185号,特開平6-321265号,特開2007-176504,特開2000-168853号のように胴部外面にリブ,凹凸のエンボスを設ける技術や、容器内部に空隙部等を形成する技術が開示されている。しかしながら、これらの手法を用いて樹脂製容器を形成すると、樹脂量が増大して容器を薄肉にできないといった問題や、細かい形状を加工するため成形不良率が上がってしまうという問題、さらには、容器に複雑な細かい形状を有するための金型を製造する必要があり、製造コストが増大するという問題があり、いずれも実用性に欠ける。
【0043】
これらに対し、実施例1の製造方法では、射出成形時の2つの金型温度を異なった温度に維持させるのみで分散密度分布の異方性を得ることができるため、複数の製造工程を経ることがなく、製造コストを抑制することができる。
【0044】
(表面粗さの優位性)
また、実施例1のように容器内面側金型22の温度を110℃とし、容器外面側金型21の温度を35℃に維持すると、図2の拡大断面図に示すように、容器外面11自体の表面粗さを容器内面12よりも粗くすることが可能となる。上述したように、容器外面11は、需要者が直接触れる箇所であり、皮膚表面と容器外面11との接触面積を低下させる、あるいは皮膚表面と容器外面11との間に多くの空気層を設けることで、それだけ容器内容物の熱さを伝えにくくすることができる。
【0045】
尚、容器内面側金型22よりも容器外面側金型21を低くする際の温度差は、熱可塑性樹脂材料の特性や、混練する無機フィラーの特性によって適宜設定すればよく、一般に温度差が高いほど密度分布の異方性が強く、容器外面11の表面粗さも粗くなると考えられる。
【0046】
また、実施例1では、容器内面12はガラスビーズ13の密度が低く、容器内面12の平滑性を高めている。これにより、容器内容物が容器内面12に付着しにくくなり、衛生面及び意匠面においても良好な状態を保つことができる。
【0047】
(実施例1と比較例とのモニター試験結果)
次に、上述の実施例1と比較例とを用いてモニター試験を行った。室温24℃において、実施例1の樹脂製容器1及び比較例の樹脂製容器にそれぞれ85℃の熱湯を注ぎ、30秒放置した。その後、男性3名女性2名から構成されたモニターに樹脂製容器外面を把持してもらい、そのときに感じる熱さを5段階評定により判断した結果を示す。

【0048】
上記試験結果から、実施例1の製品はいずれも熱くないレベル3以上を獲得した。一方、比較例ではいずれも熱いレベル2以下であり、レベル3を獲得したものはなかった。このことからも、実施例1は十分な断熱性が得られていることが確認できた。
【0049】
以上説明したように、実施例1にあっては、下記に列挙する作用効果を得ることができる。
【0050】
(1)無機フィラーであるガラスビーズ13が混練された樹脂であるポリ乳酸により製造される樹脂製容器1であって、該容器の内面12側における単位体積当たりのガラスビーズ13の個数である分散密度よりも容器の厚さ方向の外面11側におけるガラスビーズ13の分散密度が高いこととした。
【0051】
即ち、容器内面12と外面11との間に厚さ方向で分散密度が異なるように分布を持たせることで、容器外面11のように需要者等が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面側ではガラスビーズ13の密度を下げることで容器の機械的物性を確保することができる。また、容器自体が密度分布を持っているため、複数種の材料を組み合わせる工程等を経ることがなく、製造コストを抑制することができる。
【0052】
(2)容器の外面11は、容器の内面12よりも粗いこととした。即ち、容器外面11は、需要者が直接触れる箇所であり、皮膚表面と容器外面11との接触面積を低下させる、あるいは皮膚表面と容器外面11との間に多くの空気層を設けることで、それだけ容器内容物の熱さを伝えにくくすることができる。
【0053】
(3)無機フィラーは、中空のガラスビーズ13とした。よって、樹脂製容器1の軽量化、衝撃に対する耐久性の向上、搬送コストの低減、環境負荷の軽減を図ることができる。
【0054】
(4)金型表面温度を設定した値に昇温可能であって容器の内面を成形する容器内面側金型22と、金型表面温度を設定した値に昇温可能であって容器の外面を成形する容器外面側金型21と、無機フィラーが混練された溶融樹脂を容器内面側金型22と容器外面側金型21との間に充填する射出手段23とを用いて製造する樹脂製容器の製造方法であって、容器内面側金型22を110℃(第1の所定温度)に昇温し、容器外面側金型21を35℃(第1の所定温度よりも低い第2の所定温度)に昇温した状態で、射出手段23により溶融樹脂を充填することとした。
【0055】
よって、容器内面12と外面11との間に厚さ方向で分散密度が異なるように分布を持たせることが可能となり、容器外面11のように需要者が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面12側ではガラスビーズ13の密度を下げることで容器の機械的物性を確保することができる。また、射出成形時の2つの金型温度を異なった温度に維持させるのみで分散密度分布の異方性を得ることができるため、複数の製造工程を経ることがなく、製造コストを抑制することができる。
【0056】
(5)第1の所定温度と前記第2の所定温度は、容器の外面11が容器の内面12よりも粗くなる温度に昇温されている。よって、確実に外面11を粗くすることが可能となり、皮膚表面と容器外面11との接触面積を低下させる、あるいは皮膚表面と容器外面11との間に多くの空気層を設けることで、それだけ容器内容物の熱さを伝えにくくすることができる。
【実施例2】
【0057】
次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図5は実施例2の樹脂製容器1の領域Aの部分拡大断面図である。実施例1では、飲み口部14においても、円筒部10や底部15と同様に、容器外面11のみ分散密度を高めた構成としていた。これに対し、実施例2では、飲み口部14においては、表面全体の分散密度を高めたものである。
【0058】
飲み口部14には、飲み口部下面141(実施例1の容器外面11に相当)と、飲み口部上面142(実施例1の容器内面12に相当)と、飲み口部端面143とを有する。これらを総称して飲み口部表面140と記載する。そして、ガラスビーズ13自体が直接又は間接的に飲み口部表面140に露出した状態とされている。
【0059】
(樹脂製容器の製造方法について)
次に、実施例2の樹脂製容器1の製造方法について説明する。図6は実施例2の樹脂製容器1の製造装置を表す概略説明図である。基本的な構成は図3に示す実施例1の概略説明図と同じであるため、異なる点についてのみ説明する。図6(a)に示すように、温度設定手段201からの指令信号に基づいて金型表面温度を設定した値に昇温可能であって、飲み口部上面141を成形する飲み口部金型25を有する。飲み口部金型25と容器内面側金型22との間には断熱材26が設けられている。この飲み口部金型25にも、容器内面側金型22と同様に、温度設定手段201,電流値制御ユニット202,スイッチング素子203,電源204,温度センサ205及び発熱体206が備えられている。尚、制御構成については上述したため省略する。
【0060】
次に、図6(b)に示すように、容器内面側金型22と飲み口部金型25とを断熱材を介して組み合わせると共に、容器内面側金型22と容器外面側金型21とを組み合わせて樹脂製容器1の形状となる空間24を形成する。そして、温度設定手段201により容器内面側金型22を110℃(第1の所定温度)に設定し、飲み口部金型25及び容器外面側金型21を35℃(第1の所定温度よりも低い第2の所定温度)に設定する。すると、容器内面側金型22の表面温度は110℃まで、飲み口部金型25及び容器外面側金型21の表面温度はそれぞれ35℃まで昇温される。そして、昇温された後は、その温度を維持した状態で、射出手段23により溶融樹脂を空間24内に充填する。
【0061】
これにより、飲み口部14は、円筒部10や底部15の容器内面12側よりも分散密度が高く、かつ、飲み口部表面140全体を粗くする。これにより、需要者が飲み口部14に唇を接触させて内容物を飲む場合であっても、飲み口部14の断熱性を確保する。また、唇との接触面積を低下させる、あるいは唇表面と容器外面11との間に多くの空気層を設け、それだけ容器内容物の熱さを伝えにくくする。
【0062】
以上説明したように、実施例2にあっては実施例1の作用効果に加えて、下記に列挙する作用効果を得ることができる。
【0063】
(6)容器内面12側のガラスビーズ13の分散密度よりも飲み口部14内におけるガラスビーズ13の分散密度が高くなる密度分布を有することとした。これにより、需要者が飲み口部14に唇を接触させて内容物を飲む場合であっても、飲み口部14の断熱性を確保することができる。
【0064】
(7)飲み口部表面140は、容器内面12よりも粗くした。これにより、唇との接触面積を低下させる、あるいは唇表面と飲み口部表面140との間に多くの空気層を設けることが可能となり、それだけ容器内容物の熱さを伝えにくくすることができる。
【0065】
(8)金型表面温度を設定した値に昇温可能であって、飲み口部14を成形する飲み口部金型25を設け、飲み口部金型25を35℃(第1の所定温度よりも低い第3の所定温度)に昇温した状態で射出手段23により溶融樹脂を充填することとした。
【0066】
よって、容器内面12と飲み口部14との間に分散密度が異なるように分布を持たせることが可能となり、飲み口部14のように需要者の唇が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面12側ではガラスビーズ13の密度を下げることで容器の機械的物性を確保することができる。また、射出成形時の2つの金型温度を異なった温度に維持するのみで分散密度分布の異方性を得ることができるため、複数の製造工程を経ることがなく、製造コストを抑制することができる。
【0067】
(9)飲み口部金型25の温度を、飲み口部表面140が容器内面12よりも粗くなる温度である35℃に設定した。よって、確実に飲み口部表面140を粗くすることが可能となり、唇と飲み口部表面140との接触面積を低下させる、あるいは唇と飲み口部表面140との間に多くの空気層を設けることで、それだけ容器内容物の熱さを伝えにくくすることができる。
【0068】
以上、実施例1,2について説明したが、上記構成に限られず、本発明を逸脱しない範囲で適宜設計変更してもよい。例えば、実施例1では、熱可塑性樹脂として乳酸ポリを使用したが、他に例示した熱可塑性樹脂や、これらとの組み合わせを用いてもよい。
【0069】
また、無機フィラーとして中空のガラスビーズ13を用いたが、他の無機フィラーを用いて密度分布を持たせる構成としてもよいし、複数の無機フィラーを組み合わせて密度分布を持たせる構成としてもよい。
【0070】
また、実施例1では、容器内面側金型22と容器外面側金型21を別々の金型として構成したが、1つの金型に容器内面側と容器表面側とを備えた構成でもよい。この場合、1つの金型であっても異なる温度分布を設定した値に昇温可能な金型とする必要がある点に留意する。
【0071】
また、実施例1では、容器内面側金型22と容器外面側金型21との温度を、それぞれ110℃と35℃に設定したが、これに限られず、必要な密度分布が得られる温度差を設定すればよい。
【0072】
また、実施例1では、表面側粗さ(Rz):15.90μmとし、内面側粗さ(Rz);10.70μmとしたが、これに限られず、更に表面粗さを粗くしてもよいし、これよりも平滑であってもよい。
【0073】
また、実施例1では、容器外面側金型21の温度を低い値に昇温したため、容器外面11全てにおいて密度分布の異方性を持たせたが、例えば、容器の把持部分となる円筒部もしくは円筒部の一部のみ温度を低くし、この部分にのみ密度分布の異方性を持たせるように設定してもよい。
【0074】
また、実施例2では、飲み口部金型25の温度を35℃に昇温し、容器外面11の表面粗さと同じとなるように昇温したが、例えば、飲み口部金型25の温度を更に低い温度(例えば25℃)等に昇温し、飲み口部表面140の粗さを容器外面11よりも粗くしてもよい。
【0075】
もしくは、飲み口部金型25の温度を、例えば容器外面側金型21の昇温温度である35℃よりも高い50℃程度に昇温し、飲み口部14内のガラスビーズ13の分散密度が過剰に高くならないように適宜調整してもよい。これにより、飲み口部14の機械的物性の向上を図ることができる。
【0076】
また、実施例2では、飲み口部金型25として、飲み口部上面142に接触する構成としたが、例えば、飲み口部金型25を、飲み口部表面140全体を覆う構成としても良い。この場合、飲み口部14だけ独立した温度に昇温することが可能となり、飲み口部14における分散密度や表面粗さを自由に設定することができる。
【0077】
尚、実施例1,2では、樹脂製容器に適用した例を示したが、例えば飲み口部を有する樹脂製の容器用蓋にあっては、この容器用蓋に本願発明を適用して断熱性を確保する構成としてもよい。
【0078】
また、実施例1,2では、射出成形時の金型を2つの異なった温度に昇温することにより分散密度に異方性を持たせたが、例えば、射出成形時に金型周辺に電場や磁場を作用させ、この場の力を利用して分散密度に異方性を持たせる方法を用いても良い。
【0079】
具体的には、無機フィラーとして常磁性体や強磁性体を採用し、容器内面側金型22と容器外面側金型21との間に磁場を作用させることで、容器外面側金型21側に無機フィラーが集まり易くするようにしてもよい。
【0080】
もしくは、溶融樹脂内に無機フィラーとは異なる比重のイオン化された粒子を混練し、容器内面側金型22と容器外面側金型21との間に電場を作用させることで、イオン化された粒子を容器内面側金型22に集まりやすくする。これにより、比重の異なる無機フィラーが容器外面側金型21側に集まり易くするようにしてもよい。
【0081】
また、実施例1,2では、溶融樹脂の射出成形によって樹脂製容器を成形したが、他の成形手段によって樹脂製容器を作ることとしてもよい。すなわち、実施例1,2では、容器内面側成形手段として容器内面側金型を使用し、容器外面側成形手段として容器外面側金型を使用したが、金型に限られず押し出し成形のローラを成形手段として用いても良い。このように数種の製造方法を想定した場合、本願発明の樹脂製容器の製造方法として必要な構成は下記となる。
【0082】
(14)成形対象と接触する接触面の表面温度を設定した値に昇温可能であって容器の内面を成形する容器内面側成形手段と、
成形対象と接触する接触面の表面温度を設定した値に昇温可能であって容器の外面を成形する容器外面側成形手段と、
無機フィラーが混練された溶融樹脂を前記容器内面側成形手段と前記容器外面側成形手段との間に介在させて前記内面及び前記外面を製造する樹脂製容器の製造方法であって、
前記容器内面側成形手段を第1の所定温度に昇温し、前記容器外面側成形手段を前記第1の所定温度よりも低い第2の所定温度に昇温した状態で、前記溶融樹脂を介在させることを特徴とする樹脂製容器の製造方法。
【0083】
例えば、押し出し成形により樹脂をシート状に加工し、このシート状の樹脂を真空成形やブロー成形により容器形状に加工する場合、このシート状の樹脂は容器内面となる表面と容器外面となる裏面を有することとなる。押し出し成形とは、2つのローラの間に溶融樹脂を押し出して所望の厚さのシートを成形するものである。このとき、シート状の樹脂の表面を成形するローラ(容器内面側成形手段)を第1の所定温度に昇温し、シート状の樹脂の裏面を成形するローラ(容器外面側成形手段)を第1の所定温度よりも低い第2の所定温度に昇温した状態で、無機フィラーが混練された溶融樹脂を介在させる。
【0084】
すると、押し出し成形により成形されたシート状の樹脂の表面と裏面との間に厚さ方向で分散密度が異なるように分布を持たせることができる。このシート状の樹脂から真空成形やブロー成形により表面から裏面側に膨出させて容器形状に加工すると、表面が容器内面となり裏面が容器外面となる。
【0085】
これにより、容器外面のように需要者等が直接触れる箇所にあっては十分な断熱性を確保し、一方、容器の内面側では無機フィラーの密度を下げることで容器の機械的物性を確保することができる。また、容器自体が密度分布を持っているため、複数種の材料を組み合わせる工程等を経ることがなく、製造コストを抑制することができる。この製造方法にあっても、実施例1,2において説明した各構成と組み合わせることで、同様の作用効果が得られることは言うまでもない。
【図面の簡単な説明】
【0086】
【図1】実施例1の樹脂製容器の斜視図である。
【図2】実施例1の樹脂製容器の領域Aの部分拡大断面図である。
【図3】実施例1の樹脂製容器の製造装置を表す概略説明図である。
【図4】比較例の拡大断面図である。
【図5】実施例2の樹脂製容器の領域Aの部分拡大断面図である。
【図6】実施例2の樹脂製容器の製造装置を表す概略説明図である。
【符号の説明】
【0087】
1 樹脂製容器
2 射出成形金型
10 円筒部
11 容器外面
12 容器内面
13 ガラスビーズ(無機フィラー)
14 飲み口部
15 底部
21 容器外面側金型
22 容器内面側金型
23 射出手段
24 空間
25 飲み口部金型
26 断熱材
201 温度設定手段
202 電流制御ユニット
203 スイッチング素子
204 電源
205 温度センサ
206 発熱体

【特許請求の範囲】
【請求項1】
無機フィラーが混練された樹脂により製造される容器であって、
該容器の内面側における単位体積当たりの前記無機フィラーの個数である分散密度よりも該容器の厚さ方向の外面側における前記無機フィラーの分散密度が高くなる密度分布を有することを特徴とする樹脂製容器。
【請求項2】
請求項1に記載の樹脂製容器において、
前記容器の外面は、前記容器の内面よりも粗いことを特徴とする樹脂製容器
【請求項3】
請求項1または2に記載の樹脂製容器において、
前記無機フィラーは、中空のガラスビーズであることを特徴とする樹脂製容器。
【請求項4】
請求項1ないし3いずれか1つに記載の樹脂製容器において、
前記容器外面は、前記容器の把持部であることを特徴とする樹脂製容器。
【請求項5】
請求項1ないし4いずれか1つに記載の樹脂製容器において、
前記容器は飲み口部を有し、
前記容器の内面側における前記無機フィラーの分散密度よりも前記飲み口部内における前記無機フィラーの分散密度が高くなる密度分布を有することを特徴とする樹脂製容器。
【請求項6】
請求項5に記載の樹脂製容器において、
前記容器の飲み口部表面は、前記容器の内面よりも粗いことを特徴とする樹脂製容器。
【請求項7】
金型表面温度を設定した値に昇温可能であって容器の内面を成形する容器内面側金型と、
金型表面温度を設定した値に昇温可能であって容器の外面を成形する容器外面側金型と、
無機フィラーが混練された溶融樹脂を前記容器内面側金型と前記容器外面側金型との間に充填する射出手段を用いて製造する樹脂製容器の製造方法であって、
前記容器内面側金型を第1の所定温度に昇温し、前記容器外面側金型を前記第1の所定温度よりも低い第2の所定温度に昇温した状態で、前記射出手段により前記溶融樹脂を充填することを特徴とする樹脂製容器の製造方法。
【請求項8】
請求項7に記載の樹脂製容器の製造方法において、
前記第1の所定温度と前記第2の所定温度は、前記容器の外面が前記容器の内面よりも粗くなる温度に昇温されていることを特徴とする樹脂製容器の製造方法。
【請求項9】
請求項7または8に記載の樹脂製容器の製造方法において、
前記無機フィラーは、中空のガラスビーズであることを特徴とする樹脂製容器の製造方法。
【請求項10】
請求項7ないし9いずれか1つに記載の樹脂製容器の製造方法において、
前記容器外面は、前記容器の把持部であることを特徴とする樹脂製容器の製造方法。
【請求項11】
請求項7ないし10いずれか1つに記載の樹脂製容器の製造方法において、
金型表面温度を設定した値に昇温可能であって前記容器の飲み口部を成形する飲み口部金型を設け、
前記飲み口部金型を前記第1の所定温度よりも低い第3の所定温度に昇温した状態で、前記射出手段により前記溶融樹脂を充填することを特徴とする樹脂製容器の製造方法。
【請求項12】
請求項11に記載の樹脂製容器の製造方法において、
前記第3の所定温度は、前記容器の飲み口部表面が前記容器の内面及び/又は外面よりも粗くなる温度に昇温されていることを特徴とする樹脂製容器の製造方法。
【請求項13】
請求項7ないし12いずれか1つに記載の樹脂製容器の製造方法により製造された樹脂製容器。
【請求項14】
成形対象と接触する接触面の表面温度を設定した値に昇温可能であって容器の内面を成形する容器内面側成形手段と、
成形対象と接触する接触面の表面温度を設定した値に昇温可能であって容器の外面を成形する容器外面側成形手段と、
無機フィラーが混練された溶融樹脂を前記容器内面側成形手段と前記容器外面側成形手段との間に介在させて前記内面及び前記外面を製造する樹脂製容器の製造方法であって、
前記容器内面側成形手段を第1の所定温度に昇温し、前記容器外面側成形手段を前記第1の所定温度よりも低い第2の所定温度に昇温した状態で、前記溶融樹脂を介在させることを特徴とする樹脂製容器の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−190780(P2009−190780A)
【公開日】平成21年8月27日(2009.8.27)
【国際特許分類】
【出願番号】特願2008−35722(P2008−35722)
【出願日】平成20年2月18日(2008.2.18)
【出願人】(000208455)大和製罐株式会社 (309)
【Fターム(参考)】