説明

発光ダイオード、発光ダイオードランプ及び照明装置

【課題】光吸収が低減された電極構造を有すると共に、耐薬品性に優れた金属基板を用いることにより収率が向上し、特性が安定した発光ダイオード、発光ダイオードランプ及び照明装置を提供することを目的とする。
【解決手段】本発明の発光ダイオードは、金属基板1は一体とされた複数の金属層1b、1a、1bと上面1ba及び下面1bbを覆うエッチャントに対して耐性を有する金属保護膜2とからなり、金属基板と化合物半導体層間には接合層4と反射層6とオーミックコンタクト電極7とが設けられ、化合物半導体層10の金属基板の反対側10aにはオーミック電極11と、パッド部12a及び線状部12bからなる表面電極12とが設けられ、オーミック電極11の表面11aは線状部により覆われ、オーミックコンタクト電極7及びオーミック電極11はパッド部12aに重ならない位置に形成されたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光ダイオード、発光ダイオードランプ及び照明装置に関するものであり、特に放熱性に優れ、高輝度発光に適した発光ダイオード、発光ダイオードランプ及び照明装置に関する。
【背景技術】
【0002】
従来、赤色、赤外の光を発する高輝度の発光ダイオード(英略称:LED)としては例えば、砒化アルミニウム・ガリウム(組成式AlGa1−XAs;0≦X≦1)からなる発光層や砒化インジウム・ガリウム(組成式InGa1−XAs;0≦X≦1)からなる発光層を備えた化合物半導体発光ダイオードが知られている。一方、赤色、橙色、黄色或いは黄緑色の可視光を発する高輝度の発光ダイオードとしては例えば、燐化アルミニウム・ガリウム・インジウム(組成式(AlGa1−XIn1−YP;0≦X≦1,0<Y≦1)からなる発光層を備えた化合物半導体発光ダイオードが知られている。これら化合物半導体発光ダイオードの基板として、一般に、発光層から出射される発光に対し光学的に不透明であり、また機械的にもそれ程強度のない砒化ガリウム(GaAs)等の基板材料が用いられてきた。
【0003】
これに対して、より高輝度の発光ダイオードを得るために、また、更なる素子の機械的強度、放熱性の向上を目的として、発光光に対して不透明な基板材料を除去して、然る後、発光光を透過または反射し、尚且つ機械強度、放熱性に優れる材料からなる支持基板を改めて接合させる、接合型発光ダイオードを構成する技術が開示されている(例えば、特許文献1〜5参照)。
【0004】
基板接合技術の開発により、支持基板として適用できる基板の自由度が増え、コスト面、機械強度、放熱性等において大きなメリットを有する金属基板の適用が提案されている(例えば、特許文献6)。
特に、大電流で光らせる必要がある高輝度発光ダイオードは、従来のものに比べて発熱量が多く、放熱性の確保が課題となっている。金属基板は発光部(化合物半導体層)からの発熱を発光ダイオードの外部へ効率的に放出できるので、化合物半導体層に金属基板を接合させた金属基板接合型の発光ダイオードは、高出力化、長寿命化に有用として期待されている。
【0005】
一方、高輝度発光ダイオードにおいて、表面電極に大電流を供給可能とするためには、表面電極は十分な大きさのボンディングパッドを有することが望ましいが、かかるボンディングパッドは発光部で発光した光を吸収して、光取り出し効率を低下させてしまうという問題がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2001−339100号公報
【特許文献2】特開平6−302857号公報
【特許文献3】特開2002−246640号公報
【特許文献4】特許第2588849号公報
【特許文献5】特開2001−57441号公報
【特許文献6】特開2007−81010号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献6には金属基板が開示されているものの、金属基板は、半導体基板、セラミックス基板等と比較して製造プロセスで使用する化学薬品に反応、腐食等により品質劣化する問題がある。具体的には、アルカリ、酸の処理に対して、溶解、変色、腐食が発生し、特性不良や収率の低下してしまうという問題がある。特に、半導体層を成長させる砒化ガリウム基板を除去する為、アルカリや酸に長時間浸漬し、砒化ガリウム基板を全て溶解する工程が一般的であるが、金属基板がこの長時間の薬品処理に耐えられないという問題があり、かかる問題に対する対策については何ら開示・示唆はない。
【0008】
また、発光ダイオードにおいては表面電極のパッド部での光の吸収が問題になっているが、高輝度発光ダイオードにおいてはその問題は特に顕著になる。
【0009】
本発明は、上記事情を鑑みてなされたものであり、放熱性に優れているために大電流駆動が可能であり、それに加えて、表面電極における光吸収が低減された構成を有することにより、高輝度発光が可能とされていると共に、基板除去工程の薬品処理に耐えうる耐薬品性に優れた新しい構造の金属基板を用いることにより、収率が向上し、特性が安定した発光ダイオード、発光ダイオードランプ及び照明装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記の目的を達成するために、大電流駆動の観点から金属基板を採用し、発光した光の吸収要因を排除する観点から、成長用基板を除去して光吸収のより少ない支持基板(金属基板)に貼り付ける構成を採用すると共に、表面電極の(ボンディング)パッド部での光の吸収を低減するために表面電極のパッド部の直下では発光が生じない構成を採用し、さらに、収率向上及び特性安定の観点から、金属基板について基板除去工程の薬品処理に耐えうる金属保護膜を備えた構成を採用した。
【0011】
すなわち、上記の目的を達成するために、本発明は以下の構成を採用した。すなわち、
(1)成長用基板を用いて、発光層と該発光層を挟む第1のクラッド層及び第2のクラッド層とを含む化合物半導体層を成長させ、該化合物半導体層を支持する金属基板を接合した後に、前記成長用基板をエッチャントを用いて除去して製造される発光ダイオードであって、前記金属基板は、一体とされた複数の金属層と、その一体とされた複数の金属層の上面及び下面を覆う、前記エッチャントに対して耐性を有する金属保護膜とからなり、前記金属基板と前記化合物半導体層との間には金属基板側から順に接合層と反射層とオーミックコンタクト電極とが設けられ、前記化合物半導体層の前記金属基板の反対側には順に、オーミック電極と、パッド部及び該パッド部に連結する線状部からなる表面電極とが設けられており、前記オーミック電極の表面は前記線状部により覆われており、前記オーミックコンタクト電極及び前記オーミック電極は、平面視して前記パッド部に重ならない位置に形成されている、ことを特徴とする発光ダイオード。
(2)前記一体とされた複数の金属層が、銅層とモリブデン層とが交互に積み重なってなることを特徴とする前項(1)に記載の発光ダイオード。
(3)前記金属保護膜が、前記一体とされた複数の金属層側から順に、ニッケル膜、金膜が積層されてなることを特徴とする前項(1)又は(2)のいずれかに記載の発光ダイオード。
(4)前記パッド部は、平面視して円形状であり、前記線状部は、円形状の前記パッド部の中心を通る直線上において直径を挟んだ周端から互いに逆方向に延在する2本の第1の直線部と、該第1の直線部に対して直交する方向に延在する複数の第2の直線部とからなり、前記オーミックコンタクト電極は平面視して、隣接する前記第2の直線部の間にそれらの隣接する前記第2の直線部の各々からほぼ等距離の位置に、該第2の直線部の延在する方向に沿って離間して配置する複数の導電性部材からなることを特徴とする前項(1)から(3)のいずれか一項に記載の発光ダイオード。
(5)前記パッド部が複数の円形状パッドからなることを特徴とする前項(1)から(4)のいずれか一項に記載の発光ダイオード。
(6)前記オーミックコンタクト電極及び前記オーミック電極は平面視して、前記パッド部の外周から5μm以上離間して前記パッド部に重ならない位置に形成されていることを特徴とする前項(1)から(5)のいずれか一項に記載の発光ダイオード。
(7)前記金属保護膜はさらに前記一体とされた複数の金属層の側面を覆っていることを特徴とする前項(1)から(6)のいずれか一項に記載の発光ダイオード。
(8)前記発光層が、AlGaAs、InGaAs、又は、AlGaInPのいずれかからなることを特徴とする前項(1)から(7)のいずれか一項に記載の発光ダイオード。
(9)前項(1)から(8)のいずれか一項に記載の発光ダイオードを備えることを特徴とする発光ダイオードランプ。
(10)前項(1)から(8)のいずれか一項に記載の発光ダイオードを複数個搭載した照明装置。
【0012】
なお、本発明において、「金属基板」と「接合層」の間や他の層間に公知の機能層を適宜加えることができる。
また、「金属層」は、金属からなる薄板も含む。
【発明の効果】
【0013】
本発明の発光ダイオードによれば、金属基板は、一体とされた複数の金属層と、その一体とされた複数の金属層の上面及び下面を覆う、エッチャントに対して耐性を有する金属保護膜とからなる構成としたので、放熱性に優れ大電流駆動によって高輝度発光が可能であり、また、成長用基板除去工程の薬品処理の際にも腐食による品質劣化が低減され、収率が向上し、発光ダイオードの特性が安定する。また、オーミックコンタクト電極及びオーミック電極は平面視して、前記パッド部に重ならない位置に形成されている構成としたので、パッド部の直下では発光が生じないのでパッド部における光吸収が低減され、光取り出し効率が向上する。また、金属基板を構成する金属層に熱伝導率が高い材料を採用することにより、金属基板の放熱性をより高くして、より高輝度発光を可能とすると共に、発光ダイオードの寿命を長寿命化できる。また、金属基板として一体とされた複数の金属層を備えた構成を採用したので、例えば、化合物半導体層より熱膨張係数が大きい材料からなる金属層と、化合物半導体層より熱膨張係数が小さい材料からなる金属層とを採用することにより、金属基板全体としての熱膨張係数が化合物半導体層の熱膨張係数に近いものとなるため、化合物半導体層と金属基板とを接合する際の金属基板の反りや割れを抑制することができ、発光ダイオードの製造歩留まりを向上させることができる。
【0014】
本発明の発光ダイオードによれば、一体とされた複数の金属層が、銅層とモリブデン層とが交互に積み重なってなる構成例えば、銅層/モリブデン層/銅層を採用することにより、機械的強度が高いMoを加工しやすいCuで挟んだ構成となるため、切断等の加工が容易であり、寸法精度の高い発光ダイオードとなっている。
【0015】
本発明の発光ダイオードによれば、金属保護膜が一体とされた複数の金属層側から順に、ニッケル膜、金膜が積層されてなる構成を採用することにより、ニッケルに起因して密着性がよく、金に起因して耐薬品に非常に優れているため、成長用基板除去工程の薬品処理の際の品質劣化の低減効果が大きい。また、化合物半導体層側の接合層に、共晶金属のAuGe層を採用することにより、金属基板との接合が非常に強固なものとなる。
【図面の簡単な説明】
【0016】
【図1】本発明の第1の実施形態である発光ダイオードの断面摸式図である。
【図2a】本発明の第1の実施形態である発光ダイオードの表面電極の平面摸式図である。
【図2b】本発明の第1の実施形態である発光ダイオードのオーミック電極の平面摸式図である。
【図2c】本発明の第1の実施形態である発光ダイオードのオーミックコンタクト電極の平面摸式図である。
【図2d】本発明の第1の実施形態である発光ダイオードの表面電極、オーミック電極、オーミックコンタクト電極を重ねて描いた平面摸式図である。
【図3】本発明の発光ダイオードの電極構造の他の実施形態を示す平面摸式図である。
【図4】金属基板の製造工程を説明するための金属基板の一部の断面模式図であって、(a)第1の工程、(2)第2の工程、(3)第3の工程を示すものである。
【図5】本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
【図6】本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
【図7】本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
【図8】本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
【図9】本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
【図10】本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
【発明を実施するための形態】
【0017】
以下、本発明を適用した実施形態の発光ダイオード、発光ダイオードランプ及び照明装置について、図を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
【0018】
〔発光ダイオード(第1の実施形態)〕
図1は、本発明を適用した一実施形態の発光ダイオードの一例を示す断面模式図である。
本実施形態の発光ダイオード100は、成長用基板21(図4参照)を用いて、活性層と該活性層を挟む第1のクラッド層及び第2のクラッド層とを含む化合物半導体層10を成長させ、該化合物半導体層を支持する金属基板1を接合した後に、成長用基板をエッチャントを用いて除去して製造される発光ダイオードであって、金属基板1は、一体とされた複数の金属層1b、1a、1bと、その一体とされた複数の金属層の上面1ba及び下面1bbを覆う、前記エッチャントに対して耐性を有する金属保護膜2とからなり、金属基板と化合物半導体層との間には金属基板側から順に接合層4と反射層6とオーミックコンタクト電極7とが設けられ、化合物半導体層10の金属基板の反対側10aには順に、オーミック電極11と、パッド部12a及び該パッド部に連結する線状部12bからなる表面電極12とが設けられており、オーミック電極11の表面11aは線状部により覆われており、オーミックコンタクト電極7及びオーミック電極11は平面視して、パッド部12aに重ならない位置に形成されている、ことを特徴とする。
なお、本実施形態では、コンタクト層22cを平面視してオーミック電極11と同じ形状としたので、オーミック電極11と表面電極12とが設けられた面はクラッド層23aの表面であるが、コンタクト層22cをクラッド層23aと同じ形状に形成した場合にはオーミック電極11と表面電極12とが設けられる面はコンタクト層22cの表面となる。
【0019】
図1で示す例では、オーミックコンタクト電極7は複数のドット状の導電性部材からなり、その導電性部材間には透光膜8が充填されている。また、化合物半導体層10において、透光膜8側には電流拡散層25が設けられ、反射層6と接合層4との間にはバリア層5が設けられている。
【0020】
<化合物半導体層>
化合物半導体層10は、複数のエピタキシャル成長させた層を積層してなる、発光層24を含む化合物半導体の積層構造体である。
化合物半導体層10としては、例えば、発光効率が高く、基板接合技術が確立されているAlGaInP層またはAlGaInAs層などを利用できる。AlGaInP層は、一般式(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)で表される材料からなる層である。この組成は、発光ダイオードの発光波長に応じて、決定される。赤および赤外発光の発光ダイオードを作製する際に用いられるAlGaInAs層の場合も同様に、構成材料の組成は発光ダイオードの発光波長に応じて決定される。
化合物半導体層10は、n型またはp型の何れか一の伝導型の化合物半導体であり、内部でpn接合が形成される。AlGaInAsにはAlGaAs、GaAs等も含まれる。
なお、化合物半導体層10の表面の極性はp型、n型のどちらでもよい。
【0021】
図1に示すように、化合物半導体層10は、例えば、コンタクト層22cと、クラッド層23aと発光層24と、クラッド層23bと、電流拡散層25とからなる。クラッド層23aは、光取り出し向上の為に表面を粗面化させる表面粗面化層23aaと、ダブルへテロ構造の要素となるクラッド層23abの2層構造としてもよい。
【0022】
コンタクト層22cは、オーミック(Ohmic)電極の接触抵抗を下げるための層であり、例えば、Siドープしたn型のGaAsからなり、キャリア濃度を1×1018cm−3とし、層厚を0.05μmとする。
【0023】
表面粗面化層23aaは、例えば、Siをドープしたn型の(Al0.5Ga0.50.5In0.5Pからなり、キャリア濃度を3×1018cm−3とし、層厚を3μmとする。
【0024】
クラッド層23abは、例えば、Siをドープしたn型のAl0.5In0.5Pからなり、キャリア濃度を3×1018cm−3とし、層厚を0.5μmとする。
【0025】
発光層24は、例えば、アンドープの(Al0.1Ga0.90.5In0.5P/(Al0.5Ga0.50.5In0.5Pの20対の積層構造からなり、層厚を0.2μmとする。
発光層24は、ダブルへテロ構造(Double Hetero:DH)、単一量子井戸構造(Single Quantum Well:SQW)または多重量子井戸構造(Multi Quantum Well:MQW)などの構造を有する。ここで、ダブルへテロ構造は、放射再結合を担うキャリアを閉じ込められる構造である。また、量子井戸構造は、井戸層と井戸層を挟む2つの障壁層とを有する構造であって、SQWは井戸層が1つのものであり、MQWは井戸層が2以上のものである。化合物半導体層10の形成方法としては、MOCVD法などを用いることができる。
発光層24から単色性に優れる発光を得るためには、発光層24としてMQW構造を用いることが好ましい。
【0026】
クラッド層23bは、例えば、Mgをドープしたp型のAl0.5In0.5Pからなり、キャリア濃度を8×1017cm−3とし、層厚を0.5μmとする。
【0027】
電流拡散層25は、例えば、Mgをドープしたp型GaP層であり、キャリア濃度を5×1018cm−3とし、層厚を2μmとする。
【0028】
化合物半導体層10の構成は、上記に記載した構造に限られるものではなく、例えば、素子駆動電流の通流する領域を制限するための電流阻止層または電流狭窄層などを有していてもよい。
【0029】
(電極構造)
図2(a)は、本実施形態の表面電極の一例を示す平面摸式図である。図2(b)は、本実施形態のオーミック電極の一例を示す平面摸式図である。図2(c)は、本実施形態のオーミックコンタクト電極の一例を示す平面摸式図である。図2(d)は、表面電極、オーミック電極、オーミックコンタクト電極を重ねて描いた平面摸式図である。
【0030】
<表面電極>
表面電極12は、パッド部12aとパッド部12に連結する線状部12bとからなる。
本実施形態では、パッド部12aは平面視して円形状であるが、円形状以外の他の形状でもよい。
【0031】
線状部12bは、円形状のパッド部12aの中心を通る直線上において直径を挟んだ周端(周端部)12aaa、12aabから互いに逆方向に延在する2本の第1の直線部12baa、12babと、第1の直線部12baa、12babに対して直交する方向に延在する6本の第2の直線部12bba、12bbb、12bca、12bcb、12bcc、12bcdとからなる。
【0032】
第2の直線部12bba、12bbbはそれぞれ、第1の直線部12baa、12babの周端部12aaa、12aabとは反対側の端部に接続し、パッド部12aから離間して配置する。他方、第2の直線部12bca、12bcb、12bcc、12bcdはそれぞれ、2つの周端部12aaa、12aabの間の一方の円弧側と他方の円弧側のそれぞれ2個の周端部12aba、12abb、12abc、12abdから延在する。周端部12aba、12abbから延在する2本の第2の直線部12bca、12bcbと、周端部12abc、12abdから延在する2本の第2の直線部12bcc、12bcdとはそれぞれ一直線上に、第2の直線部12bba、12bbbの延在方向に平行な方向に延在する。
【0033】
本実施形態の線状部12bは、2本の第1の直線部と、6本の第2の直線部とからなる構成であるが、この本数には限らない。
【0034】
パッド部12aのサイズは、円形状の場合、直径を例えば、50〜150μm程度とする。
また、線状部12bの幅はオーミック電極11の線状部位を覆うためにその幅より幅広となるように、例えば、2〜20μm程度とする。第1の直線部及び第2の直線部のすべてについて同じ幅にする必要はないが、均一な光取り出しの観点から、対称な位置に配置する直線部の幅は同じであるのが好ましい。
【0035】
表面電極の材料としては、Au/Ti/Au、(Au/Pt/Au、Au/Cr/Au、Au/Ta/Au、Au/W/Au、Au/Mo/Au)などを用いることができる。
【0036】
<オーミック電極>
オーミック電極11は6本の線状部位11ba、11bb、11ca、11cb、11cc、11cdからなる。
本実施形態のオーミック電極11は6本の線状部位からなる構成であるが、この本数には限らない。オーミック電極11は表面電極の線状部12b下に不連続に配列されている形状、たとえばドット形状電極の配列としてもよい。
【0037】
また、オーミック電極11のそれぞれの線状部位は、平面視して表面電極12のパッド部12aに重ならない位置であって、表面電極12の線状部12bの6本の第2の直線部12bba、12bbb、12bca、12bcb、12bcc、12bcdのそれぞれに覆われる位置に配置する。
すなわち、長い2本の線状部位11ba、11bbはそれぞれ、第2の直線部12bba、12bbbのそれぞれの直下に配置しており、短い4本の線状部位11ca、11cb、11cc、11cdはそれぞれ、第2の直線部12bca、12bcb、12bcc、12bcdのそれぞれの直下に配置する。
【0038】
このように、オーミック電極11が平面視して、表面電極12のパッド部12aに重ならない位置に配置するのは、オーミック電極11がパッド部12aに重なる位置に配置するとパッド部の直下で発光した光がパッド部で吸収される割合が高くなって、光取り出し効率が低下してしまうからであり、それを回避するためである。
【0039】
オーミック電極11を構成する線状部位の幅は、表面電極12の線状部で覆われるようにその幅より幅狭となるよう、例えば、1〜10μm程度とする。幅はすべての線状部位について同じにする必要はないが、均一な光取り出しの観点から、対称な位置に配置する線状部位の幅は同じであるのが好ましい。
【0040】
オーミック電極の材料としては、AuGeNi、AuGe、AuNiSi、AuSiなどを用いることができる。
【0041】
<オーミックコンタクト電極>
オーミックコンタクト電極7は平面視してドット状の複数の導電性部材からなり、後述する透光膜内に埋め込まれている。
【0042】
オーミックコンタクト電極7を構成するドット状の導電性部材は、平面視して表面電極12のパッド部12aに重ならない位置であって、オーミック電極11の線状部位間の中間位置上に、又は、オーミック電極11の両端の線状部位11ba、11bbの外側の、その線状部位11ba、11bbからの距離d2が線状部位間の中間位置までの距離d1と同程度の位置に、直線状に並ぶように配置する。オーミックコンタクト電極7の形状は、円柱状、楕円柱状、ドーナツ状、線状等でもよい。
【0043】
具体的には、直線状に並んだドット状の導電性部材の群7baは平面視して、オーミック電極11の線状部位11baと線状部位11caとの間の中間位置上に配置し、直線状に並んだドット状の導電性部材の群7bcはオーミック電極11の線状部位11baと線状部位11ccとの間の中間位置上に配置し、直線状に並んだドット状の導電性部材の群7bbは平面視して、オーミック電極11の線状部位11bbと線状部位11cbとの間の中間位置上に配置し、直線状に並んだドット状の導電性部材の群7bdはオーミック電極11の線状部位11bbと線状部位11cdとの間の中間位置上に配置する。また、直線状に並んだドット状の導電性部材の群7caは平面視して、オーミック電極11の線状部位11baと線状部位11cbとの間の中間位置上に配置し、直線状に並んだドット状の導電性部材の群7cbはオーミック電極11の線状部位11ccと線状部位11cdとの間の中間位置上に配置する。
また、直線状に並んだドット状の導電性部材の群7aaは平面視して、オーミック電極11の左端の線状部位11baの外側の、その線状部位11baからの距離d2が線状部位間の中間位置までの距離d1と同程度の位置に配置し、直線状に並んだドット状の導電性部材の群7abは平面視して、オーミック電極11の左端の線状部位11bbの外側の、その線状部位11bbからの距離d2が線状部位間の中間位置までの距離d1と同程度の位置に配置する。
【0044】
オーミック電極11の線状部位間の中間位置までの距離d1、d3と、オーミック電極11の両端の線状部位11ba、11bbの外側の、その線状部位11ba、11bbからの距離d2とは、電流が均一に拡散するように等しい距離に構成するのが好ましい。
【0045】
オーミックコンタクト電極7を構成するドット状の導電性部材は例えば、直径を5〜20μm程度とする円柱状部材とする。
また、直線状に並ぶドット状の導電性部材の群において、隣接する導電性部材間の距離は例えば、5〜40μm程度とする。
【0046】
オーミックコンタクト電極7が平面視して、表面電極12のパッド部12aに重ならない位置に配置するのは、オーミックコンタクト電極7がパッド部12aに重なる位置に配置するとパッド部の直下で発光した光がパッド部で吸収される割合が高くなってしまい、光取り出し効率が低下してしまうからであり、それを回避するためである。
【0047】
オーミックコンタクト電極の材料としては、AuBe、AuZnなどを用いることができる。
【0048】
図2(d)を参照して、オーミック電極11を構成する線状部位のうち、表面電極12のパッド部12aに最近接する線状部位11ca、11cb、11cc、11cdとパッド部12aとの最短距離d4は5μm以上であることが好ましい。また、オーミックコンタクト電極7を構成する導電性部材のうち、表面電極12のパッド部12aに最近接する導電性部材とパッド部12aとの最短距離d5及びd6も5μm以上であることが好ましい。これらの距離d4、d5及びd6が5μm未満の場合は、パッド部の下方で発光した光のパッド部における光吸収低減が十分でなく、光取り出し効率の向上の十分な効果が望めないからである。
これらの距離d4、d5及びd6は、100μm以下であるのが好ましい。これを超える場合は発光ダイオード(チップ)のサイズが大きくなりすぎるからである。
【0049】
図3は、電極構造の他の実施形態(第2の実施形態)を示すものであり、表面電極を描いた平面摸式図である。
第2の実施形態の電極構造では、表面電極42は平面視して円形状の2個のパッド部42aa、42abを備え、パッド部42aa、42abに連結する線状部42bは、パッド部42aaの中心を通る直線上において直径を挟んだ周端から互いに逆方向に延在する2本の第1の直線部42baa、42babと、パッド部42abの中心を通る直線上において直径を挟んだ周端から互いに逆方向に延在する2本の第1の直線部42bac、42badと、該第1の直線部42baa、42bab、42bac、42badに対して直交する方向に延在する複数の第2の直線部42bca、42bcb、42bcc、42bcd、42bba、42bbb、42bbc、42bbd、42bbe、42bbf、42bbg、42bbhとからなる。
また、第2の直線部42bcaと42bccはパッド部42aaに直接連結し、第2の直線部42bcbと42bcdはパッド部42abに直接連結する。
【0050】
第2の実施形態の電極構造においても、オーミック電極が複数の線状部位からなり、それぞれの線状部位が、平面視して表面電極42のパッド部42aa、42abに重ならない位置であって、表面電極42の線状部42bの第2の直線部42bca、42bcb、42bcc、42bcd、42bba、42bbb、42bbc、42bbd、42bbe、42bbf、42bbg、42bbhのそれぞれに覆われる位置に配置する点は、第1の実施形態の場合と同様である。
また、オーミックコンタクト電極が平面視してドット状の複数の導電性部材からなり、それらのドット状の導電性部材が、平面視して表面電極12のパッド部42aa、42abに重ならない位置であって、オーミック電極の線状部位間の中間位置上に、又は、オーミック電極の両端の線状部位の外側の、その線状部位からの距離が線状部位間の中間位置までの距離と同程度の位置に、直線状に並ぶように配置する点も、第1の実施形態の場合と同様である。
【0051】
オーミック電極を構成する線状部位のうち、表面電極42のパッド部42aa又は42abに最近接する線状部位とパッド部又はとの最短距離は5μm以上であることが好ましい。また、オーミックコンタクト電極を構成する導電性部材のうち、表面電極42のパッド部42aa又は42abに最近接する導電性部材と42のパッド部42aa又は42abとの最短距離も5μm以上であることが好ましい。
これらの距離が5μm未満の場合は、パッド部の下方で発光した光のパッド部における光吸収低減が十分でなく、光取り出し効率の向上の十分な効果が望めないからである。
【0052】
<透光層>
透光層8は、オーミックコンタクト電極7を構成するドット状の導電性部材間に充填するように形成されている。
透光層8の材料としては、ITO、SiO、IZO、Si、TiO、TiNなどを用いることができる。
【0053】
<反射層>
反射層6は、発光層24からの光を反射層6で正面方向fへ反射させて、正面方向fでの光取り出し効率を向上させることができ、これにより、発光ダイオードをより高輝度化できる。
反射層6の材料としては、AgPdCu合金(APC)、金、銅、銀、アルミニウムなどの金属およびそれらの合金等を用いることができる。これらの材料は光反射率が高く、光反射率を90%以上とすることができる。
【0054】
<バリア層>
バリア層5は、金属基板に含まれる金属が拡散して、反射層6と反応するのを抑制することができる。
バリア層5の材料としては、ニッケル、チタン、白金、クロム、タンタル、タングステン、モリブデン等を用いることができる。
バリア層は、2種類以上の金属の組み合わせ、たとえば白金とチタンの組み合わせなどにより、バリアの性能を向上させることができる。
なお、バリア層を設けなくても、接合層にそれらの材料を添加することにより接合層にバリア層と同様な機能を持たせることもできる。
【0055】
<接合層>
接合層4は、発光層24を含む化合物半導体層10等を金属基板1に接合するための層である。
接合層4の材料としては、化学的に安定で、融点の低いAu系の共晶金属などを用いられる。Au系の共晶金属としては、例えば、AuGe、AuSn、AuSi、AuInなどの合金の共晶組成を挙げることができる。
【0056】
<金属基板>
図4(a)〜図4(c)は、金属基板の製造工程を説明するための金属基板の一部の断面模式図である。
本実施形態の金属基板1は3層の金属層1a,1b,1aと、その上面1ba及び下面1bbを覆う、エッチャントに対して耐性を有する金属保護膜2とからなる。さらに、金属基板1の側面を金属保護膜2で覆うのが好ましい。
【0057】
金属基板1と化合物半導体層10との接合は、金属基板1の接合面(上面)1baに、金属保護膜2を介して接合層4が接合されることによって行われている。
【0058】
金属保護膜2の材料としては、密着性に優れるクロム、ニッケル、化学的に安定な白金、又は金の少なくともいずれか一つを含む金属からなるものであるのが好ましい。
金属保護膜2は密着性がよいニッケルと耐薬品に優れる金を組み合わせた層からなるのが最適である。
金属保護膜の厚さは特に制限はないが、エッチャントに対する耐性とコストのバランスから、0.2〜5μm、好ましくは、0.5〜3μmが適正な範囲である。高価な金の場合は、厚さは2μm以下が望ましい。
【0059】
金属基板1の厚さは、50μm以上150μm以下とすることが好ましい。
金属基板1の厚さが150μmより厚い場合には、発光ダイオードの製造コストが上昇して好ましくない。また、金属基板1の厚さが50μmより薄い場合には、ハンドリング時に割れ、かけ、反りなどが容易に生じて、製造歩留まりを低下させるおそれが発生する。
【0060】
複数の金属層の構成としては、2種類の金属層すなわち、第1の金属層と第2の金属層とが交互に積層されてなるものが好ましい。
金属基板1枚あたりの第1の金属層と第2の金属層の層数は、合わせて3〜9層とすることが好ましく、3〜5層とすることがより好ましい。
第1の金属層と第2の金属層の層数を合わせて2層とした場合には、厚さ方向での熱膨張が不均衡となり、金属基板1の反りが発生する。逆に、第1の金属層と第2の金属層の層数を合わせて9層より多くした場合には、第1の金属層と第2の金属層の層厚をそれぞれ薄くする必要が生じる。第1の金属層または第2の金属層からなる単層基板の層厚を薄くして作製することは困難であり、各層の層厚を不均一にして、発光ダイオードの特性をばらつかせるおそれが発生する。さらに、単層基板の製造が困難であることから、発光ダイオードの製造コストを悪化させるおそれも生じる。
【0061】
第1の金属層と第2の金属層の層数は、合わせて奇数とすることがより好ましい(この場合、最外側の層が第1の金属層)。
特に3層として、一層の金属層を挟む二層の金属層は同じ金属材料からなるものとすることが好ましい。この場合、挟む二層の金属層を同じエッチャントを用いて湿式エッチングで切断予定ラインに相当する部分を除去することができる。
【0062】
金属基板の表面は、上述の通り金属保護膜2があるが、この金属保護膜が金属基板1側からNi膜、Au膜の順に形成されていると、接合層としてAu−Siを用いる場合に好ましい。また、金属基板の表面にダイボンド用の共晶金属を形成しても良い。ダイボンドの接合を電気的接触が安定な共晶接合とすることができる。
化合物半導体層10に金属基板1を接合する方法は、上記の共晶接合の他、拡散接合、接着剤、常温接合などの公知の技術を適用してもよい。
【0063】
<第1の金属層>
第1の金属層は、第2の金属層として化合物半導体層より熱膨張係数が小さい材料を用いる場合には、少なくとも化合物半導体層より熱膨張係数が大きい材料からなることが好ましい。この構成とすることにより、金属基板全体としての熱膨張係数が化合物半導体層の熱膨張係数に近いものとなるため、化合物半導体層と金属基板とを接合する際の金属基板の反りや割れを抑制することができ、発光ダイオードの製造歩留まりを向上させることができるからである。従って、第2の金属層として化合物半導体層より熱膨張係数が大きい材料を用いる場合には、第1の金属層は少なくとも化合物半導体層より熱膨張係数が小さい材料からなることが好ましい。
【0064】
第1の金属層としては、例えば、銀(熱膨張係数=18.9ppm/K)、銅(熱膨張係数=16.5ppm/K)、金(熱膨張係数=14.2ppm/K)、アルミニウム(熱膨張係数=23.1ppm/K)、ニッケル(熱膨張係数=13.4ppm/K)およびこれらの合金などを用いることが好ましい。
第1の金属層の層厚は、5μm以上50μm以下とすることが好ましく、5μm以上20μm以下とすることがより好ましい。
なお、第1の金属層の層厚と第2の金属層の層厚とは異なっていてもよい。さらに、金属基板1が複数の第1の金属層と第2の金属層により形成される場合に、各層の層厚はそれぞれ異なっていてもよい。
【0065】
第1の金属層の合計の厚さは、金属基板1の厚さの5%以上50%以下であることが好ましく、10%以上30%以下であることがより好ましく、15%以上25%以下であることが更に好ましい。第1の金属層の合計の厚さが金属基板1の厚さの5%未満の場合は、熱膨張係数が高い第1の金属層の効果が小さくなり、ヒートシンク機能が低下する。逆に、第1の金属層の厚さが金属基板1の厚さの50%を超える場合は、金属基板1を化合物半導体層10と接続させたときの熱による金属基板1の割れを抑制できない。つまり、第1の金属層と化合物半導体層10との間の大きな熱膨張係数の差により、熱による金属基板1の割れを発生させて、接合不良発生を招く場合が生じる。
特に、第1の金属層として銅を用いた場合には、銅の合計の厚さが、金属基板1の厚さの5%以上40%以下であることが好ましく、10%以上30%以下であることがより好ましく、15%以上25%以下であることが更に好ましい。
第1の金属層の層厚は、5μm以上30μm以下とすることが好ましく、5μm以上20μm以下とすることがより好ましい。
【0066】
<第2の金属層>
第2の金属層は、第1の金属層として化合物半導体層より熱膨張係数が大きい材料を用いる場合には、その熱膨張係数が化合物半導体層の熱膨張係数より小さい材料からなることが好ましい。この構成とすることにより、金属基板全体としての熱膨張係数が化合物半導体層の熱膨張係数に近いものとなるため、化合物半導体層と金属基板とを接合する際の金属基板の反りや割れを抑制することができ、発光ダイオードの製造歩留まりを向上させることができるからである。従って、第1の金属層として化合物半導体層より熱膨張係数が小さい材料を用いる場合には、第2の金属層はその熱膨張係数が化合物半導体層の熱膨張係数より大きい材料からなることが好ましい。
【0067】
例えば、化合物半導体層としてAlGaInP層(熱膨張係数=約5.3ppm/K)を用いた場合には、第2の金属層としてモリブデン(熱膨張係数=5.1ppm/K)、タングステン(熱膨張係数=4.3ppm/K)、クロム(熱膨張係数=4.9ppm/K)およびこれらの合金などを用いることが好ましい。
【0068】
本発明の一実施形態の発光ダイオード100として、発光層24を含む化合物半導体層10に金属基板1が接合された発光ダイオード100であって、金属基板1は、第1の金属層と第2の金属層とが交互に積層されてなり、第1の金属層は、熱膨張係数が化合物半導体層10の材料より大きく、第2の金属層は、熱膨張係数が化合物半導体層10の材料より小さい材料からなる構成を採用すると、放熱性に優れ、接合の際の基板の割れを抑制でき、高電圧を印加して、高輝度で発光させることができる。
【0069】
本発明の一実施形態の発光ダイオード100として、第2の金属層の材料が、化合物半導体層10の熱膨張係数の±1.5ppm/K以内となる熱膨張係数を有する材料である構成を採用すると、放熱性に優れ、接合の際の基板の割れを抑制でき、高電圧を印加して、高輝度で発光させることができる。
【0070】
本発明の一実施形態の発光ダイオード100として、第1の金属層が、アルミニウム、銅、銀、金、ニッケルまたはこれらの合金からなる構成を採用すると、放熱性に優れ、接合の際の基板の割れを抑制でき、高電圧を印加して、高輝度で発光させることができる。
【0071】
本発明の一実施形態の発光ダイオード100として、第2の金属層が、モリブデン、タングステン、クロムまたはこれらの合金からなる構成を採用すると、放熱性に優れ、接合の際の基板の割れを抑制でき、高電圧を印加して、高輝度で発光させることができる。
【0072】
本発明の一実施形態の発光ダイオード100として、第1の金属層が銅からなり、第2の金属層がモリブデンからなり、第1の金属層と第2の金属層との層の数が合わせて3層以上9層以下とされている構成を採用すると、放熱性に優れ、接合の際の基板の割れを抑制でき、高電圧を印加して、高輝度で発光させることができる。
【0073】
[発光ダイオードの製造方法]
次に、本発明の一実施形態である発光ダイオードの製造方法について説明する。
【0074】
<金属基板の製造工程>
図4(a)〜図4(c)は、金属基板の製造工程を説明するための金属基板の一部の断面模式図である。
金属基板1として、熱膨張係数が化合物半導体層10の材料より大きい第1の金属層1bと、熱膨張係数が化合物半導体層10の材料より小さい第2の金属層1bとを採用して、ホットプレスして形成する。
【0075】
具体的にはまず、2枚の略平板状の第1の金属層1bと、1枚の略平板状の第2の金属層1aを用意する。例えば、第1の金属層1bとしては厚さ10μmのCu、第2の金属層1aとしては厚さ75μmのMoを用いる。
次に、図4(a)に示すように、2枚の第1の金属層1bの間に第2の金属層1aを挿入してこれらを重ねて配置する。
【0076】
次に、重ね合わせたそれらの金属層を所定の加圧装置に配置して、高温下で第1の金属層1bと第2の金属層1aに矢印の方向に荷重をかける。これにより、図4(b)に示すように、第1の金属層21がCuであり、第2の金属層22がMoであり、Cu(10μm)/Mo(75μm)/Cu(10μm)の3層からなる金属基板1を形成する。
金属基板1は、例えば、熱膨張係数が5.7ppm/Kとなり、熱伝導率は220W/m・Kとなる。
【0077】
次に、図4(c)に示すように、金属基板1の全面すなわち、上面、下面及び側面を覆う金属保護膜2を形成する。このとき、金属基板は各発光ダイオードに個片化のために切断される前なので、金属保護膜が覆う側面とは金属基板(プレート)の外周側面である。従って、個片化後の各発光ダイオードの金属基板1の側面を金属保護膜2で覆う場合には別途、金属保護膜で側面を覆う工程を実施する。
図4(c)は、金属基板(プレート)の外周端側でない箇所の一部を示しているものであり、外周側面の金属保護膜は図に表れていない。
【0078】
金属保護膜は公知の膜形成方法を用いることができるが、側面を含めた全面に膜形成が
できるめっき法が最も好ましい。
例えば、無電解めっき法では、ニッケルその後、金をめっきし、金属基板の上面、側面、
下面をニッケル膜及び金膜(金属保護膜)で覆われた金属基板6を作製できる。
めっき材質は、特に制限はなく、銅、銀、ニッケル、クロム、白金、金など公知の材質
が適用できるが、密着性がよいニッケルと耐薬品に優れる金を組み合わせた層が最適であ
る。
めっき法は、公知の技術、薬品が使用できる。電極が不要な無電解めっき法が、簡便で
望ましい。
【0079】
<化合物半導体層の形成工程>
まず、図5に示すように、半導体基板(成長用基板)21の一面21a上に、複数のエピタキシャル層を成長させて化合物半導体層10を含むエピタキシャル積層体30を形成する。
半導体基板21は、エピタキシャル積層体30形成用基板であり、例えば、一面21aが(100)面から15°傾けた面とされた、Siドープしたn型のGaAs単結晶基板である。エピタキシャル積層体30としてAlGaInP層またはAlGaAs層を用いる場合、エピタキシャル積層体30を形成する基板として砒化ガリウム(GaAs)単結晶基板を用いることができる。
【0080】
化合物半導体層10の形成方法としては、有機金属化学気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法、分子線エピタキシャル(Molecular Beam Epitaxicy:MBE)法や液相エピタキシャル(Liquid Phase Epitaxicy:LPE)法などを用いることができる。
【0081】
本実施形態では、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)をIII族構成元素の原料に用いた減圧MOCVD法を用いて、各層をエピタキシャル成長させる。
なお、Mgのドーピング原料にはビスシクロペンタジエニルマグネシウム((CMg)を用いる。また、Siのドーピング原料にはジシラン(Si)を用いる。また、V族構成元素の原料としては、ホスフィン(PH)又はアルシン(AsH)を用いる。
なお、p型の電流拡散層(GaP層)25は、例えば、750°Cで成長させ、その他のエピタキシャル成長層は、例えば、730°Cで成長させる。
【0082】
具体的には、まず、半導体基板21の一面21a上に、Siをドープしたn型のGaAsからなる緩衝層22aを成膜する。緩衝層22aとしては、例えば、Siをドープしたn型のGaAsを用い、キャリア濃度を2×1018cm−3とし、層厚を0.2μmとする。
【0083】
次に、本実施形態では、緩衝層22a上に、Siドープしたn型の(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層22bを成膜する。
エッチングストップ層22bは、半導体基板をエッチング除去する際、クラッド層および発光層までがエッチングされてしまうことを防ぐための層であり、例えば、Siドープの(Al0.5Ga0.50.5In0.5Pからなり、層厚を0.5μmとする。
【0084】
次に、エッチングストップ層22b上に、Siドープしたn型のGaAsからなるコンタクト層22cを成膜する。
【0085】
次に、コンタクト層22c上に、Siをドープしたn型の(Al0.5Ga0.50.5In0.5Pからなる表面粗面化層23aaを成膜する。
【0086】
次に、コンタクト層22c上に、Siをドープしたn型のAl0.5In0.5Pからなるクラッド層23abを成膜する。
【0087】
次に、クラッド層23a上に、アンドープの(Al0.1Ga0.90.5In0.5P/(Al0.7Ga0.30.5In0.5Pの20対の積層構造からなる発光層2を成膜する。
【0088】
次に、発光層24上に、Mgをドープしたp型のAl0.5In0.5Pからなるクラッド層23bを成膜する。
【0089】
次に、クラッド層23b上に、Mgドープしたp型のGaP層25を成膜する。
【0090】
次に、p型のGaP層25の半導体基板21と反対側の面25aを、表面から1μmの深さに至るまで鏡面研磨して、表面の粗さを、例えば、0.18nm以内とする。
【0091】
なお、クラッド層と発光層との間にガイド層を設けてもよい。
【0092】
<オーミックコンタクト電極の形成工程>
次に、図6に示すように、p型のGaP層25上にオーミックコンタクト電極7を形成する。
まず、p型のGaP層25全面に、例えば、CVD法を用いてSiO膜(透光膜)8を形成する。
【0093】
次に、フォトリソグラフィー技術及びエッチング技術を用いて、SiO膜8に、オーミックコンタクト電極7を構成する導電性部材を埋め込むための複数の貫通孔を形成する。この複数の貫通孔は、後の工程で形成する表面電極12のパッド部12aに平面視して重ならない位置であって、後の工程で形成するオーミック電極11の線状部位間の中間位置上に、又は、オーミック電極11の両端の線状部位11ba、11bbの外側の、その線状部位11ba、11bbからの距離d2が線状部位間の中間位置までの距離d1と同程度の位置に、直線状に並ぶように形成する。
【0094】
直線状に並ぶ複数の貫通孔の群において、隣接する貫通孔間の距離は例えば、5〜40μm程度とする。
また、貫通孔のうち、後の工程で形成する表面電極12のパッド部12aとの最短距離は5μm以上、100μm以下とすることが好ましい。
【0095】
具体的には、それらの貫通孔に対応する孔を有するフォトレジストパターンをSiO膜8上に形成し、フッ酸系のエッチャントを用いて貫通孔に対応する箇所のSiO膜8を除去することにより、SiO膜8に複数の貫通孔を形成する。
【0096】
次に、例えば、蒸着法を用いて、SiO膜8の複数の貫通孔にオーミックコンタクト電極7の材料であるAuBe合金を形成する。
【0097】
<反射層の形成工程>
次に、図7に示すように、オーミックコンタクト電極7及びSiO膜8上に反射層6を形成する。
具体的には、例えば、蒸着法を用いて、APC若しくはAuからなる反射層6をオーミックコンタクト電極7及びSiO膜8上に形成する。
【0098】
<バリア層の形成工程>
次に、図7に示すように、反射層6上にバリア層5を形成する。
具体的には、例えば、蒸着法を用いて、ニッケルからなるバリア層5を反射層6上に形成する。
【0099】
<接合層の形成工程>
次に、図7に示すように、バリア層5上に接合層4を形成する。
具体的には、例えば、蒸着法を用いて、Au系の共晶金属であるAuGeからなる接合層4をバリア層5上に形成する。
【0100】
<金属基板の接合工程>
次に、図8に示すように、エピタキシャル積層体30や反射層6等を形成した半導体基板21と、金属基板の製造工程で形成した金属基板1とを減圧装置内に搬入して、その接合層4の接合面4aと金属基板1の接合面1aとが対向して重ね合わされるように配置する。
次に、減圧装置内を3×10−5Paまで排気した後、重ね合わせた半導体基板21と金属基板1とを400℃に加熱した状態で、500kgの荷重を印加して接合層4の接合面4aと金属基板1の接合面1aとを接合して、接合構造体40を形成する。
【0101】
<半導体基板および緩衝層除去工程>
次に、図9に示すように、接合構造体40から、半導体基板21及び緩衝層22aをアンモニア系エッチャントにより選択的に除去する。
このとき、本発明の金属基板は金属保護膜に覆われており、エッチャントに対する耐性が高いため、金属基板が品質劣化することが防止される。
【0102】
<エッチングストップ層除去工程>
次に、エッチングストップ層22bを塩酸系エッチャントにより選択的に除去する。これにより、発光層24を含む化合物半導体層10が形成される。
本発明の金属基板は金属保護膜に覆われており、エッチャントに対する耐性が高いため、金属基板が品質劣化することが防止される。
【0103】
<オーミック電極の形成工程>
次に、図10に示すように、化合物半導体層10のオーミックコンタクト電極7と反対側の面に、オーミック電極11を形成する。
具体的には例えば、蒸着法を用いて、厚さ0.1μmのAuGeNi合金を全面に成膜し、次に、フォトリソグラフィー技術及びエッチング技術を用いて、AuGeNi合金からなる膜をパターニングして、図2(b)に示すような6本の線状部位11ba、11bb、11ca、11cb、11cc、11cdからなるオーミック電極11を形成する。
【0104】
上記オーミック電極形成工程のパターニングで用いたマスクを用いて、コンタクト層12cのうち、例えば、アンモニア水(NHOH)/過酸化水素(H22)/純水(H20)混合液により、オーミック電極11の下以外の部分をエッチングで除去する。これにより、オーミック電極11とコンタクト層12cの平面形状は図10に示すように、実質的に同一の形状となる。
【0105】
オーミック電極11のそれぞれの線状部位は、後述する工程で形成する表面電極12のパッド部12aに平面視して重ならない位置であって、表面電極12の線状部12bの6本の第2の直線部12bba、12bbb、12bca、12bcb、12bcc、12bcdのそれぞれに覆われる位置に形成する。
また、オーミック電極11を構成する線状部位のうち、表面電極12のパッド部12aに最近接する線状部位11ca、11cb、11cc、11cdとパッド部12aとの最短距離は5μm以上、100μm以下とすることが好ましい。
【0106】
<表面電極の形成工程>
次に、化合物半導体層10のオーミックコンタクト電極7と反対側の面に、オーミック電極11を覆うように、パッド部12a及び該パッド部に連結する線状部12bからなる表面電極12を形成する。
具体的には例えば、蒸着法を用いて、厚さ0.3μmのAu層、厚さ0.3μmのTi層、厚さ1μmのAu層を順に全面に成膜し、次に、フォトリソグラフィー技術及びエッチング技術を用いて、Au/Ti/Au膜をパターニングして、図2(a)に示すようなパッド部12aと該パッド部に連結する2本の第1の直線部12baa、12babと、6本の第2の直線部12bba、12bbb、12bca、12bcb、12bcc、12bcdとからなる線状部12bとからなる表面電極12を形成する。
【0107】
第2の直線部のそれぞれは、オーミック電極11を構成する6本の線状部位のそれぞれを覆う位置に形成する。
【0108】
<個片化工程>
次に、ウェハ上の発光ダイオードを個片化する。
切断する領域の半導体層を除去した後に、以上の工程で形成された金属基板を含む構造
体をレーザで例えば、350μm間隔で切断し、発光ダイオード100を作製する。
【0109】
<金属基板側面の金属保護膜形成工程>
個片化された各発光ダイオード100では、金属基板の側面には金属保護膜は形成されていないが、上面及び下面の金属保護膜の形成条件と同様な条件で、切断された金属基板の側面に金属保護膜を形成してもよい。
【実施例】
【0110】
以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。
本実施例では、特性評価のために発光ダイオードランプを作製して、特性評価を行った。
【0111】
(実施例1)
まず、厚さ75μmのMo層(箔、板)、2枚の厚さ10μmのCu層(箔、板)で挟み、加熱圧着して厚さ95μmの金属板プレート(個片化の切断前)を形成した。この金属板プレートの上面と下面を研磨し、上面を光沢面とした後に、有機溶剤で洗浄し、汚れを除去した。次に、この金属板プレートの全面に、無電解めっき法により金属保護膜として2μmのNi層、1μmのAu層を順に形成して金属基板(個片化の切断前の金属基板)1を作製した。
【0112】
次に、Siをドープしたn型のGaAs単結晶からなるGaAs基板21上に、化合物半導体層を順次積層して発光波長620nmのエピタキシャルウェーハを作製した。
GaAs基板21は、(100)面から(0−1−1)方向に15°傾けた面を成長面とし、キャリア濃度を1×1018cm−3とした。化合物半導体層としては、SiをドープしたGaAsからなるn型の緩衝層22a、Siドープの(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層22b、SiドープのGaAsからなるn型のコンタクト層22c、Siドープの(Al0.5Ga0.50.5In0.5Pからなるn型の表面粗面化層23aa、SiドープのAl0.5In0.5Pからなるn型の上部クラッド層23ab、(Al0.1Ga0.90.5In0.5P/(Al0.5Ga0.50.5In0.5Pの20対からなる井戸層/バリア層の発光層24、Al0.5In0.5Pからなるp型の下部クラッド層23b、Mgドープしたp型GaPからなる電流拡散層25である。
【0113】
本実施例では、減圧有機金属化学気相堆積装置法(MOCVD装置)を用い、直径50mm、厚さ350μmのGaAs基板に化合物半導体層をエピタキシャル成長させて、エピタキシャルウェーハを形成した。エピタキシャル成長層を成長させる際、III族構成元素の原料としては、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)を使用した。また、Mgのドーピング原料としては、ビスシクロペンタジエニルマグネシウム(bis−(CMg)を使用した。また、Siのドーピング原料としては、ジシラン(Si)を使用した。また、V族構成元素の原料としては、ホスフィン(PH)、アルシン(AsH)を使用した。また、各層の成長温度としては、p型GaPからなる電流拡散層は、750℃で成長させた。その他の各層では700℃で成長させた。
【0114】
GaAsからなる緩衝層は、キャリア濃度を約1×1018cm−3、層厚を約0.5μmとした。エッチングストップ層は、キャリア濃度を1×1018cm−3、層厚を約0.5μmとした。コンタクト層は、キャリア濃度を約1×1018cm−3、層厚を約0.05μmとした。表面粗面化層は、キャリア濃度を1×1018cm−3、層厚を約3μmとした。上部クラッド層は、キャリア濃度を約2×1018cm−3、層厚を約0.5μmとした。井戸層は、アンドープで層厚が約5nmの(Al0.1Ga0.90.5In0.5Pとし、バリア層はアンドープで層厚が約5nmの(Al0.5Ga0.50.5In0.5Pとした。また、井戸層とバリア層とを交互に20対積層した。下部クラッド層は、キャリア濃度を約8×1017cm−3、層厚を約0.5μmとした。GaPからなる電流拡散層は、キャリア濃度を約5×1018cm−3、層厚を約3μmとした。
【0115】
次に、電流拡散層25を表面から約2μmの深さに至る領域まで研磨して、鏡面加工した。この鏡面加工によって、電流拡散層の表面の粗さを0.18nmとした。
【0116】
次に、電流拡散層25上に、SiO膜8及び図2(c)に示したパターンのAuBe合金からなるオーミックコンタクト電極7を形成した。
SiO膜8は厚さ0.3μmとして、オーミックコンタクト電極7を構成する円柱状の導電性部材は直径9μmとし、直線上に隣接する導電性部材の間隔10μmとした。
【0117】
次に、SiO膜8及びオーミックコンタクト電極7上に、蒸着法を用いて、厚さ0.7μmのAu膜からなる反射層6を形成した。
次に、反射層6上に、蒸着法を用いて、厚さ0.5μmのTi膜からなるバリア層5を形成した。
次に、バリア層5上に、蒸着法を用いて、厚さ1.0μmのAuGeからなる接合層4を形成した。
【0118】
次に、GaAs基板上に化合物半導体層及び反射層6等を形成した構造体(図7参照)と、金属基板1とを対向して重ね合わせるように配置して減圧装置内に搬入し、400℃で加熱した状態で、500kg重の荷重でそれらを接合して接合構造体を形成した。
【0119】
次に、接合構造体から、化合物半導体層の成長基板であるGaAs基板21と緩衝層22aとをアンモニア系エッチャントにより選択的に除去し、さらに、エッチングストップ層22bを塩酸系エッチャントにより選択的に除去した。
【0120】
次に、化合物半導体層10のオーミックコンタクト電極7と反対側の面に、蒸着法を用いて、図2(b)に示したパターンの厚さ0.1μmのAuGeNi合金からなるオーミック電極11を形成した。
6本の線状部位の幅はいずれも4μmとし、線状部位11ba、11bbの長さは270μm、線状部位11ca、11cb、11cc、11cdの長さは85μmとした。
また、線状部位11ba、11bbと表面電極12のパッド部12aとの最近接距離は45μmとし、線状部位11ca、11cb、11cc、11cdと表面電極12のパッド部12aとの最近接距離は10μmとした。
なお、線状部位11ba、11bbと表面電極12のパッド部12aとの最近接距離は表面電極12の第1の直線部12baa、12babの長さに一致する。
【0121】
次に、化合物半導体層10のオーミックコンタクト電極7と反対側の面にオーミック電極11を覆うように、蒸着法を用いて、図2(a)に示したパターンの厚さ1.6μmのパッド部12a及び線状部12bからなる表面電極12を形成した。
パッド部12aは直径100μmとし、線状部12bの幅は第1の直線部及び第2の直線部共に8μmとした。
また、第1の直線部12baa、12babの長さは43μmとし、第2の直線部12bba、12bbbの長さは270μmとし、第2の直線部12bca、12bcb、12bcc、12bcdの長さは100μmとした。
【0122】
オーミック電極11を構成する線状部位のうち、表面電極12のパッド部12aに最近接する線状部位11ca、11cb、11cc、11cdとパッド部12aとの最短距離d4(図2(d)参照)は、10μmとした。また、オーミックコンタクト電極7を構成する導電性部材のうち、表面電極12のパッド部12aに最近接する導電性部材とパッド部12aとの最短距離d5及びd6はそれぞれ10μm、13μmとした。
【0123】
次に、チップに分離する為の切断予定部分を化合物半導体層10から接合層4まで除去し、金属基板1をレーザーダイシングにより、350μmピッチで正方形に切断した。
次に、上述のように作製した実施例1の発光ダイオードチップをマウント基板上に実装して発光ダイオードランプを組み立てた。
【0124】
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果、n型及びp型オーミック電極間に電流を流したところ、ドミナント波長620nmとする赤色光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は1.95Vであった。順方向電流を20mAとした際の発光出力は8.5mWであった。
このランプ20個を、温度60℃、湿度90%の高温高湿環境下で、通電試験(30mA通電)を1000時間実施した。その発光出力の残存率の平均は98%、Vの変動はほとんどなく99%であった。
【0125】
GaAs基板21、GaAs緩衝層22a及びエッチングストップ層22bを溶解除去後、接合収率を測定した結果、収率は理論面積に対して、97%が正常であった。
ここで、理論面積(S)とは、接合前の実効的な面積として円形からオリフラ部分と周辺のべべリング領域を差し引いた面積で、50mmφウエハの場合S=19.5cmとなる。
また、接合収率は、接合後に測定した接合部分の面積Xの理論面積Sに対するもので、接合収率=X/S×100(%)で算出する。接合部の面積は、たとえば接合部分を除去した後に面積計で測定するなどして求めることができる。
【0126】
(実施例2)
実施例2は、実施例1と比較すると、第2の実施形態(図3参照)の電極構造を備える点が異なり、他の構成は同じである。電極の層厚及び材料は実施例1と同じである。
【0127】
実施例2では、表面電極42のパッド部パッド部42aa及び42abの直径は120μmとし、表面電極42の線状部の幅はすべて8μmとした。また、第1の直線部の長さは135μmとした。第2の直線部12の長さは1000μmとし、第2の直線部12のそれぞれの間隔は92μmとした。
また、オーミック電極の線状部位の幅はすべて4μmとし、長さについては、表面電極42の第2の線状部42bca、42bcb、42bcc、42bcdの直下の線状部位は400μmとし、第2の線状部42bba、42bbb、42bbc、42bbd、42bbe、42bbf、42bbg、42bbhの直下は980μmとした。
また、オーミックコンタクト電極を構成する円柱状の導電性部材は直径9μmとし、直線上に隣接する導電性部材の間隔は26μmとした。
【0128】
オーミック電極を構成する線状部位のうち、表面電極42のパッド部42aa又は42abに最近接する線状部位とパッド部42aa又は42abとの最短距離(図2(d)の「d4」に相当)は、30μmとした。また、オーミックコンタクト電極を構成する導電性部材のうち、表面電極42のパッド部42aa又は42abに最近接する導電性部材とパッド部42のパッド部42aa又は42abとの最短距離(図2(d)の「d5」、「d6」に相当)は、21μmとした。
【0129】
次に、チップに分離する為の切断予定部分を化合物半導体層10から接合層4まで除去し、金属基板1をレーザーダイシングにより、1100μmピッチで正方形に切断した。
次に、上述のように作製した実施例1の発光ダイオードチップをマウント基板上に実装して発光ダイオードランプを組み立てた。
【0130】
この発光ダイオード(発光ダイオードランプ)の特性を評価した結果、n型及びp型オーミック電極間に電流を流したところ、ドミナント波長620nmとする赤色光が出射された。順方向に350ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は2.05Vであった。順方向電流を350mAとした際の発光出力は170mWであった。
このランプ20個を、温度60℃、湿度90%の高温高湿環境下で、通電試験(100mA通電)を1000時間実施した。その発光出力の残存率の平均は96%、Vの変動はほとんどなく99%であった。
【0131】
GaAs基板、GaAs緩衝層22a及びエッチングストップ層22bを溶解除去後、接合収率を測定した結果、収率は理論面積に対して、97%が正常であった。
【符号の説明】
【0132】
1 金属基板
1a、1b 金属層
1ba 上面
1bb 下面
2 金属保護膜
4 接合層
6 反射層
7 オーミックコンタクト電極
7aa、7ab、7ba、7bb、7bc、7bd、7ca、7cb ドット状の導電性部材の群
10 化合物半導体層
11 オーミック電極
11ba、11bb、11ca、11cb、11cc、11cd 線状部位
12 表面電極
12a パッド部
12b 線状部
12baa、12bab 第1の直線部
12bba、12bbb、12bca、12bcb、12bcc、12bcd 第2の直線部
21 半導体基板(成長用基板)
42 表面電極
42aa、42ab パッド部
42b 線状部
42baa、42bab、42bac、42bad 第1の直線部
42bca、42bcb、42bcc、42bcd、42bba、42bbb、42bbc、42bbd、42bbe、42bbf、42bbg、42bbh 第2の直線部
100 発光ダイオード

【特許請求の範囲】
【請求項1】
成長用基板を用いて、発光層と該発光層を挟む第1のクラッド層及び第2のクラッド層とを含む化合物半導体層を成長させ、該化合物半導体層を支持する金属基板を接合した後に、前記成長用基板をエッチャントを用いて除去して製造される発光ダイオードであって、
前記金属基板は、一体とされた複数の金属層と、その一体とされた複数の金属層の上面及び下面を覆う、前記エッチャントに対して耐性を有する金属保護膜とからなり、
前記金属基板と前記化合物半導体層との間には金属基板側から順に接合層と反射層とオーミックコンタクト電極とが設けられ、
前記化合物半導体層の前記金属基板の反対側には順に、オーミック電極と、パッド部及び該パッド部に連結する複数の線状部からなる表面電極とが設けられており、
前記オーミック電極の表面は前記線状部により覆われており、
前記オーミックコンタクト電極及び前記オーミック電極は平面視して、前記パッド部に重ならない位置に形成されている、ことを特徴とする発光ダイオード。
【請求項2】
前記一体とされた複数の金属層が、銅層とモリブデン層とが交互に積み重なってなることを特徴とする請求項1に記載の発光ダイオード。
【請求項3】
前記金属保護膜が、前記一体とされた複数の金属層側から順に、ニッケル膜、金膜が積層されてなることを特徴とする請求項1又は2のいずれかに記載の発光ダイオード。
【請求項4】
前記パッド部は、平面視して円形状であり、
前記線状部は、円形状の前記パッド部の中心を通る直線上に直径を挟んで周端からその直線方向に延在する2本の第1の直線部と、該第1の直線部に対して直交する方向に延在する複数の第2の直線部とからなり、
前記オーミックコンタクト電極は平面視して、隣接する前記第2の直線部の間にそれらの隣接する前記第2の直線部の各々からほぼ等距離の位置に、該第2の直線部の延在する方向に沿って離間して配置する複数の導電性部材からなることを特徴とする請求項1から3のいずれか一項に記載の発光ダイオード。
【請求項5】
前記パッド部が複数の円形状パッドからなることを特徴とする請求項1から4のいずれか一項に記載の発光ダイオード。
【請求項6】
前記オーミックコンタクト電極及び前記オーミック電極は、平面視して前記パッド部の外周から5μm以上離間して前記パッド部に重ならない位置に形成されていることを特徴とする請求項1から5のいずれか一項に記載の発光ダイオード。
【請求項7】
前記金属保護膜はさらに前記一体とされた複数の金属層の側面を覆っていることを特徴とする請求項1から6のいずれか一項に記載の発光ダイオード。
【請求項8】
前記発光層が、AlGaAs、InGaAs、又は、AlGaInPのいずれかからなることを特徴とする請求項1から7のいずれか一項に記載の発光ダイオード。
【請求項9】
請求項1から8のいずれか一項に記載の発光ダイオードを備えることを特徴とする発光ダイオードランプ。
【請求項10】
請求項1から8のいずれか一項に記載の発光ダイオードを複数個搭載した照明装置。

【図1】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図2c】
image rotate

【図2d】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−222082(P2012−222082A)
【公開日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2011−84689(P2011−84689)
【出願日】平成23年4月6日(2011.4.6)
【出願人】(000002004)昭和電工株式会社 (3,251)
【Fターム(参考)】