説明

調整可能な磁気スイッチ

磁気メモリデバイスにおいて使用するための調整可能な磁気スイッチであって、バイアス磁場を与えるための磁気源と、バイアス磁場内に配置された磁気部品と、磁気リコイル効果にしたがって磁気部品中に所定の磁化レベルを設定するために磁気部品の周囲に同軸に配置されたコイルとを含む調整可能な磁気スイッチ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、2004年7月27日に提出された米国仮特許出願第60/591,079号および2005年1月31日に提出された米国仮特許出願第60/647,809号の利益を主張し、これらの両方の出願はいずれも参照することにより本願に組み込まれる。
【0002】
本発明は、メモリデバイスに関し、特に磁気メモリ素子を使用するメモリデバイスに関する。
【背景技術】
【0003】
ポータブル消費製品市場(ポータブルコンピュータや通信のための製品を含む)における急速な成長は、電力がなくても記憶された情報を保持するというそれらの固有の能力を伴った電力消費量が低い不揮発性メモリデバイスの必要性を促進している。
【0004】
これらの用途のために市場で現在利用できる主な技術はEEPROM(電気的消却・プログラム可能型読取専用メモリ)技術であり、この技術は、これらの構造の極薄酸化物層を貫通するいわゆるFowler−Nordheimトンネリングを使用した金属酸化膜半導体(N型)トランジスタのフローティングゲートの充電(書き込み)または放電(消去)に依存している。ゲートの充電により、電子反転チャンネルがデバイス内に形成され、デバイスが導電状態(メモリ状態1を構成する)になる。フローティングゲートの放電(すなわち、負のバイアスを印加する)は、チャンネルから電子を取り除き、デバイスをその初期の非導電状態(すなわち、メモリ状態0)に戻す。この技術に対する1つの重大な制限は、消去/書き込みサイクル耐久性を制限し且つ破滅的な破壊を引き起こす(最大で約106サイクル後)可能性があるトンネリングに関するものである。また、1ms程度の必要な充電時間が比較的長い。
【0005】
性能を向上させるため、いわゆるFeRAM(強誘電性ランダムアクセスメモリ)が開発された。FeRAMメモリセルは、双安定キャパシタから成るとともに、分極性双極子を含む強誘電性薄膜から成っている。強磁性体中の磁気モーメントに類似するこれらの双極子は、印加磁場に応答して、印加磁場の方向に正味の分極を形成する。印加磁場をプラス磁場からマイナス磁場へと通過するヒステリシスループは、材料の特性を規定する。印加磁場を取り除く際、強誘電性材料は、残留分極として知られる分極を保持することができ、これが不揮発状態で情報を記憶するための基盤としての機能を果たす。FeRAMは、EEPROMにおける約12〜15Vと比べて切り換えに要する電圧が比較的低い(一般に約5V)ため、将来良好な可能性をもつ有望な技術であるように見える。また、FeRAMデバイスは、EEPROMにおける約106と比べると、108〜1010サイクルの書き込み耐久性を示し、また、電気的な分極の切り換えには、EEPROMを充電する場合の約1msと比べると、約100ns程度の短い時間しか要さない。しかしながら、読み込むために与えられたビットをその当初の状態に戻すのに更なるサイクルが必要となるため、誘電疲労の問題が悪化する。また、これは、材料を分極できる能力の悪化によって特徴付けられる。更に、これらの材料のそれらのキュリー温度に関する動作および合成的な安定性(および関連するキュリー温度の変化)に起因して、適度な熱サイクルでさえ、加速する疲労を促進させる。最後に、製造プロセスの均一性および制御も依然として課題を残している。
【0006】
今日、MRAM(磁気抵抗ランダムアクセスメモリ) ―その開発は20数年前から始まった― は、読み取り/書き込み耐久サイクルおよび速度に関して最も見込みのある既存の技術を保っているように見える。この技術は、強磁性ストリップのヒステリシスループを使用する書き込みプロセスに依存し、一方、読み取りプロセスは異方性磁気抵抗効果を伴っている。基本的に、この効果(スピン軌道相互作用に基づく)は、外部印加磁場に依存する磁気導体の抵抗の変化に関連している。ビットは、直交導電ストリップライン(すなわち、ワードラインとして知られている)の下側に位置された不良導体(例えばTaN)を挟み込む(サンドイッチする)2つの強磁性膜(例えば、NiFe)のストリップから成る。書き込みにおいては、電流がサンドイッチストリップを通過し、また、直交ストリップライン中の電流によって助けられるときに、サンドイッチストリップの最も上側の強磁性層が時計周りまたは反時計周りに磁化される。読み取りは、サンドイッチ構造の磁気抵抗を測定することにより(すなわち、電流を流すことにより)行なわれる。たった約0.5%の磁気抵抗比が一般的であるが、当該磁気抵抗は、100nsの書き込み時間(および250nsの読み取り時間)で動作する16Kb MRAMチップの製造を可能にした。250Kbチップも後にハネウェルによって製造された。
【0007】
磁気薄膜を用いて銅層を挟み込むことにより実施された1989年のいわゆる巨大磁気抵抗(GMR)の発見は、メモリデバイス性能の更なる向上を可能にした。GMR構造は約6%の磁気抵抗を示したが、磁気層間のやりとりが、磁化が方向を変えることができる速度を制限した。また、ストリップのエッジからの磁化カーリングは、セルサイズまたはスケーリングの減少に制限を課した。
【0008】
その後、一方の層が他方の層よりも低い磁場で磁化を変える傾向となるように不釣合いに組み合わされた2つの磁気層を有するサンドイッチ構造から成るいわゆる擬似スピンバルブ(Pseudo-Spin Valve)(PSV)セルを用いて、有望な結果が得られた。硬質膜の磁化を(磁気抵抗効果により)感知するために軟質膜が使用されている − この後者の膜は、アップまたはダウン(すなわち、0または1)の磁化を有する記憶媒体を構成する。PSV構造はスケーリングの影響を受けやすいが、硬質磁気層を切り換えるために必要な報告された磁場は、高密度集積回路においては依然として非常に高い。これらのデバイスは、EEPROMに代わる可能性があると思われる。
【0009】
磁気抵抗の更なる向上(すなわち、最大で40%)は、スピン依存トンネリングデバイス(SDT)を用いて得られる。これらのデバイスは、2つの磁気層間に挟まれた絶縁層(すなわち、トンネリングバリア)から成る。デバイス動作は、トンネリング抵抗が積層体に対して垂直な方向で磁気層の磁化によって決まるという事実に依存している。最も高い抵抗は、層の磁化が逆平行のときに得られ、また、平行なケースは最も低い抵抗を与える。2つの磁気層間のスピン(すなわち、アップまたはダウン)状態密度の変化はこの動作を明らかにしている。一方の層が動かないように固定されるのに対し、第2の磁気層は、フリーで且つ情報記憶媒体として使用される。SDTは、高性能の不揮発用途において可能性を示す。確かに、この手法を用いた14nsという短い書き込み時間に関する幾つかの報告値が存在している。しかしながら、抵抗均一性の制御(すなわち、トンネリングバリア厚および質)、したがって、ビットからビットへの切り換え動作の制御は、実用的な実施において乗り越えるべき真の課題を依然として残している。必要なものは、高速で、信頼できる、構造が比較的簡単な、安価で頑丈な不揮発性メモリデバイスである。
【発明の開示】
【発明が解決しようとする課題】
【0010】
したがって、本発明は、従来技術の限界および欠点に起因する1またはそれ以上の問題をほぼ未然に防ぐ磁気メモリデバイスに関するものである。
【0011】
本発明の目的は、磁気メモリデバイスと共に使用される磁気スイッチを提供することである。
【0012】
本発明の他の目的は、磁気メモリデバイスと共に使用される調整可能な磁気スイッチを提供することである。
【課題を解決するための手段】
【0013】
本発明の更なる特徴および利点は、以下の説明に記載されており、また、部分的には当該説明から明らかであり、あるいは、本発明の実施により確認されても良い。本発明の目的および他の利点は、書かれた説明、本明細書中の請求項および添付図面に特定された構造により実現され達成される。
【0014】
これらの利点および他の利点を達成するため、また、具現化され且つ大まかに説明された本発明の目的にしたがって、本発明の調整可能な磁気スイッチは、バイアス磁場を与えるための磁気源と、バイアス磁場内に配置された磁気部品と、磁気リコイル効果にしたがって磁気部品中に所定の磁化レベルを設定するために磁気部品の周囲に同軸に配置されたコイルとを含んでいる。
【0015】
本発明の他の態様において、メモリデバイスは、バイアス磁場を与える少なくとも1つのバイアス磁気源と、バイアス磁場内に配置され、磁化レベルを記憶する少なくとも1つの磁気スイッチと、磁気スイッチに近接して配置され、磁気ユニットに記憶された磁化レベルおよびバイアス磁場を感知する少なくとも1つのホール効果センサとを含んでいる。
【0016】
以上の概略的な説明および以下の詳細な説明が典型的で説明的なものであり、また、請求項に記載の本発明の更なる説明を行なおうとしていることは理解されるべきである。
【0017】
本発明の更なる理解を与えるために含まれ且つこの明細書に組み込まれて当該明細書の一部を構成する添付図面は、本発明の実施形態を示しており、明細書本文とともに本発明の原理を説明するのに役立つ。
【発明を実施するための最良の形態】
【0018】
ここで、本発明の好ましい実施形態について詳しく言及し、その例が添付図面に示されている。
【0019】
本発明は磁気メモリデバイスに関するものである。特に、図1は、本発明に係る磁気メモリデバイスのメモリセルの典型的な実施形態を示している。本発明の典型的な実施形態に係るメモリセル10は、磁気スイッチ120およびセンサ130を含んでいる。磁気スイッチ120は、データを保持するために磁気部品または材料122およびコイル124を含んでいる。センサ130は、ホール効果センサ132と、磁気スイッチ120内に記憶されたデータを検出するために電圧検出器(図示せず)に対して接続される出力端子136とを含んでいる。
【0020】
特に、磁気スイッチ120は磁気部品122を含んでいる。磁気部品122は永久磁石または強磁性体(例えばニッケルまたはニッケル−鉄磁石)であっても良い。同軸コイル124(図示しない電流源に接続される)は磁気部品122の周囲に配置されている。同軸コイル124は、導電材料、例えば金属Ti/Auから成る。しかしながら、本発明の範囲から逸脱することなく、任意の他の適した導電材料(例えばTi/Cu/Ti)が使用されても良い。例示の目的で略円柱形状を成す磁気部品122が示されているが、本発明の範囲から逸脱することなく、任意の適当な形状(例えば、正方形、長方形、U字形)が使用されても良い。また、例示の目的で、磁気部品122の周囲に6つの巻回部(6巻き)を有する同軸コイル124が示されている。しかしながら、本発明の範囲から逸脱することなく、任意の適当な巻き数が使用されても良い。
【0021】
ホール効果センサ132は、電源138に接続された入力端子134と電流の流れ方向に対して垂直に位置された出力端子136とを有する幾何学的に定められた半導体構造を含んでいる。例示の目的で「ギリシャ十字」形状を成すホール効果センサ132が示されているが、本発明の範囲から逸脱することなく、任意の適当な形状(例えば長方形)が使用されても良い。
【0022】
一般に、ホール効果センサは、入力インタフェース通じて感知される物理量(すなわち、磁気誘導)に応答し、ホール効果センサからの電気信号を指定された指標へ変換する出力インタフェースに対して感知信号を出力する。この場合、ホール効果センサ132が磁気部品122からの磁場(H)に曝されると、磁界の強さに比例して電位差が出力端子136間に現われる。等しい反対の磁場にホール効果センサ132が曝されると、等しい反対の電位差が同じ出力端子136間に現われる。したがって、ホール効果センサ132は、外部から印加される磁場の大きさ及び方向の両方のセンサとしての機能を果たす。
【0023】
一般に、磁気スイッチ120のために使用される形状および材料は、センサ130の周囲における磁場(H)の形成に関与する磁化(M)の強度を決定する。磁気部品122の周囲のコイル124の巻き数は、コイル124に印加される電流(I)と共に、磁気部品122の周囲に形成される誘導磁化(H)の強度を決定して、磁化(M)の方向および強度を設定する。磁気部品122の磁化(M)の方向は、磁気スイッチ120内の磁気記憶データ(すなわち、」0」または「1」)の値を決定する。ホール効果センサ132は、点Pで検出される磁気スイッチ120から発生する磁場(H)に応じて生成される電圧信号VHallによって特徴付けられる。
【0024】
電流(I)(例えば、電流パルス)は、磁場Hcoilを形成するようにコイル124を通じて送られる。電流の大きさは、磁気部品122の磁化を変える(すなわち、フリップ)ことができる十分な大きさとなるように選択される。磁気部品122によって形成される磁場は、センサ130がそれを検出点で検出できる十分な大きさとなる必要がある。検出後、センサ130は、オフセット電圧信号Voffよりも大きい応答(VHall)を形成する必要がある。オフセット電圧Voffは、任意の有用な信号が生成される前に乗り越えなければならない閾値である。より具体的には、磁気スイッチ120の磁化(M)により形成される磁場(H)は、記憶データを正確に検出できる前にVoffよりも大きい誘導電圧をセンサ130で生成できるように点Pにおいて十分に強くなければならない。オフセット電圧よりも小さい電圧信号を生成する磁場は、このDCバイアス状態では、センサ130によって検出することができない。
【0025】
図2Aは、コイルによって取り囲まれた磁気部品の典型的な実施形態の平面図を示している。単なる例示目的で、図2Bは、磁化(M)の最初の方向が下方に向けられた磁気部品222の側面図を示している。図2Cは、十分に高い電流(I)がコイル224を通じて送られた後に、その方向が上方へ向けられた誘導磁化を磁気部品222が保っている状態を示している。この場合、磁気部品222の表面に近接する磁気誘導は、検出点Pにおいては、磁気部品222によって形成される磁場である。この磁場により、センサ130は、電圧信号Voffよりも大きい大きさを有し且つ磁化の方向を示す符号を有する電圧信号(例えば、「上向き」の場合には、プラスの電圧)を生成する。上向きの磁化が「1」として指定される場合、センサ130は、記憶データを「1」であるとして検出する。
【0026】
下向きの磁化(すなわち、「0」)を達成するため、適切な電流(例えば、反対方向の電流パルス)が再びコイル224を通じて送られ、磁気部品222の磁化を変える(すなわち、フリップする)ことができる十分な磁場−Hcoil(すなわち、Hcoilと反対の方向をもつ)が形成される。パルス後、磁気部品222は、更に小さな大きさを有していても良い磁化或いはその方向が下方に向けられる磁化を保つ。この場合、検出点Pにおける磁場は、磁気部品222により形成される磁場である。点Pで検出された誘導により、センサ130は、更に小さい大きさを有し或いは磁化の方向を表わす反対の符号を有する電圧信号(例えば、「下向き」の場合には、マイナス電圧)を生成する。下向きの或いは更に小さい磁化が「0」として指定される場合、センサ130は、記憶データを「0」であるとして検出する。
【0027】
本発明の他の実施形態において、本発明に係る調整可能な磁気スイッチは、製造された磁気メモリデバイスの動作信頼性を確保する。特に、前述したオフセット電圧閾値Voffは予期される値より大きくても良い。センサのオフセットは、デバイスの不均一性や製造中に起こるアライメントミスの類によって引き起こされる。磁気スイッチ120の磁化(M)によって形成される磁気誘導(B)は、記憶データを正確に検出できる前に誘導電圧をセンサ130で生成できるように点Pにおいて十分に強くなければならない。メモリセル10のアレーを含むメモリデバイスが製造されると、動作オフセット閾値Voffを減らすために内部部品を再配置することができない。この問題を扱うために、本発明に係る調整可能な磁気スイッチは、以下で示すように製造プロセス後に検出磁場を調整できるようにすることによって、製造された磁気メモリデバイスの動作信頼性を確保する。
【0028】
図3Aおよび図3Bは、本発明に係る調整可能な磁気スイッチの典型的な実施形態を示している。例示の目的で、図3Aは、2つの磁気部品322および330を含む調整可能な磁気スイッチ320を示している。磁気部品322は3巻きのコイルに結合されている。しかしながら、本発明の範囲から逸脱することなく、任意の適当な巻き数が使用されても良い。磁気部品322は、強磁性体(例えば、ニッケル−鉄磁石)から成る軟円柱棒磁石であっても良い。磁気部品330は、強磁性体(例えば、ニッケル、コバルト、他の関連する合金磁石)から成る硬永久磁石であっても良い。例示目的で特定の形状を成す磁気部品322および330が示されているが、本発明の範囲から逸脱することなく、任意の適した形状が使用されても良い。
【0029】
図3B(すなわち、側面図)に示されるように、磁気スイッチ320は、磁気部品330によって与えられる外部磁気バイアス磁場Hbiasに曝される。バイアス磁場Hbiasが磁気スイッチ320上にわたって形成されると、電流(I)(例えば電流パルス)がコイルを通じて送られ、バイアス磁場Hbiasと同じ方向および配向を有する磁場(H)が形成される。電流パルスの大きさは、磁気部品322をその飽和磁化値まで高めることができる十分な大きさとなるように選択される。
【0030】
単なる例示目的で、磁気部品322の磁化(M)の方向は、最初に一定のバイアス磁場Hbiasと同じ方向で下方へ向けられるように示されている。電流(I)がコイル324を通じて送られた後、磁気部品322は高い磁化を保持する。この場合、磁気部品322の表面に近接する磁場は、検出点Pにおいて、バイアス磁場Hbiasと磁気部品322により形成される磁場との組み合わせである。この組み合わされた磁場により、磁化状態が非常に高くなり、それにより、オフセット電圧Voffよりも十分に大きい電圧信号が生成される。そのため、例えば磁化(M)の下向き方向がハイ状態(すなわち「1」)として指定されているとすると、センサ130は、記憶データを「1」であるとして容易に検出する。
【0031】
ロー状態(すなわち、「0」)を得るため、磁気部品322を消磁する全磁場(すなわち、Hcoil+Hbias)を形成できる十分な磁場−Hcoilをバイアス磁場Hbiasと反対の方向で形成するように、適切な電流(I)(すなわち、電流パルス)がコイル324を通じて送られる。電流がコイル324を通じて送られた後、図4を参照して以下で更に説明するように、リコイルラインにしたがって磁化(M)がリコイル(反跳)し、磁気部品322に非常に低い磁化が与えられる。電流が十分に強い場合には、磁化(M)が反対の方向へ向けられる場合もある。この場合、検出点Pにおける磁場は、バイアス磁場Hbiasと、非常に低いか或いはバイアス磁場Hbiasと反対の方向である磁気部品322によって形成される磁場との組み合わせ磁場である。いずれの場合においても、点Pにおける全体の磁気誘導は、ハイレベルのケースに対応する磁気誘導よりも十分に低く、存在せず、あるいは、反対方向となる場合さえある。したがって、明確なローレベル状態(すなわち、「0」)がセンサ130によって検出される場合がある。
【0032】
図3Aおよび図3Bに概略的に示される切り換え動作は、図4に示される磁気部品322のヒステリシスループを用いて説明することもできる。最初に、誘導負荷ラインと誘導ヒステリシスループとの交差は、誘導B1を伴う点「a」を規定する。点「a」は、その後、磁化ループ上の対応する点「b」を決定するために使用されても良い。その場合、磁化負荷ラインを描くことができる。その後、この負荷ラインは、磁化ヒステリシスループ上の点「e」で新たな交差を確立するために磁場軸に沿ってHcoilにより移される。その後、誘導ループ上の対応する点「f」が定められても良い。Hcoilが除去された(すなわち、電流パルスが除去された)後、磁気部品322がリコイル(反跳)する。その後、点「f」およびリコイル透過性(recoil permeability)を使用して、リコイルラインを描くことができる。最後に、リコイルラインと磁化負荷ラインとの交点「g」を決定することができ、それにより、誘導B2を与えることができる。この場合、ロー状態(すなわち、「0」)を確立する際に電流(I)が除去されると、誘導B2は、磁気部品322内に記憶される誘導磁化(M)として設定される。
【0033】
ここで、図5〜図10を参照して、製造プロセスについて説明する。メモリセル10(図1に示される)の製造プロセスは、2つの部分、すなわち、(1)センサ130の製造と、(2)磁気スイッチ120の製造とに分けられても良い。調整可能な磁気スイッチの場合、バイアス磁気を作るための更なるプロセスが含まれる。
【0034】
ホール効果センサ132は、高移動性材料、例えばIII−V材料(すなわち、周期表のIII族およびV族の元素から形成される化合物)を用いて製造される。III−IV材料としては、GaAs、InAs、InSb、関連する2次元電子ガス(2DEG)構造が挙げられるが、これらに限定されない。GaAs/AlGaAsヘテロ構造に基づく2DEG構造は、ドープされた幅広いバンドギャップAlGaAs材料(すなわち、バリア)とドープされていない狭いバンドギャップGaAs材料(すなわち、ウェル)との間の変調ドープされたヘテロ構造のヘテロ接合界面で形成されても良い。(ドーパントからの)電離したキャリアがウェル内に移動し、それにより2DEGが形成される。これらのキャリアは、それらの電離した親不純物から空間的に分離され、したがって、高いキャリア移動性および大きなホール効果を可能にする。ここではIII−IV材料だけについて述べているが、ホール効果センサ132を形成するために他の材料(例えばシリコン)が使用されても良い。
【0035】
図5A−5Dは、本発明の典型的な実施形態に係るホール効果センサ132の様々な製造段階を示している。適当なウエハ538、例えば薄いn型活性GaAs膜539(約0.5−0.6μm)を有する半絶縁性のGaAsウエハが使用される。レジスト層540(例えば、950K PMMA4%)がウエハ538上へ回転塗布(スピンコーティング)される。以下の回転条件が使用されても良い。すなわち、回転速度=約4000rpm(厚さ=0.5−2μm);ベーク温度=160℃;ソフトベーク時間=7分;露光エネルギ=25kV;露光量=150μC/cm2;現像剤=MBIK/IPA混合物(1:3);現像時間=25秒。レジスト層540はEBL(すなわち、電子ビームリソグラフィ)によりパターニングされるが、任意の適当なパターニング技術(例えば、標準的なAZレジスト型を用いるフォトリソグラフィ)が使用されても良い。その後、センサを絶縁するために、メサエッチングプロセスが行なわれる。エッチングプロセスは、例えば標準的なH22/H3PO4/H2O溶液を用いるウェットエッチングを含む。
【0036】
エッチングプロセスの後、入力端子134および出力端子136(図1)がリフトオフプロセスにより堆積される。図5E−5Hに示されるように、リフトオフプロセスは、二重層共重合体/PMMAから成る層542の回転(4000rpmで)を含んでいる。リフトオフプロファイル(すなわち、アンダーエッチング)は、現像プロセス中、電子ビームに曝された後、共重合体とPMMAとの間の感度の違いにより与えられる。適当な材料、例えば金−ゲルマニウム(AuGe)から成るコンタクト層544が約400nmの厚さまでウエハ538上に蒸着され、それにより、センサ130の入力端子および出力端子として使用されるオーム接点134および136が形成される。接点特性を高めるため、AuGe層544に対してニッケル層が加えられても良い。
【0037】
蒸着ステップの後、アセトン中にウエハ538を配置してAuGe層544の任意の不必要な部分を除去することにより、リフトオフプロセスが完了される。適切なクリーニングの後、接点(すなわち、AuGe層544)は急速熱アニーリング(RTA)を受ける。アニーリングは、窒素(N2)流が満たされたRTAチャンバ内で約40秒間にわたって約340℃で行なわれる。リフトオフプロセスは、アセトン中にウエハ538を配置してAuGe層544の任意の不必要な部分を除去することにより完了される。図6は、AuGe接点を有するGaAsギリシャ十字ホール効果センサを示している。また、パターン中に含まれるアライメントマーク546も示されている。
【0038】
上記実施例ではレジストPMMA4%が使用されているが、任意の適当なレジスト、例えばPMMA2%が使用されても良い。また、HMDS、接着促進剤が必要に応じて使用されても良い。PMMA2%をレジストとして使用する場合には、以下のリソグラフィ処理パラメータが使用されても良い。すなわち、PMMA(2%):露光エネルギ=15kV;露光量=150μC/cm2;現像剤=MBIK/IPA混合物(1:3);現像時間=25秒。
【0039】
ホール効果センサ132が製造されると、絶縁層748がホール効果センサ532上へ回転塗布される。絶縁層748は、一般的なレジスト(ウエハ上に回転塗布されて、炉内またはホットプレート上でベーク処理される)として処理されても良い適当な材料、例えば誘電ポリイミドから成る。誘電ポリイミドの一例は、HDマイクロシステムのPI2545(様々なマイクロ電子用途で使用される金属間高温ポリイミド)である。誘電ポリイミドは、高いガラス転移温度(すなわち、約400℃)を有しており、ポジレジストを用いてパターニングされても良い。また、硬化された膜は、低いCTEを伴って柔軟であり延性があるとともに、一般的な湿式および乾式処理化学物質に対して耐性がある。他の適した材料としては、低温でプラズマ化学蒸着(PECVD)により堆積されても良いシリコン酸化物およびシリコン窒化物が挙げられる。
【0040】
単なる例示目的で、図7A−7Dは、約6000rpmの速度でホール効果センサ532上に回転塗布され且つその後にホットプレート上でソフトベーク処理されたPI2545の絶縁層748を示している。温度は、240℃/hにおいて、25℃から170℃までの勾配をもっている。炉またはホットプレートが170℃の温度に達すると、温度が9分間にわたって一定に保たれる(すなわち、ソーク期間)。ソーク期間後、ホットプレートは自然対流により室温まで冷える。絶縁層748は、約140℃または170℃の炉温度またはホットプレート温度でベーク処理されると、レジスト層を除去するために後に使用される沸騰アセトンに対する良好な耐化学性を生み出す。
【0041】
絶縁層748が堆積されると、ポジレジスト層750(例えば、PMMA4%またはAZ5206)が絶縁層748上に回転塗布(スピンコーティング)される。説明の目的で、PMMA4%が使用される。その後、レジスト層750は、6℃/分の勾配率および6分のソーク期間をもって、炉内またはホットプレートにおいて2分間にわたり160℃の温度でベーク処理される。160℃のベーキング温度は、PMMAにとって最小の安全なベーク温度である(例えば、120℃でベーク処理されたPMMAは、何らかの接着不良を示す場合がある)。
【0042】
その後、ウエハは、EBLチャンバ内に配置され、このチャンバにおいて25kVの電子ビームに曝される。レジスト層750は、ホール効果センサのオーム接点およびアライメントマーク(もしあれば)上にわたって開口を形成するようにパターニングされる。9×10μm2のサイズのパターンの場合、適切なドーズ量は165−182μC/cm2の範囲であっても良く、17×17μm2のサイズのパターンの場合、適切なドーズ量は149−163μC/cm2の範囲であっても良く、100×112μm2のサイズのパターンの場合、適切なドーズ量は132−145μC/cm2の範囲であっても良い。
【0043】
露光後、レジスト層750は、適当な溶液中、例えばMIBK/アルコール(1:3)中で適切な時間(例えば約40−55秒)にわたって現像される。その後、ウエハは、アルコール中および脱イオン水中で濯がれる。ウエハが洗浄されると、適当な時間(例えば、約6−14分またはそれ以上)にわたって絶縁層をエッチングするために、希釈されたPPD450(1:5)溶液が使用される。希釈および攪拌の度合いや、現像およびエッチングの時間は、必要に応じて変えられても良い。沸騰アセトンは、レジスト層750(すなわち、PMMA)を除去するために使用される。最後に、絶縁層748の製造を完了するため、絶縁層748は、前述した温度勾配を使用して約200℃でハードベーク処理される。絶縁層は、400℃程度の温度でハードベーク処理されても良い。しかしながら、そのような高い温度は、ホール効果センサにおいて望ましくない拡散を形成する場合がある。
【0044】
センサ130が製造されると、絶縁層748上にわたって磁気スイッチ120が製造される。磁気スイッチ120を製造するための一般的な手法は、最初にコイル124を製造して、その後に磁気部品122を製造することである。磁性材料(例えば、Alnico and Martensitic steel)を形成するための従来の方法は合成ルートを伴っており、これらの合成ルートは、例えば、様々な部品を溶かし、鋳造し、高温(一般に約800℃)熱処理(例えば、焼入れ)することを含んでいる。他の合成ルートは焼結および押し出し成形を含んでいる。これらの方法は、部品の極めて小さいサイズに起因してマイクロ技術またはウエハスケール処理に適合しない。
【0045】
一方、電気メッキは、素子壁に欠陥を殆ど伴うことなく素子形状を比較的良好に定めることができる。また、電気メッキは、安価であり、実施が比較的簡単なプロセスである。堆積された合金の化学量論を監視するために3電極システムを使用できる。
【0046】
電気メッキは、磁気スイッチ120の製造プロセスを説明する際に使用されるが、任意の適当な合成ルートが利用されても良い。図8に示されるように、電気メッキシステム800は、電気メッキセル810と、コンピュータ820と、コンピュータ駆動されるポテンショスタット/ガルバノスタット830とを含んでいる。電気メッキプロセスを制御するために、コンピュータ820は、ポテンショスタット/ガルバノスタット830を介して電気メッキセル810に接続されている。ポテンショスタット/ガルバノスタット830は、ポテンショスタットまたはガルバノスタットのいずれかとして機能することができる。
【0047】
最初に、コイルと、磁気部品が堆積されるべきコイル内のマグネットスポットまたは領域とが、センサ130上にわたって形成される。コイルおよびマグネットスポットを形成するための最初の典型的なプロセスは、チタン/金リフトオフプロセスを含んでいる。図9A−9Dは、本発明に係る金リフトオフプロセスにしたがった製造の様々な段階を示している。
【0048】
最初に絶縁層748(図7Dからのもの)が二重レジスト層954(例えば、共重合体/PMMA)で覆われる。そのため、最初に共重合体層E11がウエハ上に回転塗布される。その後、前述した温度勾配をもって共重合体層がホットプレート上で5分間にわたって160℃でベーク処理される。ホットプレートは自然対流により室温まで冷やしたままにしておく。その後、アニソールにおけるPMMA4%の層が、ウエハ上に回転塗布されるとともに、所定の温度勾配を使用して5分間にわたって160℃でベーク処理される。この場合も同様に、ホットプレートは、自然対流によって室温まで冷やしたままにしておく。
【0049】
ウエハがEBLチャンバ内に配置され、このチャンバにおいて、25kVの露光および様々なドーズ量で、二重レジスト層954が電子ビームに曝されて、コイル924およびマグネットスポット923がパターニングされる。例えば、細かいコイルパターンの場合、適したドーズ量は150μC/cm2であり、マグネットスポットの場合、適したドーズ量は120μC/cm2であり、アライメントマーク(もしあれば)の場合、適したドーズ量は195μC/cm2である。アライメントマークは、マグネットスポットの位置を見つけるのに役立つように、パターン中に含ませることができる。その後、約20秒間にわたって二重レジスト層954が適当な溶液中、例えばMIBK/アルコール中で現像される。
【0050】
パターニングステップ後、ウエハが電子ビーム蒸発器内に配置され、ここで、それぞれ25nmおよび150nmのチタン層952aおよび金層952bがパターン上に堆積されて、Ti/Au層952が形成される。チタン層952aは接着層として使用される。最後に、蒸発器からウエハが取り除かれ、二重レジスト層954および任意の望ましくないTi/Au層952を除去するために約1時間にわたってウエハがアセトン中に浸漬される。図9Fに示されるように、コイル924およびマグネットスポット923が得られる。この典型的な実施形態において、1巻きだけのコイル924が使用される。しかしながら、本発明の範囲から逸脱することなく、必要に応じて異なる巻き数が使用されても良い。
【0051】
コイル924、マグネットスポット923、アライメントマーク(図示せず)を堆積させた後、磁気部品122の形状および寸法を与えるモールドにより、磁気部品122がマグネットスポット923上に電気メッキされる。図10A−10Cに示されるように、そのようなモールドを製造するため、EBLが使用されて、コイル924、マグネットスポット923、アラメントマーク(図示せず)上にレジスト(例えばAZ4620)の厚い(例えば、約10μm)層1058がパターニングされる。レジスト層1058は約4分間にわたって約95℃でベーク処理される。その後、レジスト層1058がEBL用のチャンバ内に配置され、このチャンバにおいて、アライメントマークが位置される領域が電子ビームに曝される。この露光後、レジスト層1058は、適当な溶液中、例えばPPD450中で現像され、アライメントマークが位置される領域から除去される。ウエハは、脱イオン水で洗浄され、N2を用いてブロー乾燥される。その後、EBL(および、ガイドとしてもアライメントマーク)を使用して、マグネットスポット923がパターニングされるとともに、レジスト層1058が再び現像され、それにより、ウェル1060が得られる。ウェル1060は容器として機能し、この容器中へ磁性材料が電気メッキされることにより、磁気部品が形成される。
【0052】
レジストテンプレートを有するウエハは、その後、電気メッキセル810(図8)内に配置され、この電気メッキセル810では、パルス堆積(例えば、2%のデューティサイクルを伴って行なわれる。ここで、ton=1ms;toff=49ms;ピーク電流は約1.4mA)を使用して、磁気スポット上にウェルを形成するレジストテンプレート上に磁性材料1070(例えば、ニッケルまたはニッケル−鉄)が堆積され、それにより、磁気部品122のアレーが形成される。純粋な材料は一般に堆積させるのが容易である。しかしながら、合金が使用されても良い。堆積させることができる材料の例としては、コバルト、鉄、ニッケル、ニッケル−鉄(NiFe)、コバルト−ニッケル−鉄(CoNiFe)が挙げられる。必要に応じて、これらの材料の保磁力を高めるために、様々な触媒が使用されても良い。
【0053】
例示的な目的で、2つの添加物、すなわち、サッカリン(張力緩和剤として機能する)およびラウリル硫酸ナトリウム(界面活性剤として機能する)を有するニッケル塩化物系の溶液がウェル1060内に堆積される。磁気部品を製造するために、電流、例えばDC電流が使用される。更に小さい高アスペクト比構造の場合には、レジストテンプレート上に磁性材料(例えば、ニッケルまたはニッケル−鉄)を堆積させて磁気部品122のアレーを形成するために、パルス電着(例えば2%のデューティサイクルをもって)が使用されても良い。電気メッキ状態は、コンピュータ駆動されるポテンショスタット/ガルバノスタット830によって制御される。マグネットの形状は円柱状であるが、前記技術を使用して任意の形状(例えば長方形、正方形)が作り出されても良い。電着後、適当な溶液、例えばアセトンを使用して、モールド(すなわち、厚いレジスト層1058)が除去される。図11は、前記プロセスを使用して作り出された磁気スイッチを示している。
【0054】
磁気スイッチ120が完了したら、図3Aおよび図3Bに示されるような調整可能な磁気スイッチを製造するために更なる処理ステップが実施されても良い。例えば、磁気スイッチ120の上端に絶縁層748が堆積される。その後、製造されたマイクロマグネットのハイブリッド集積により、あるいは、硬強磁性材料、例えばコバルトまたは選択された合金を絶縁層748上に電気メッキすることにより、構造の上端に例えば硬永久磁石が加えられる。
【0055】
モールドを製造するための典型的な方法としてEBLが使用されているが、任意の適当な方法、例えばフォトリソグラフィが使用されても良い。例えば、フォトリソグラフィを使用する場合には、適当な製造されたハードマスクを介してレジスト層(すなわち、AZ4620)をUV光に曝すことによりモールドが形成される。
【0056】
コイル924およびマグネットスポット923を製造するための他の手法は、シード層952を直接にエッチングして図12A−12Eに示されるプロセスステップと同じプロセスステップでコイル924およびマグネットスポット923を得ることを含んでいる。重要な考え方は、磁気部品122の成長のため、同時に、コイル924を形成するために、シード層925を使用することである。最初に、シード層952(すなわち、Ti層952a、Cu層952b、Ti層952c)を支持するウエハが例えばEBLによりパターニングされる。このパターニングステップは、ポジレジスト層1210およびウェットエッチングの使用を組み込むことができる。この場合も先と同様に、パターンは、中央金属スポットの周囲に単一ループコイルを含んでおり、金属経路がそれを電気メッキのために使用される共通電極に対して電気的に接続する。しかしながら、任意の適当な巻き数が使用されても良い。
【0057】
ウエハは、それをホットプレート上で約30分間にわたって約150℃でベーク処理することにより乾燥される。ウエハ上にはレジスト層1210(例えばAZ5206E)が回転塗布される。レジスト層1210はソフトベーク処理される。その場合、約95℃から始めてその後約80℃まで下げられ、温度変化時間は約6分〜7分である。その後、レジスト層1210が露光される(例えば、露光エネルギ=約10kV;ドーズ量=約6μC/cm2)。露光後、ウエハは、適当な溶液中、例えばPPD450中で現像される。その後、ウエハは、脱イオン水を用いて洗浄される。洗浄ステップ後、ウエハは、約10分間にわたって約125℃でハードベーク処理される。適当な溶液を用いてチタン(Ti)層および銅(Cu)層がエッチングされる。例えば、Ti層952aおよび952cは十分に希釈されたHF/HNO3/H2O溶液を用いてエッチングされても良く、一方、銅層952bはHCl/H22/H2O溶液を用いてエッチングされても良い。その後、レジスト1210を除去するためにウエハが洗浄される。洗浄ステップとしては、例えば、煮沸アセトン、煮沸アルコール、および脱イオン水でリンスすることを挙げることができる。コイル924およびマグネットスポット923がシード層952中へ直接にエッチングされると、ウエハは、前述したように磁気部品を電気メッキするためのモールドを形成するためのプロセスを受ける。
【0058】
ホール効果センサ上の磁気スイッチに関して本発明に係る磁気メモリデバイスを説明した。特に、電力を何ら供給することなく磁場を保持することができる磁気部品および蓄えられた磁場を読み取るための簡単なセンサの利点は、現在使用されている電気系のメモリデバイスと比べて、動作のために電力を殆ど消費しない不揮発性メモリデバイスを与える。
【0059】
また、本発明に係る調整可能な磁気スイッチについて説明した。本発明に係る調整可能な磁気スイッチの利点は多数ある。第1に、磁気部品が誘導コイルからの誘導磁化(M)を保持するため、本発明に係る調整可能な磁気スイッチは、不揮発性メモリを有するスイッチとして機能することができる。
【0060】
第2に、本発明に係る調整可能な磁気スイッチは、センサオフセットを部分的に或いは完全に補償するため、ホール効果センサのための十分に高い磁場を与える。前者の場合、本発明に係る磁気スイッチの調整能力(すなわち、バイアス磁場はセンサオフセットに対して調整されても良い)は、製造制約の大きな許容範囲を可能にし、製造を非常に簡単にするとともに、デバイスの信頼性を高める。これは、デバイスのサイズがスケールダウンするにつれてセンサオフセットが増大するため、小型化にとってかなりの利点である。
【0061】
この手法の更なる他の重要な利点は、本発明に係る調整可能な磁気スイッチが、製造が非常に容易な低アスペクト比マグネットの使用を可能にするという点である。これは、バイアス磁場がメモリセルの磁気部品の消磁を補償するからである。ホール効果センサを使用する磁気メモリデバイスに関連して本発明に係る調整可能な磁気スイッチについて説明した。しかしながら、本発明に係る調整可能な磁気スイッチは、他の磁気メモリデバイスと共に適用されても良い。これは、磁気スイッチを調整するために使用されるバイアス磁場が任意の磁気部品およびセンサ構造に対して適用されても良いからである。
【0062】
本発明に係る磁気メモリデバイスは、無線周波数識別タグ(RFID)、携帯端末(PDA)、携帯電話、他のコンピュータデバイスを含む様々な用途を有するが、これらに限定されない。
【0063】
当業者であれば分かるように、本発明の調整可能な磁気スイッチにおいては、本発明の思想または範囲から逸脱することなく様々な改良および変形を成すことができる。したがって、本発明は、本発明の改良および変形が、添付の請求項およびそれらの等価物の範囲内に入る限り、当該改良および変形を含むことが意図される。
【図面の簡単な説明】
【0064】
【図1】本発明に係るメモリセルの典型的な実施形態の平面図を示している。
【図2】図2Aは本発明に係る磁気スイッチの典型的な実施形態の平面図を示し、図2B−2Cは図2Aに示される磁気スイッチの典型的な実施形態の側面図を示している。
【図3】図3A−3Bは本発明に係る調整可能な磁気スイッチの典型的な実施形態の概念図を示している。
【図4】本発明の磁気スイッチのリコイル磁化を決定するためのヒステリシスループを表わすグラフを示している。
【図5A−D】図5A−5Dは本発明に係る典型的なセンサのための様々な典型的な製造段階を示している。
【図5E−H】図5E−5Hは本発明に係る典型的なセンサのための様々な典型的な製造段階を示している。
【図6】本発明に係る製造された典型的なセンサの走査型電子顕微鏡(SEM)画像を示している。
【図7】図7A−7Dは本発明に係る典型的なセンサを絶縁するための製造の様々な典型的な段階を示している。
【図8】本発明に係る電気メッキシステムの典型的な実施形態を示している。
【図9A−D】図9A−9Dは本発明に係る典型的なコイルおよびマグネットスポットのための製造プロセス(すなわち、リフトオフ)の様々な典型的な段階を示している。
【図9E】図9Eは本発明の製造プロセスにしたがって製造された典型的なセンサのSEM画像を示している。
【図10】図10A−10Dは磁性材料をマグネットスポット上に堆積させるための本発明に係る製造の様々な典型的な段階を示している。
【図11】本発明にしたがって製造された磁気スイッチのSEM画像を示している。
【図12A−E】図12A−12Eは本発明に係る典型的なコイルおよびマグネットスポットのための他の製造プロセス(すなわち、ダイレクトエッチング)の様々な典型的な段階を示している。
【図12F】図12Fは本発明の他の製造プロセスにしたがって製造された典型的なセンサのSEM画像を示している。

【特許請求の範囲】
【請求項1】
磁気メモリデバイスにおいて使用するための調整可能な磁気スイッチであって、
バイアス磁場を与えるための磁気源と、
バイアス磁場内に配置された磁気部品と、
磁気リコイル効果にしたがって磁気部品中に所定の磁化レベルを設定するために磁気部品の周囲に同軸に配置されたコイルと、
を備える調整可能な磁気スイッチ。
【請求項2】
コイルに接続され、コイルを通じて電流パルスを送ることにより誘導磁場を形成して磁化レベルを設定する電流源を更に備える、請求項1に記載の調整可能な磁気スイッチ。
【請求項3】
磁化レベルとバイアス磁場との組み合わせがハイ状態またはロー状態のうちの一方を示す、請求項1に記載の調整可能な磁気スイッチ。
【請求項4】
磁気源が永久磁石である、請求項1に記載の調整可能な磁気スイッチ。
【請求項5】
磁気部品が永久磁石である、請求項1に記載の調整可能な磁気スイッチ。
【請求項6】
無線周波数識別タグ、携帯端末または携帯電話において使用するための、請求項1に記載の調整可能な磁気スイッチ。
【請求項7】
バイアス磁場を与える少なくとも1つのバイアス磁気源と、
バイアス磁場内に配置され、磁化レベルを記憶する少なくとも1つの磁気スイッチと、
磁気スイッチに近接して配置され、磁気ユニットに記憶された磁化レベルおよびバイアス磁場を感知する少なくとも1つのセンサと、
を備えるメモリデバイス。
【請求項8】
磁気スイッチは、磁気部品と、磁気リコイル効果にしたがって磁気部品中に磁化レベルを設定するために磁気部品の周囲に同軸に配置されたコイルとを含む、請求項7に記載のメモリデバイス。
【請求項9】
磁化レベルとバイアス磁場との組み合わせがハイ状態またはロー状態のうちの一方を示す、請求項6に記載のメモリデバイス。
【請求項10】
磁気源が永久磁石である、請求項7に記載のメモリデバイス。
【請求項11】
磁気部品が永久磁石である、請求項7に記載のメモリデバイス。
【請求項12】
磁気源によって形成されるバイアス磁場は、センサのオフセット閾値を完全に補償するように設定される、請求項7に記載のメモリデバイス。
【請求項13】
磁気源によって形成されるバイアス磁場は、センサのオフセット閾値を部分的に補償するように設定される、請求項7に記載のメモリデバイス。
【請求項14】
センサがホール効果センサである、請求項7に記載のメモリデバイス。
【請求項15】
無線周波数識別タグ、携帯端末または携帯電話において使用するための、請求項7に記載のメモリデバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A−D】
image rotate

【図5E−H】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A−D】
image rotate

【図9E】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12A−E】
image rotate

【図12F】
image rotate


【公表番号】特表2008−507805(P2008−507805A)
【公表日】平成20年3月13日(2008.3.13)
【国際特許分類】
【出願番号】特願2007−522884(P2007−522884)
【出願日】平成17年7月27日(2005.7.27)
【国際出願番号】PCT/CA2005/001167
【国際公開番号】WO2006/010258
【国際公開日】平成18年2月2日(2006.2.2)
【出願人】(507029812)ユニバーシティー オブ トロント (3)
【Fターム(参考)】