説明

走行装置及び駆動制御装置

【課題】車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御する場合において、車両が発進する場合に駆動輪を適切に制御して、ドライバビリティの低下を抑制すること。
【解決手段】走行装置100は、車両1に搭載されて車両1を走行させる。走行装置100は、左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrすべてが駆動輪となり、それぞれの駆動輪の駆動力を独立して変更することができる。そして、車両1の発進時においては、それぞれの駆動輪の回転速度が、車両1が備える操舵輪(左側前輪2fl及び右側前輪2fr)の操舵角から得られる旋回半径と、車両1に対する要求加速度と、に基づいて求められる目標回転速度となるように、それぞれの駆動輪へ動力が付与される。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、少なくとも2個の駆動輪の駆動力を独立して変更できる走行装置に関する。
【背景技術】
【0002】
乗用車やトラック、バス等といった車両の旋回性能を向上させることは、車両の走行性能の向上にとって重要である。近年においては、車両の旋回中に駆動輪の駆動力を制御することによって、車両の旋回性能を向上させる技術が実用化されている。例えば、特許文献1には、車輪のスリップを検出したときに、スリップの発生した車輪又はスリップの発生した車輪と対になっている車輪のトルクを低減させることにより、ヨーレートセンサやすべり角センサ等を用いることなく、車両の旋回制御を実行する技術が開示されている。
【0003】
【特許文献1】特開2006−166572号公報 段落番号0005、図1、図2
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1に開示されている技術では、スリップの発生によって車輪のトルクを低減させた場合、他の車輪、例えば、トルクを低減させた車輪と対になっている車輪が通過している路面の摩擦状態によっては、アンダーステアやオーバーステアを発生させるおそれがある。その結果、ドライバビリティに影響を与えたり、車両の操縦安定性に影響を与えたりして、予定した旋回性能を発揮できないおそれがある。
【0005】
このように、特許文献1に開示された技術は、路面の摩擦状態変化のような車両に対する外乱が発生すると、車両の安定性を低下させるおそれがある。これを解決するため、車両が備える駆動輪の回転速度を、例えば、車両の走行半径と車両の速度とに基づいて設定した目標回転速度になるように駆動輪の駆動力を制御する手法が考えられる。しかし、この手法によると、車両の発進時においては車両の速度が0であるため、目標回転速度を設定することができず、駆動輪を適切に制御できないおそれがある。その結果、車両を発進させることができなかったり、車両の挙動が不安定になったりして、ドライバビリティの低下を招くおそれがある。
【0006】
そこで、この発明は、上記に鑑みてなされたものであって、車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御する場合において、車両が発進する場合に駆動輪を適切に制御して、ドライバビリティの低下を抑制することを目的とする。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明に係る走行装置は、複数の駆動輪を備えるとともに、車両に搭載されて前記車両を走行させるものであり、少なくとも2個の前記駆動輪に対しては独立して駆動力を変更でき、かつ、前記車両の発進時には、駆動力を変更可能な前記駆動輪の回転速度が、前記車両が備える操舵輪の操舵角から求められる旋回半径と、前記車両に要求される要求加速度とに基づいて求められる目標回転速度となるように、前記駆動輪へ動力を付与することを特徴とする。
【0008】
この走行装置は、車両の発進時においては、駆動輪の回転速度が、車両が備える操舵輪の操舵角から求められる旋回半径と、車両に対する要求加速度とに基づいて求められる目標回転速度となるように、駆動輪へ動力が付与される。これによって、車両が実際に走行していなくても、駆動輪の目標回転速度を設定することができるので、車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御する場合において、車両が発進する場合に駆動輪を適切に制御することができる。その結果、車両を発進させ、また、車両の挙動を適切に制御することができるので、ドライバビリティの低下を抑制できる。
【0009】
本発明において、前記目標回転速度は、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて求めることが好ましい。
【0010】
本発明の望ましい態様としては、前記本発明に係る走行装置において、前記車両が直進状態で発進する場合、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて求めた回転速度を、すべての前記駆動輪の目標回転速度とすることが好ましい。
【0011】
本発明の望ましい態様としては、前記本発明に係る走行装置において、前記駆動輪の動力発生手段は、それぞれの前記駆動輪に対して設けられ、それぞれの前記駆動輪を個別に駆動する電動機であることが好ましい。
【0012】
上述した課題を解決し、目的を達成するために、本発明に係る駆動制御装置は、複数の駆動輪を備えるとともに、少なくとも2個の駆動輪は独立して駆動力を変更でき、かつ車両に搭載されて前記車両を走行させる走行装置の制御に用いるものであり、前記車両が発進する際には、前記車両が備える操舵輪の操舵角から求められる旋回半径と、前記車両に要求される要求加速度とに基づいて、独立して駆動力を変更できる前記駆動輪の目標とする目標回転速度を求める目標回転速度演算部と、前記駆動輪の回転速度が、前記目標回転速度となるように、前記駆動輪へ付与する動力を決定する出力決定部と、前記出力決定部により決定された動力で、前記駆動輪を駆動する出力制御部と、を含むことを特徴とする。
【0013】
この駆動制御装置は、車両の発進時においては、駆動輪の回転速度が、車両が備える操舵輪の操舵角から求められる旋回半径と、車両に対する要求加速度と、に基づいて求められる目標回転速度となるように、駆動輪へ動力を付与する。これによって、車両が実際に走行していなくても、駆動輪の目標回転速度を設定することができるので、車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御する場合において、車両が発進する場合に駆動輪を適切に制御することができる。その結果、車両を発進させ、また、車両の挙動を適切に制御することができるので、ドライバビリティの低下を抑制できる。
【0014】
本発明において、前記目標回転速度演算部は、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて、前記目標回転速度を求めることが好ましい。
【0015】
本発明の望ましい態様としては、前記本発明に係る駆動制御装置において、前記目標回転速度演算部は、前記車両が直進状態で発進する場合、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて求めた回転速度を、すべての前記駆動輪の目標回転速度とすることが好ましい。
【発明の効果】
【0016】
この発明に係る走行装置及び駆動制御装置は、車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御する場合において、車両が発進する場合に駆動輪を適切に制御して、ドライバビリティの低下を抑制できる。
【発明を実施するための最良の形態】
【0017】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この発明を実施するための最良の形態(以下実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。以下においては、電動機を動力発生手段とした、いわゆる電気自動車に本発明を適用した場合を説明するが、本発明の適用対象はこれに限られるものではなく、複数の駆動輪を備えるとともに、少なくとも2個の駆動輪の間で駆動力が変更できるものであればよい。また、動力発生手段は電動機に限られるものではなく、例えば、内燃機関のような熱機関を用いてもよい。
【0018】
駆動力を変更できる少なくとも2個の駆動輪は、車両の左右一対の駆動輪であってもよく、この場合には、前輪の左右一対の駆動輪、又は後輪の左右一対の駆動輪のうち少なくとも一方で、駆動力を変更可能であればよい。また、左右一対の駆動輪を3組以上備える車両においては、そのうちの少なくとも一組の駆動輪間において駆動力を変更可能であればよい。さらに、左右前輪のうちの一輪と、左右後輪のうちの一輪との間で、駆動力を変更できる構成であってもよい。なお、本発明は、主として操舵輪に操舵角が与えられた状態で車両が発進する場合の制御なので、駆動力を変更できる少なくとも2個の駆動輪は、少なくとも車両の左右一対の駆動輪とすることが好ましい。
【0019】
本実施形態は、車両に搭載される走行装置が備える少なくとも2個の駆動輪は、それぞれの駆動力を独立して変更でき、かつ、車両の発進時においては、駆動力を変更可能な駆動輪の回転速度が、車両が備える操舵輪の操舵角から得られる旋回半径と、車両に対する要求加速度と、に基づいて求められる目標回転速度となるように、駆動力を変更可能な駆動輪へ動力が付与される点に特徴がある。
【0020】
図1は、本実施形態に係る走行装置を備える車両の構成を示す概略図である。ここで、左右の区別は、車両1の前進する方向(図1の矢印X方向)を基準とする。すなわち、「左」とは、車両1の前進する方向に向かって左側をいい、「右」とは、車両1の前進する方向に向かって右側をいう。また、車両1が前進する方向を前とし、車両1が後進する方向、すなわち前進する方向とは反対の方向を後とする。
【0021】
図1に示す車両1は、電動機を動力発生手段とする走行装置100を備える。走行装置100は、左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrを駆動輪とする。したがって、左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrは、車両1の駆動輪となる。本実施形態において、動力発生手段は、左側前輪2flを駆動する左前側電動機10flと、右側前輪2frを駆動する右前側電動機10frと、左側後輪2rlを駆動する左後側電動機10rlと、右側後輪2rrを駆動する右後側電動機10rrとを含む。そして、ECU(Electronic Control Unit)50、及びECU50に組み込まれる駆動制御装置30が、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrの出力を制御することによって、各駆動輪の駆動力が制御される。本実施形態においては、アクセル開度センサ42によって検出されるアクセル5の開度に基づき、ECU50及び駆動制御装置30が、走行装置100の総駆動力F、及び左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rr各輪の駆動力が制御される。
【0022】
この走行装置100において、左側前輪2fl、右側前輪2fr、左側後輪2rl及び右側後輪2rrは、それぞれ異なる電動機で駆動される。このように、車両1は、走行装置100が備える4個の車輪すべてが駆動輪となる。本実施形態において、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrは、左側前輪2fl、右側前輪2fr、左側後輪2rl及び右側後輪2rrのホイール内に配置される、いわゆるインホイール形式の構成となっている。そして、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrは、直接左側前輪2fl、右側前輪2fr、左側後輪2rl及び右側後輪2rrを駆動する。
【0023】
なお、電動機と車輪との間に減速機構を設け、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrの回転数を減速して、左側前輪2fl、右側前輪2fr、左側後輪2rl及び右側後輪2rrに伝達してもよい。一般に、電動機は小型化するとトルクが低下するが、減速機構を設けることによって電動機のトルクを増加させることができる。したがって、減速機構を用いれば、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrを小型化することができる。
【0024】
左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrは、左前側レゾルバ40fl、右前側レゾルバ40fr、左後側レゾルバ40rl及び右後側レゾルバ40rrによって回転角度や回転速度が検出される。左前側レゾルバ40fl、右前側レゾルバ40fr、左後側レゾルバ40rl及び右後側レゾルバ40rrの出力は、ECU50や駆動制御装置30に取り込まれて、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrの制御に用いられる。
【0025】
左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrは、インバータ6に接続されている。インバータ6は、左前側電動機10flを駆動する左前側電動機用インバータ6fl、右前側電動機10frを駆動する右前側電動機用インバータ6fr、左後側電動機10rlを駆動する左後側電動機用インバータ6rl、及び右後側電動機10rrを駆動する右後側電動機用インバータ6rrで構成される。このように、本実施形態においては、それぞれの電動機に対応した4台のインバータで構成されており、1台のインバータで1台の電動機を制御する。
【0026】
インバータ6には、例えばニッケル−水素電池や鉛蓄電池、あるいは燃料電池(FC:Fuel Cell)等の車載電源7が接続されており、必要に応じてインバータ6を介して左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrへ供給される。これらの出力は、ECU50からの指令によってインバータ6を制御することで制御される。
【0027】
左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrが走行装置100の動力発生源として用いられる場合、車載電源7の電力がインバータ6を介して供給される。また、例えば車両1の減速時には、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrが発電機として機能して回生発電を行い、これによって車両1の運動エネルギを電気エネルギに変換して回収し、車載電源7に蓄える。これは、ブレーキ信号やアクセルオフ等の信号に基づいて、ECU50がインバータ6を制御することにより実現される。なお、本実施形態に係るスリップ抑制制御を実行する際にも、必要に応じて左前側電動機10fl、右前側電動機10fr、左後側電動機10rl、右後側電動機10rrの回生発電を実行する。
【0028】
以下においては、説明の便宜上、必要に応じて、左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrを区別せず駆動輪2という。また、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl、右後側電動機10rrは、必要に応じて電動機10といい、左前側レゾルバ40fl、右前側レゾルバ40fr、左後側レゾルバ40rl、右後側レゾルバ40rrは、必要に応じてレゾルバ40という。
【0029】
走行装置100の左側前輪2fl及び右側前輪2frは、ハンドル4によって操舵され、車両1の操舵輪としても機能する。左側前輪2fl及び右側前輪2frは、操舵角センサ43によって検出される。ハンドル4からの入力は、操舵用減速装置8を介して左側前輪2fl及び右側前輪2frに伝えられ、これらを操舵する。左側前輪2fl及び右側前輪2frを操舵することにより、車両1の進行方向を変更する。本実施形態に係る走行装置100が備える操舵用減速装置8は、コントローラ8Cによって制御されるアクチュエータ8Aによって、減速比を変更することができる。これによって、ハンドル4の操作量が一定の状態で、走行装置100の操舵輪である左側前輪2fl及び右側前輪2frの操舵角度を変更することもできる。操舵用減速装置8は、例えば、ハンドル4と左側前輪2fl及び右側前輪2frとの間に設けられる遊星歯車式の減速装置の減速比を変更するように構成される。次に、本実施形態に係る駆動制御を説明する。
【0030】
図2は、本実施形態に係る駆動制御を説明するための模式図である。図3−1〜図3−3は、本実施形態に係る車両が備える各車輪の関係を説明するための模式図である。本実施形態に係る駆動制御は、少なくとも2個の駆動輪の駆動力を独立して制御できる走行装置100において、車両1の運転条件に基づいて、駆動輪が目標とする回転速度を設定し、前記目標とする回転速度となるような動力を前記駆動輪に付与して、前記駆動輪を駆動する。
【0031】
本実施形態では、車両1の走行姿勢は、車両1が搭載する走行装置100の各駆動輪の回転速度に依存することに着目し、走行装置100の駆動輪の目標とする目標回転速度を演算し、駆動輪の実際の回転速度が、演算した目標回転速度になるように、すなわち、駆動輪の実際の回転速度と、演算した目標回転速度との差が0になるように、駆動輪へ付与する動力をフィードバック制御する。これによって、ヨーセンサやスリップ角センサ等を用いなくとも、車両1の旋回性能を確保しつつ、車両1の走行姿勢変化を抑制して、安定して車両を走行させることができる。また、路面の摩擦状態変化のような、車両1に対する外乱が発生しても、車両1の走行安定性低下を抑制しつつ、車両1の旋回性能を確保できる。
【0032】
図2は、本実施形態に係る車両1が左旋回している状態を示している。図2に示す実線は、車両1の旋回中における車両1の重心Gの旋回軌跡である。一点鎖線foは前外輪2foの旋回軌跡であり、一点鎖線roは後外輪2roの旋回軌跡であり、二点鎖線fiは前内輪2fiの旋回軌跡であり、二点鎖線riは後内輪2riの旋回軌跡である。また、車両1の重心Gの旋回半径(以下車両重心旋回半径という)はρ、前外輪2foの旋回半径(以下前外輪旋回半径という)はρfo、後外輪2roの旋回半径(以下後外輪旋回半径という)はρro、前内輪2fiの旋回半径(以下前内輪旋回半径という)はρfi、後内輪2riの旋回半径(以下後内輪旋回半径という)はρriである。βは、車両1の重心G周りにおける車両1のすべり角(以下すべり角という)である。
【0033】
ここで、図1に示す車両1の駆動輪と、図2に示す車両1の駆動輪との関係は、左側前輪2flが前外輪2foに対応し、左側後輪2rlが後外輪2roに対応し、右側前輪2frが前内輪2fiに対応し、右側後輪2rrが後内輪2riに対応する。この対応関係は、車両1の旋回方向によって内輪と外輪との関係が反対となり、車両1が右旋回する場合には、左側前輪2flが前内輪2fiに対応し、左側後輪2rlが後内輪2riに対応し、右側前輪2frが前外輪2foに対応し、右側後輪2rrが後外輪2roに対応する。なお、本実施形態において、図1に示す左側前輪2fl、右側前輪2fr、左側後輪2rl及び右側後輪2rrは、いずれも車両1の駆動輪なので、前外輪2fo、後外輪2ro、前内輪2fi及び後内輪2riは、いずれも車両1の駆動輪である。
【0034】
図3−1〜図3−3中のGは車両1の重心、hは車両1の重心高さ、Dfは前輪のトレッド幅、Drは後輪のトレッド幅を表す。また、Lは、左側前輪2fl及び右側前輪2frの車軸(前輪側車軸)Zfと、左側後輪2rl及び右側後輪2rrの車軸(後輪側車軸)Zrとの距離(前後車軸軸間距離)、Lfは重心Gと前輪側車軸Zfとの水平距離、Lrは重心Gと後輪側車軸Zrとの水平距離を表す。
【0035】
車両1が走行している場合の車両重心旋回半径ρは、式(1)で求めることができ、車両1が走行している場合のすべり角βは、式(2)で求めることができる。前外輪旋回半径ρfo、後外輪旋回半径ρro、前内輪旋回半径ρfi、後内輪旋回半径ρriは、車両重心旋回半径ρ及びすべり角βを用いて、それぞれ式(3)〜式(6)で求めることができる。また、前外輪2foの旋回周速度(以下前外輪旋回周速度という)Vfo、後外輪2roの旋回周速度(以下後外輪旋回周速度という)Vro、前内輪2fiの旋回周速度(以下前内輪旋回周速度という)Vfi、後内輪2riの旋回周速度(以下後内輪旋回周速度という)Vriは、それぞれ式(7)〜(10)で求めることができる。そして、前外輪2foの旋回角速度(以下前外輪旋回角速度という)ωfo、後外輪2roの旋回角速度(以下後外輪旋回角速度という)ωro、前内輪2fiの旋回角速度(以下前内輪旋回角速度という)ωfi、後内輪2riの旋回角速度(以下後内輪旋回角速度という)ωriは、それぞれ式(11)〜(14)で求めることができる。
【0036】
このようにして得られた前外輪旋回角速度ωfo、後外輪旋回角速度ωro、前内輪旋回角速度ωfi、後内輪旋回角速度ωriが、各駆動輪の目標回転速度となる。すなわち、前外輪2foの目標回転速度(前外輪目標回転速度)はωfo、後外輪2roの目標回転速度(後外輪目標回転速度)はωro、前内輪2fiの目標回転速度(前内輪目標回転速度)はωfi、後内輪2riの目標回転速度(後内輪目標回転速度)はωriとなる。
【0037】
ここで、Vは車両1の速度(必要に応じて車両速度という)であり、例えば、車両1が備える駆動輪の速度(車輪の周速度)のうち、最も低いものに基づいて求める。また、mは車両1の質量、Rfoは前外輪2foの半径、Rroは後外輪2roの半径、Rfiは前内輪2fiの半径、Rriは後内輪2riの半径である。Kfは車両1の前輪のコーナーリングフォース(横力)、Krは車両1の後輪のコーナーリングフォースである。コーナーリングフォースは、通常、車両1の前輪及び後輪の荷重でほぼ決定されるとともに、操舵角δに対して変化する。そして、本実施形態において、コーナーリングフォースは、操舵角δに対して線形から弱い非線形で変化する領域が用いられる。
【0038】
【数1】

【0039】
【数2】

【0040】
【数3】

【0041】
【数4】

【0042】
【数5】

【0043】
【数6】

【0044】
【数7】

【0045】
【数8】

【0046】
【数9】

【0047】
【数10】

【0048】
【数11】

【0049】
【数12】

【0050】
【数13】

【0051】
【数14】

【0052】
上述したように、本実施形態では、車両1の駆動輪の実際の回転速度が、式(1)〜式(14)に基づいて演算した、前記駆動輪の目標回転速度になるように、各駆動輪へ動力を付与する。これによって、ヨーセンサやスリップ角センサ等を用いなくとも、車両1の走行姿勢変化を抑制して、安定して車両を走行させることができるとともに、車両1の旋回性能も確保できる。その結果、車両1の駆動輪のうち少なくとも一輪がスリップしたりスタックしたりした場合の駆動制御において、車両1の旋回時、跨ぎ路走行時等における車両1の姿勢を、運転者の意図するものとすることができるので、ドライバビリティが向上する。また、車両1の内輪差に応じて前後の内輪へ付与する動力を低減して、前後の内輪の駆動力を減じるため、特に大操舵角の旋回中に車両1の内輪がスリップやスタックした場合に、車両1の旋回軌跡を維持するように駆動力を配分することができる。
【0053】
式(7)〜式(10)から分かるように、車両1が停止している場合、前外輪旋回周速度Vfo、後外輪旋回周速度Vro、前内輪旋回周速度Vfi、後内輪旋回周速度Vroはいずれも0になる。したがって、これらを用いて得られる前外輪目標回転速度ωfo、後外輪目標回転速度ωro、前内輪目標回転速度ωfi、後内輪目標回転速度ωriも0となる。このため、車両1の発進時においては、目標回転速度を設定できず、車両1が発進できないおそれがある。また、目標回転速度を設定できない結果、車両1の発進時に措いては駆動制御が発散し、車両1の挙動を不安定にするおそれもある。
【0054】
そこで、本実施形態では、車両1の運転者が車両1に要求する加速度を推定し、この加速度から求めた、所定の時間が経過した後における車両1の速度に基づいて、前外輪2fo、後外輪2ro、前内輪2fi及び後内輪2riの目標とする回転速度を求める。次に、この手法を説明する。
【0055】
まず、車両1の発進時に車両1の運転者が要求する加速度、すなわち、車両1の発進時において車両1に要求される加速度(以下発進時要求車両加速度)adを求める。発進時要求車両加速度adは、車両1の発進時において車両1に要求される総駆動力(発進時要求総駆動力)Fdから求めることができる。車両1の発進時において、前外輪2foを駆動する電動機、後外輪2roを駆動する電動機、前内輪2fiを駆動する電動機、後内輪2riを駆動する電動機それぞれに要求されるトルクを、順にTd_fo(前外輪電動機トルク)、Td_ro(後外輪電動機トルク)、Td_fi(前内輪電動機トルク)、Td_ri(後内輪電動機トルク)とする。
【0056】
図4は、車両の発進時において車両が搭載する電動機に要求されるトルクを求めるための電動機トルクマップの一例を示す模式図である。前外輪電動機トルクTd_fo、後外輪電動機トルクTd_ro、前内輪電動機トルクTd_fi、後内輪電動機トルクTd_riは、例えば、図1に示すアクセル5の開度(アクセル開度)θの関数で与えられ、ECU50へ実装される場合には、図4に示す電動機トルクマップ60に形に記述される。
【0057】
ここで、図4に示す電動機トルクマップ60は、車両1の発進時において各電動機に要求されるトルク(発進時要求トルク)Tdが記述されている。電動機トルクマップ60に示すように、アクセル開度θが増加するにしたがって、発進時要求トルクTd、すなわち、前外輪電動機トルクTd_fo、後外輪電動機トルクTd_ro、前内輪電動機トルクTd_fi、後内輪電動機トルクTd_riは増加する。
【0058】
なお、本実施形態においては、車両1が備える電動機はすべて同一の仕様であり、説明の便宜上、電動機トルクマップ60は、それぞれの電動機に対して共通とする。なお、例えば、車両1が備える電動機の仕様が異なる場合、電動機の仕様に応じて異なる電動機トルクマップを用意してもよい。また、車両1の加速時には、後輪上の荷重が増加し前輪上の荷重が減少するので、前輪のスリップを抑制するために、同じアクセル開度θにおいては、前輪を駆動する電動機よりも後輪を駆動する電動機の発進時要求トルクを大きくしてもよい。このように、電動機トルクマップ60は、車両1が備える電動機の仕様や車両1の仕様によって、適宜変更することが好ましい。
【0059】
車両1が備える各駆動輪に要求される駆動力は、発進時要求トルクTd、すなわち、前外輪電動機トルクTd_fo、後外輪電動機トルクTd_ro、前内輪電動機トルクTd_fi、後内輪電動機トルクTd_riを用いて、式(15)〜式(18)で求めることができる。ここで、Fd_foは前外輪2foに要求される駆動力(前外輪要求駆動力)、Fd_roは後外輪2roに要求される駆動力(後外輪要求駆動力)、Fd_fiは前内輪2fiに要求される駆動力(前内輪駆動力)、Fd_riは後内輪2riに要求される駆動力(後内輪駆動力)である。ここで、GRは電動機と駆動輪との間の減速比であり、電動機の出力軸と駆動輪とが直結されている場合、GR=1である。
【0060】
【数15】

【0061】
【数16】

【0062】
【数17】

【0063】
【数18】

【0064】
発進時要求総駆動力Fdは、式(19)で求めることができる。また、加速度は力を質量で除することにより求めることができるので、発進時要求車両加速度adは、式(20)で求めることができる。ここで、mは車両1の質量である。発進時要求車両加速度adを用いると、車両1が発進してから所定時間Δt(秒)が経過した後における車両1の速度Vexpを予測することができる。速度Vexpは、車両1が発進してから所定時間Δt(秒)が経過した後において、車両1の運転者が期待する車両1の速度である。速度Vexpを期待車両速度という。期待車両速度Vexpは、式(21)で求めることができる。ここで、V0は、車両1の初速であり、車両1の発進時においてV0=0である。期待車両速度Vexpは、車両1の運転者が要求する発進時要求車両加速度adに基づいて求められるので、運転者の意思を反映したものとなっており、ドライバビリティの低下を効果的に抑制できる。
【0065】
【数19】

【0066】
【数20】

【0067】
【数21】

【0068】
本実施形態では、上記手法で求めた期待車両速度Vexpと、車両1が備える各駆動輪2の車両1の発進時における旋回半径と、車両1が停止している場合における車両重心旋回半径ρs及びすべり角βsとを用いて、車両1の発進時における車両1の駆動輪、すなわち前外輪2fo、後外輪2ro、前内輪2fi、後内輪2riの目標とする回転速度(発進時目標回転速度)を求める。
【0069】
車両1が停止している場合の車両重心旋回半径(停止時車両重心旋回半径)ρsは、式(22)で求めることができ、車両1が停止している場合のすべり角(停止時すべり角)βsは、式(23)で求めることができる。式(22)、式(23)から分かるように、車両1の停止時においては、停止時車両重心旋回半径ρs及び停止時すべり角βsは、車両1が備える車輪の幾何学的な位置関係から求めることができる。また、車両1の発進時における前外輪旋回半径(発進時前外輪旋回半径)ρfo_s、後外輪旋回半径(発進時後外輪旋回半径)ρro_s、前内輪旋回半径(発進時前内輪旋回半径)ρfi_s、後内輪旋回半径(発進時後内輪旋回半径)ρri_sは、それぞれ式(24)〜式(27)で求めることができる。
【0070】
【数22】

【0071】
【数23】

【0072】
【数24】

【0073】
【数25】

【0074】
【数26】

【0075】
【数27】

【0076】
車両1の発進時における車両1の駆動輪、すなわち前外輪2fo、後外輪2ro、前内輪2fi、後内輪2riの目標とする周速度(発進時目標周速度)Vfo_s、Vro_s、Vfi_s、Vri_sは、期待車両速度Vexpを用いて、式(28)〜式(31)で求めることができる。ここで、Vfo_sは前外輪発進時目標周速度、Vro_sは後外輪発進時目標周速度、Vfi_sは前内輪発進時目標周速度、Vro_sは後内輪発進時目標周速度である。
【0077】
【数28】

【0078】
【数29】

【0079】
【数30】

【0080】
【数31】

【0081】
ここで、期待車両速度Vexpを求める上記式(21)中の所定時間Δtは、予め設定されるが、式(21)から分かるように、所定時間Δtの大きさによって期待車両速度Vexpも変化する。これによって、発進時目標周速度も変化して、車両1の発進時に各駆動力が発生する駆動力も変化することになる。すなわち、車両1の発進時においては、所定時間Δtの設定によって、駆動輪の駆動力を変化させることができる。所定時間Δtは、例えば、車両1の質量や、路面状態に応じて変更することができる。例えば、車両1の質量が大きい場合には所定時間Δtを大きく設定して、確実に車両1を加速させるようにする。また、所定時間Δtは、車両1の発進時における駆動制御の全期間にわたって一定としてもよいし、変更してもよい。
【0082】
式(28)〜式(31)から求めた前外輪発進時目標周速度Vfo_s、後外輪発進時目標周速度Vro_s、前内輪発進時目標周速度Vfi_s、後内輪発進時目標周速度Vro_sを旋回角速度に変換することにより、車両1が備える各駆動輪の発進時目標回転速度を、式(32)〜式(35)に示すように求めることができる。ここで、ωfo_sは前外輪2foの発進時目標回転速度(前外輪発進時目標回転速度)、ωro_sは後外輪2roの発進時目標回転速度(後外輪発進時目標回転速度)、ωfi_sは前内輪2fiの発進時目標回転速度(前内輪発進時目標回転速度)、ωri_sは後内輪2riの発進時目標回転速度(後内輪発進時目標回転速度)である。
【0083】
【数32】

【0084】
【数33】

【0085】
【数34】

【0086】
【数35】

【0087】
上述した手法は、車両1の発進時に操舵角δが与えられている場合に用いるが、操舵角δが与えられていない場合、すなわち、車両1が直進状態で発進する場合は、次のようにして車両1が備える各駆動輪の発進時目標回転速度を求める。まず、前外輪発進時目標周速度Vfo_s、後外輪発進時目標周速度Vro_s、前内輪発進時目標周速度Vfi_s、後内輪発進時目標周速度Vri_sを、式(21)で求めた期待車両速度Vexpとする。すなわち、Vfo_s=Vro_s=Vfi_s=Vri_s=Vexpとする。そして、これらを用いて、式(32)〜式(35)から、前外輪発進時目標回転速度ωfo_s、後外輪発進時目標回転速度ωro_s、前内輪発進時目標回転速度ωfi_s、後内輪発進時目標回転速度ωri_sを求める。なお、車両1が備える駆動輪の半径がそれぞれRで等しい場合、ωfo_s=ωro=ωfi=ωri=Vexp/Rとなる。これによって、車両1が直進状態で発進する場合でも、適切に車両1の駆動輪の駆動力を制御することができる。次に、本実施形態に係る駆動制御を実現するための駆動制御装置について説明する。
【0088】
図5は、本実施形態に係る駆動制御装置の構成例を示す説明図である。図5に示すように、駆動制御装置30は、ECU50に組み込まれて構成されている。ECU50は、CPU(Central Processing Unit:中央演算装置)50pと、記憶部50mと、入力ポート55及び出力ポート56と、入力インターフェース57と、出力インターフェース58とから構成される。
【0089】
なお、ECU50とは別個に、本実施形態に係る駆動制御装置30を用意し、これをECU50に接続してもよい。そして、本実施形態に係る駆動制御を実現するにあたっては、ECU50が備える走行装置100等に対する制御機能を、前記駆動制御装置30が利用できるように構成してもよい。
【0090】
駆動制御装置30は、制御条件判定部31と、目標回転速度演算部32と、出力決定部33と、出力制御部34とを含んで構成される。これらが、本実施形態に係る駆動制御を実行する部分となる。本実施形態において、駆動制御装置30は、ECU50を構成するCPU50pの一部として構成される。
【0091】
駆動制御装置30の制御条件判定部31と、目標回転速度演算部32と、出力決定部33と、出力制御部34とは、バス54、バス54、及び入力ポート55及び出力ポート56を介して接続される。これにより、駆動制御装置30を構成する制御条件判定部31と目標回転速度演算部32と、出力決定部33と、出力制御部34とは、相互に制御データをやり取りしたり、一方に命令を出したりできるように構成される。また、CPU50pが備える駆動制御装置30と、記憶部50mとは、バス54を介して接続される。これによって、駆動制御装置30は、ECU50が有する走行装置100の運転制御データを取得し、これを利用することができる。また、駆動制御装置30は、本実施形態に係る駆動制御を、ECU50が予め備えている運転制御ルーチンに割り込ませたりすることができる。
【0092】
入力ポート55には、入力インターフェース57が接続されている。入力インターフェース57には、レゾルバ40、すなわち左前側レゾルバ40fl、右前側レゾルバ40fr、左後側レゾルバ40rl、右後側レゾルバ40rr、アクセル開度センサ42、操舵角センサ43、等の、走行装置100の駆動制御に必要な情報を取得するセンサ類が接続されている。これらのセンサ類から出力される信号は、入力インターフェース57内のA/Dコンバータ57aやディジタル入力バッファ57dにより、CPU50pが利用できる信号に変換されて入力ポート55へ送られる。これにより、CPU50pは、走行装置100の運転制御や、本実施形態に係る駆動制御に必要な情報を取得することができる。
【0093】
出力ポート56には、出力インターフェース58が接続されている。出力インターフェース58には、本実施形態に係る駆動制御に必要な制御対象が接続されている。本実施形態ではインバータ6、すなわち、左前側電動機用インバータ6fl、右前側電動機用インバータ6fr、左後側電動機用インバータ6rl、右後側電動機用インバータ6rrが、出力インターフェース58に接続されている。出力インターフェース58は、制御回路58、58等を備えており、CPU50pで演算された制御信号に基づき、前記制御対象を動作させる。このような構成により、前記センサ類からの出力信号に基づき、ECU50のCPU50pは、インバータ6を介して左前側電動機10fl、右前側電動機10fr、左後側電動機10rl及び右後側電動機10rrの動力(トルクや回転数)を制御することができる。
【0094】
記憶部50mには、本実施形態に係る駆動制御の処理手順を含むコンピュータプログラムや制御マップ、あるいは本実施形態に係る駆動制御に用いるデータ等が格納されている。ここで、記憶部50mは、RAM(Random Access Memory)のような揮発性のメモリ、フラッシュメモリ等の不揮発性のメモリ、あるいはこれらの組み合わせにより構成することができる。
【0095】
上記コンピュータプログラムは、CPU50pへ既に記録されているコンピュータプログラムとの組み合わせによって、本実施形態に係る駆動制御の処理手順を実現できるものであってもよい。また、この駆動制御装置30は、前記コンピュータプログラムの代わりに専用のハードウェアを用いて、制御条件判定部31、目標回転速度演算部32、出力決定部33及び出力制御部34の機能を実現するものであってもよい。次に、本実施形態に係る駆動制御を説明する。
【0096】
図6は、本実施形態に係る駆動制御のうち、車両の発進時における駆動制御の手順を示すフローチャートである。本実施形態に係る駆動制御は、上述した駆動制御装置30によって実現できる。本実施形態に係る駆動制御には、車両の発進時における駆動制御と、車両の走行時における制御とがある。まず、車両の発進時における駆動制御を説明する。
【0097】
(車両の発進時における駆動制御)
本実施形態に係る駆動制御を実行するにあたり、ステップS101において、駆動制御装置30の制御条件判定部31は、車両1が停止している場合の車両重心旋回半径ρsやすべり角βsを求めるための演算に用いる操舵角(以下、演算用操舵角という)δの初期値を0に設定し、ECU50の記憶部50mへ格納する。
【0098】
ステップS102において、制御条件判定部31は、現時点における車両1の速度(車両速度)Vが0であるか否かを判定する。車両速度Vは、図1に示す車両1が備える左前側電動機10fl、右前側電動機10fr、左後側電動機10rl、右後側電動機10rrの回転情報から求めた左側前輪2fl、右側前輪2fr、左側後輪2rl、右側後輪2rrの回転速度に基づいて求める。例えば、左側前輪2flの回転速度、右側前輪2frの回転速度、左側後輪2rlの回転速度、右側後輪2rrの回転速度を平均して車両速度Vとしたり、左側前輪2flの回転速度、右側前輪2frの回転速度、左側後輪2rlの回転速度、右側後輪2rrの回転速度のうち最も小さいものを車両速度Vとしたりする。なお、左前側電動機10fl、右前側電動機10fr、左後側電動機10rl、右後側電動機10rrの回転情報は、図1に示す車両1が備えるそれぞれの左前側レゾルバ40fl、右前側レゾルバ40fr、左後側レゾルバ40rl、右後側レゾルバ40rrから得る。
【0099】
ステップS102においてNoと判定された場合、すなわち、制御条件判定部31がV≠0であると判定した場合、車両1は停止していないと判定できる。この場合、ステップS113へ進み、制御条件判定部31は、現時点における車両速度Vと、制御終了車両速度V_cとを比較する。ここで、制御終了車両速度V_cは、車両1が発進状態から走行状態に移行したか否かを判定するための車両速度であり、車両の発進時における駆動制御から車両の走行時における駆動制御へ切り替えるタイミングを判定するためのものである。
【0100】
ステップS113でYesと判定された場合、すなわち、制御条件判定部31がV>V_cであると判定した場合は、本実施形態に係る駆動制御のうち、車両の発進時における駆動制御を終了する。そして、駆動制御装置30は、車両の走行時における駆動制御を実行する。車両の走行時における駆動制御については後述する。ステップS113でNoと判定された場合、すなわち、制御条件判定部31がV≦V_cであると判定した場合は、車両1はまだ発進状態にあると見なして、ステップS103以降の手順を実行することにより、車両の発進時における駆動制御を継続する。
【0101】
ステップS102においてYesと判定された場合、すなわち、制御条件判定部31がV=0であると判定した場合、車両1は停止していると判定できる。この場合、ステップS103に進み、制御条件判定部31は、現時点における操舵角(以下、実操舵角という)δnを取得し、δnが0であるか否かを判定する。
【0102】
ステップS103でNoと判定された場合、すなわち、制御条件判定部31がδn≠0であると判定した場合、車両1が停止しており、かつ車両1の操舵輪(左側前輪2fl及び右側前輪2fr)が操舵されていると判断できる。この場合、ステップS104へ進み、制御条件判定部31は、現時点における演算用操舵角δと実操舵角δnとを比較する。
【0103】
ステップS104でNoと判定された場合、すなわち、δ≠δnである場合には、現時点における実操舵角δnが現時点における最新の演算用操舵角δとは異なり、この演算用操舵角δを用いると、駆動制御の精度が低下するおそれがある。したがって、ステップS105において、制御条件判定部31は、演算用操舵角δを、現時点における実操舵角δnに更新し、ECU50の記憶部50mへ格納する。そして、以後の駆動制御においては、更新された最新の演算用操舵角δを用いる。
【0104】
次に、ステップS106において、駆動制御装置30の目標回転速度演算部32は、ステップS105で更新された演算用操舵角δを用いて、車両1が停止している場合の車両重心旋回半径ρs及びすべり角βsを求める。ここで、前記車両重心旋回半径ρsは式(22)で求めることができ、前記すべり角βsは、式(23)で求めることができる。
【0105】
車両重心旋回半径ρs及びすべり角βsを求めたら、ステップS107において、目標回転速度演算部32は期待車両速度Vexp(式(21))を求め、ステップS108で各駆動輪の発進時目標周速度Vfo_s、Vro_s、Vfi_s、Vri_s(式(28)〜式(31))を求める。次に、ステップS109において、目標回転速度演算部32は、各駆動輪の発進時目標回転速度ωfo_s、ωro_s、ωfi_s、ωri_sを求める(式(32)〜式(35))。
【0106】
次に、ステップS110において、駆動制御装置30の出力決定部33は、各駆動輪の実際の回転速度ω_nklを取得して、ステップS109で演算された各駆動輪の発進時目標回転速度ωfo_s、ωro_s、ωfi_s、ωri_sとの偏差(以下発進時回転速度偏差という)Δωkl_s(=|ω_nkl−ωkl_s|)を演算する。ここで、k、lは添字であって、kは車両1の前側における駆動輪を意味するf又は車両1の後側における駆動輪を意味するrとなり、lは車両1の旋回方向外側における駆動輪を意味するo又は車両1の旋回方向内側における駆動輪を意味するiとなる(以下同様)。なお、本実施形態において、回転速度偏差は、ω_nklとωkl_sとの差の絶対値で表す。また、発進時なので、各駆動輪の実際の回転速度ω_nklは0(rad/秒)になる。
【0107】
そして、ステップS111において、出力決定部33は、ステップS110で演算した、各駆動輪の発進時回転速度偏差Δωkl_sが0になるように、各駆動輪へ付与する動力を演算する。すなわち、各駆動輪を駆動する動力発生手段(本実施形態では電動機)の出力(トルク)を演算する。本実施形態においては、ステップS110で演算した各駆動輪の発進時回転速度偏差Δωkl_sに基づき、各駆動輪の発進時回転速度偏差Δωkl_sが0になるような各駆動輪を駆動する電動機の駆動電流値Iを、出力決定部33が演算する。
【0108】
各駆動輪を駆動する電動機の駆動電流値Iは、各駆動輪の駆動力(トルク)に比例するので、各駆動輪の発進時回転速度偏差Δωkl_sが0になるような駆動電流値Iで前記電動機を駆動すれば、各駆動輪の発進時回転速度偏差Δωkl_sが0になる。したがって、各駆動輪の回転速度偏差Δωが0になるような駆動電流値Iを演算すれば、各駆動輪の発進時回転速度偏差Δωkl_sが0になるような各駆動輪の動力(駆動力)を演算することになる。ステップS112において、駆動制御装置30の出力制御部34は、ステップS111において演算された、各駆動輪を駆動する電動機の駆動電流値Iで、各駆動輪を駆動する。これによって、各駆動輪の発進時回転速度偏差Δωkl_sが0になるように各駆動輪へ動力が与えられ、各駆動輪は、t秒後に発進時目標回転速度となるように駆動される。
【0109】
次に、ステップS113へ進み、制御条件判定部31は、現時点における車両速度Vを求め、この車両速度Vと、制御終了車両速度V_cとを比較する。ステップS113でYesと判定された場合、すなわち、制御条件判定部31がV>V_cであると判定した場合は本実施形態に係る駆動制御のうち車両の発進時における駆動制御を終了し、駆動制御装置30は、後述する車両の走行時における駆動制御を実行する。ステップS113でNoと判定された場合、すなわち、制御条件判定部31がV≦V_cであると判定した場合は、車両1はまだ発進状態にあると見なしてステップS103以降の手順を実行することにより、車両の発進時における駆動制御を継続する。
【0110】
次に、ステップS103に戻って説明する。ステップS103でYesと判定された場合、すなわち、制御条件判定部31がδn=0であると判定した場合、車両1が停止しており、かつ車両1の操舵輪(左側前輪2fl及び右側前輪2fr)は操舵されておらず、車両1の操舵輪は直進状態であると判断できる。この場合、式(28)〜式(31)から求める各駆動輪の発進時目標周速度Vfo_s、Vro_s、Vfi_s、Vri_sを用いて、各駆動輪の発進時目標回転速度ωfo_s、ωro_s、ωfi_s、ωri_sを求めることはできない。
【0111】
この場合、ステップS114において、目標回転速度演算部32は期待車両速度Vexp(式(21))を求める。そして、ステップS115において、目標回転速度演算部32は、前外輪発進時目標周速度Vfo_s、後外輪発進時目標周速度Vro_s、前内輪発進時目標周速度Vfi_s、後内輪発進時目標周速度Vri_sを、ステップS114で求めた期待車両速度Vexpとする。すなわち、Vfo_s=Vro_s=Vfi_s=Vri_s=Vexpとする。そして、ステップS109に進み、目標回転速度演算部32は、ステップS108で設定した各駆動輪の発進時目標周速度を用いて、各駆動輪の発進時目標回転速度ωfo_s、ωro_s、ωfi_s、ωri_sを求める。
【0112】
次に、ステップS104に戻って説明する。ステップS104でYesと判定された場合、すなわち、δ=δnである場合には、現時点における実操舵角δnが現時点における最新の演算用操舵角δと同じ値である。したがって、ステップS109で求める各駆動輪の発進時目標回転速度ωfo_s、ωro_s、ωfi_s、ωri_sは、前回の値と変化はないので、ステップS110に進む。ステップS110において、出力決定部33は、前回の発進時目標回転速度ωfo_s、ωro_s、ωfi_s、ωri_sを用いて発進時回転速度偏差Δωkl_sを演算し、ステップS111以降の手順を実行する。
【0113】
このように、上述した車両の発進時における駆動制御では、車両の発進時においては、駆動輪の回転速度が、車両が備える操舵輪の操舵角から得られる旋回半径と、車両に対する要求加速度と、に基づいて求められる目標回転速度となるように、駆動輪へ動力を付与する。これによって、車両が実際に走行していなくても、駆動輪の目標回転速度を設定することができるので、車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御する場合において、車両が発進する場合に駆動輪を適切に制御することができる。その結果、車両を発進させ、また、車両の挙動を適切に制御することができるので、ドライバビリティの低下を抑制できる。次に、車両の走行時における駆動制御を説明する。
【0114】
(車両の走行時における駆動制御)
図7は、本実施形態に係る駆動制御のうち、車両の走行時における駆動制御の手順を示すフローチャートである。本実施形態に係る走行時における駆動制御は、車両が備える駆動輪の回転速度は、車両が走行しようとしている軌跡を表すことから、車両の姿勢は駆動輪の回転速度によって決定されることに着目して完成されたものである。
【0115】
本実施形態に係る走行時における駆動制御は、上述した駆動制御装置30によって実現できる。本実施形態に係る走行時における駆動制御は、ステップS201〜ステップS209を含んでおり、RETURNに到達したらSTARTへ戻るようになっている。そして、STARTからRETURNに到達したら、制御を1回終了したとカウントする。本実施形態に係る駆動制御を実行するにあたり、ステップS201において、駆動制御装置30の制御条件判定部31は、図1に示す車両1が旋回中であるか否かを判定する。
【0116】
本実施形態に係る駆動制御は、上述したように、車両1の車両重心旋回半径ρ、前外輪旋回半径ρfo、後内輪旋回半径ρri等に基づいて各駆動輪の目標とする回転速度を求めるので、車両1が非旋回である場合には、本実施形態に係る駆動制御は実行されない。車両1が旋回中であるか否かは、例えば、操舵角センサ43から取得される車両1の操舵輪の操舵角δの大きさから判定することができる。例えば、判定時における操舵角δ_nが0でない場合、あるいは操舵角δ_nが所定の角度よりも大きい場合には、車両1は旋回中であると判定することができる。
【0117】
ステップS201でNoと判定された場合、すなわち、制御条件判定部31が、車両1は旋回中でないと判定した場合、本実施形態に係る駆動制御を実行せずSTARTに戻り、制御条件判定部31は、車両1の走行状態の監視を継続する。ステップS201でYesと判定された場合、すなわち、制御条件判定部31が、車両1は旋回中であると判定した場合、制御条件判定部31は、ステップS201の判定時における操舵角δ_nと、前回の判定時における操舵角δ_lとを比較する。
【0118】
ステップS202でNoと判定された場合、すなわち、制御条件判定部31が、δ_n=δ_lでないと判定した場合、車両1は旋回中であり、かつ、車両1の旋回半径が変化する、過渡状態であると判定できる。この場合、車両1の各駆動輪の回転速度が、上記式(1)〜(14)を用いて演算した車両1の各駆動輪の目標回転速度となるように、車両1の各駆動輪へ付与する動力を制御する。
【0119】
車両1の各駆動輪の目標回転速度を演算するにあたり、ステップS203において、駆動制御装置30の目標回転速度演算部32は、演算に用いる車両1の操舵角δを、ステップS201の判定時における操舵角δ_nとする。次に、ステップS204において、目標回転速度演算部32は、車両1のセンサ類から、目標回転速度の演算に必要な情報を取得する。そして、目標回転速度演算部32は、上記式(1)〜(6)を用いて各駆動輪の旋回半径ρfo、ρfi、ρro、ρriを演算し、また、各駆動輪の実際の回転速度ω_n(ω_nfo、ω_nfi、ω_nro、ω_nri)を演算する。そして、ステップS205において、目標回転速度演算部32は、ステップS204で演算した各駆動輪の旋回半径、及び式(7)〜式(14)を用いて、各駆動輪の目標回転速度ω(ωfo、ωfi、ωro、ωri)を演算する。
【0120】
次に、ステップS206において、駆動制御装置30の出力決定部33は、ステップS204で演算された各駆動輪の実際の回転速度ω_nklと、ステップS205で演算された各駆動輪の目標回転速度ωklとの偏差(以下回転速度偏差という)Δωkl(=|ω_nkl−ωkl|)を演算する。なお、本実施形態において、回転速度偏差は、ω_nklとωklとの差の絶対値で表す。そして、ステップS207において、出力決定部33は、ステップS206で演算した、各駆動輪の回転速度偏差Δωklが0になるように、各駆動輪へ付与する動力を演算する。すなわち、各駆動輪を駆動する動力発生手段(本実施形態では電動機)の出力を演算する。
【0121】
本実施形態においては、ステップS206で演算した各駆動輪の回転速度偏差Δωklに基づき、出力決定部33は、各駆動輪の回転速度偏差Δωklが0になるような各駆動輪を駆動する電動機の駆動電流値Iを演算する。各駆動輪を駆動する電動機の駆動電流値Iは、各駆動輪の駆動力に比例するので、各駆動輪の回転速度偏差Δωklが0になるような駆動電流値Iで、前記電動機を駆動すれば、各駆動輪の回転速度偏差Δωklが0になる。したがって、各駆動輪の回転速度偏差Δωが0になるような駆動電流値Iを演算すれば、各駆動輪の回転速度偏差Δωklが0になるような各駆動輪の動力(駆動力)を演算することになる。
【0122】
ステップS208において、駆動制御装置30の出力制御部34は、ステップS207において演算された、各駆動輪を駆動する電動機の駆動電流値Iで、各駆動輪を駆動する。これによって、各駆動輪の回転速度偏差Δωklが0になるように各駆動輪へ動力が与えられ、各駆動輪は目標回転速度で駆動される。
【0123】
ステップS202でYesと判定された場合、すなわち、制御条件判定部31が、δ_n=δ_lであると判定した場合、車両1は旋回中であり、かつ、車両1の旋回半径は変化しない、定常状態であると判定できる。この場合、ステップS209において、目標回転速度演算部32は、車両1のセンサ類から取得した情報に基づき、各駆動輪の実際の回転速度ω_nklを演算する。なお、車両1の旋回半径が変化していないため、目標回転速度ωは、前回の判定時における値を用いる。
【0124】
次に、ステップS206において、出力決定部33は、ステップS209で演算された各駆動輪の実際の回転速度ω_nklと、前回のステップS205で演算された各駆動輪の目標回転速度ωklとの回転速度偏差Δωklを演算する。そして、ステップS207において、出力決定部33は、ステップS206で演算した各駆動輪の回転速度偏差Δωklが0になるような各駆動輪を駆動する電動機の駆動電流値Iを演算し、ステップS208において、出力制御部34は、ステップS207において演算された、各駆動輪を駆動する電動機の駆動電流値Iで、各駆動輪を駆動する。
【0125】
上述した車両の走行時における駆動制御では、駆動輪の実際の回転速度が、例えば、車両の走行半径と車両の速度とに基づいて設定した目標回転速度となるように、駆動輪に動力が付与される。このように、走行時における車両の姿勢や挙動に影響の大きい駆動輪の回転速度が目標回転速度となるように制御するので、路面の摩擦状態変化のような外乱が生じても、車両の姿勢変化や挙動変化を最小限に抑制できる。その結果車両の走行安定性低下を抑制しつつ、予定した車両の旋回性能を発揮できる。
【0126】
各駆動輪の駆動力が目標の駆動力となるような駆動制御では、ヨーセンサやスリップ角センサ等の車両の走行姿勢や走行状態を検出するセンサがない場合、目標とする車両の姿勢とするための駆動力を決定することは極めて困難であり、車両に対する外乱が発生した場合には、車両の安定性を低下させてしまうことがある。これは、車両の走行姿勢や走行状態を検出するセンサがないため、駆動輪の駆動力を変更した結果、車両の姿勢がどのようになっているかを把握できず、その結果、車両の姿勢が不安定になるからである。
【0127】
しかし、上述した車両の走行時における駆動制御では、行時における車両の姿勢や挙動に影響の大きい駆動輪の回転速度が、車両の走行半径と車両の速度とに基づいて設定した目標回転速度となるように、駆動輪に付与する動力をフィードバック制御する。これによって、ヨーセンサやスリップ角センサ等のような車両の走行姿勢や走行状態を検出するセンサを用いなくとも、車両の旋回性能を向上できるとともに、外乱に対する安定性を向上できる。このように、上述した車両の走行時における駆動制御では、車両へ既に搭載されているセンサ類を利用することができ、ヨーセンサやスリップ角センサ等のような高価なセンサ類が不要になるので、製造コストを低減できるという利点もある。
【産業上の利用可能性】
【0128】
以上のように、本発明に係る走行装置及び駆動制御装置は、車両が備える駆動輪の回転速度を設定した目標回転速度になるように制御することに有用であり、特に、少なくとも2個の駆動輪の駆動力を独立して変更できるものに適している。
【図面の簡単な説明】
【0129】
【図1】本実施形態に係る走行装置を備える車両の構成を示す概略図である。
【図2】本実施形態に係る駆動制御を説明するための模式図である。
【図3−1】本実施形態に係る車両が備える各車輪の関係を説明するための模式図である。
【図3−2】本実施形態に係る車両が備える各車輪の関係を説明するための模式図である。
【図3−3】本実施形態に係る車両が備える各車輪の関係を説明するための模式図である。
【図4】車両の発進時において車両が搭載する電動機に要求されるトルクを求めるための電動機トルクマップの一例を示す模式図である。
【図5】本実施形態に係る駆動制御装置の構成例を示す説明図である。
【図6】本実施形態に係る駆動制御のうち、車両の発進時における駆動制御の手順を示すフローチャートである。
【図7】本実施形態に係る駆動制御のうち、車両の走行時における駆動制御の手順を示すフローチャートである。
【符号の説明】
【0130】
1 車両
2 駆動輪
2fl 左側前輪
2fr 右側前輪
2rl 左側後輪
2rr 右側後輪
2fo 前外輪
2fi 前内輪
2ro 後外輪
2ri 後内輪
4 ハンドル
5 アクセル
6 インバータ
7 車載電源
10fl 左前側電動機
10fr 右前側電動機
10rl 左後側電動機
10rr 右後側電動機
30 駆動制御装置
31 制御条件判定部
32 目標回転速度演算部
33 出力決定部
34 出力制御部
40fl 左前側レゾルバ
40fr 右前側レゾルバ
40rl 左後側レゾルバ
40rr 右後側レゾルバ
42 アクセル開度センサ
43 操舵角センサ
50 ECU
50m 記憶部
50p CPU
60 電動機トルクマップ
100 走行装置

【特許請求の範囲】
【請求項1】
複数の駆動輪を備えるとともに、車両に搭載されて前記車両を走行させるものであり、
少なくとも2個の前記駆動輪に対しては独立して駆動力を変更でき、かつ、前記車両の発進時には、駆動力を変更可能な前記駆動輪の回転速度が、前記車両が備える操舵輪の操舵角から求められる旋回半径と、前記車両に要求される要求加速度とに基づいて求められる目標回転速度となるように、前記駆動輪へ動力を付与することを特徴とする走行装置。
【請求項2】
前記目標回転速度は、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて求めることを特徴とする請求項1に記載の走行装置。
【請求項3】
前記車両が直進状態で発進する場合、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて求めた回転速度を、すべての前記駆動輪の目標回転速度とすることを特徴とする請求項1に記載の走行装置。
【請求項4】
前記駆動輪の動力発生手段は、それぞれの前記駆動輪に対して設けられ、それぞれの前記駆動輪を個別に駆動する電動機であることを特徴とする請求項1〜3のいずれか1項に記載の走行装置。
【請求項5】
複数の駆動輪を備えるとともに、少なくとも2個の駆動輪は独立して駆動力を変更でき、かつ車両に搭載されて前記車両を走行させる走行装置の制御に用いるものであり、
前記車両が発進する際には、前記車両が備える操舵輪の操舵角から求められる旋回半径と、前記車両に要求される要求加速度とに基づいて、独立して駆動力を変更できる前記駆動輪の目標とする目標回転速度を求める目標回転速度演算部と、
前記駆動輪の回転速度が、前記目標回転速度となるように、前記駆動輪へ付与する動力を決定する出力決定部と、
前記出力決定部により決定された動力で、前記駆動輪を駆動する出力制御部と、
を含むことを特徴とする駆動制御装置。
【請求項6】
前記目標回転速度演算部は、
前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて、前記目標回転速度を求めることを特徴とする請求項5に記載の駆動制御装置。
【請求項7】
前記目標回転速度演算部は、
前記車両が直進状態で発進する場合、前記要求加速度から予測される、所定時間経過後における前記車両の速度に基づいて求めた回転速度を、すべての前記駆動輪の目標回転速度とすることを特徴とする請求項5に記載の駆動制御装置。

【図1】
image rotate

【図2】
image rotate

【図3−1】
image rotate

【図3−2】
image rotate

【図3−3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−290535(P2008−290535A)
【公開日】平成20年12月4日(2008.12.4)
【国際特許分類】
【出願番号】特願2007−136880(P2007−136880)
【出願日】平成19年5月23日(2007.5.23)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】