説明

Fターム[3G093EB08]の内容

車両用機関又は特定用途機関の制御 (95,902) | 制御対象(機関以外) (4,752) | 発電機(発電機への伝導系を含む) (1,227)

Fターム[3G093EB08]の下位に属するFターム

Fターム[3G093EB08]に分類される特許

41 - 60 / 527


【課題】制振制御に起因して発生し得る音を小さくしつつ、エンジンの出力トルクに起因して発生し得る振動を低減する。
【解決手段】ECUは、エンジンの出力トルクに応じてモータジェネレータの出力トルクを制御することによって、エンジンの出力トルクに起因した振動を打ち消し、低減する制振制御を、所定時間ΔTの間実行する。停車時にクランキング後において制振制御を実行する時間ΔT1は、走行中にクランキング後において制振制御を実行する時間ΔT2よりも長い。 (もっと読む)


【課題】車載装置を動作させたまま駆動源変更を円滑に可能な車載装置用動力システムを提供する。
【解決手段】エンジン11の動力を駆動軸12から得る第1補助出力軸23と、駆動軸12及び第1補助出力軸23の接続又は解除を行うクラッチ22と、第1補助出力軸23により駆動されるポンプ24と、それにより作動する圧力機器25とを具備する車載装置2に適用される車載装置用動力システム3であって、クラッチ制御部35と、第1補助出力軸23に連結されたモータ41と、エンジン回転速度検出部51と、その検出値を基に制御するエンジン制御部34と、モータ回転速度検出部52と、モータトルク検出部53と、それらからの検出値を基に制御するモータ制御部37と、クラッチ制御部35、エンジン制御部34及びモータ制御部36の各々に指令を出す基本指令部31とを備えるように構成した。 (もっと読む)


【課題】フューエルカットから復帰するときのトルク変動を抑制することができる車両制御装置を提供すること。
【解決手段】圧縮比を可変に制御可能なエンジンと、エンジンと動力を伝達する発電機と、を備え、車両の走行中にエンジンに対する燃料の供給を停止するフューエルカットの実行中に、圧縮比をエンジンの負荷に応じた圧縮比よりも低圧縮側の所定圧縮比とし、かつ発電機による発電を停止し、フューエルカットから復帰してエンジンに対する燃料の供給を再開するとき(S21肯定)に、圧縮比の高圧縮側への変化を規制(S22)し、かつ発電機に発電を行わせる(S23)。 (もっと読む)


【課題】燃料の供給を遮断してエンジンを停止させるときに、バッテリの劣化を抑制しながら、エンジンを迅速に停止させることが可能なハイブリッド車両の駆動制御装置を提供することである。
【解決手段】駆動制御装置30は、排気管24内に設けられた排気ガスを浄化する触媒コンバータ16,17と、排気ガスの空燃比を検知するサブO2センサ26とを備えたハイブリッド車両10に搭載され、燃料の供給を遮断してエンジン11を停止させるときに、エンジン11に対してMG1の発電負荷を加えてエンジン11の回転数を下げる引き下げ手段31と、排気ガスの空燃比がリーン状態となるまで、エンジン11に対するMG1の発電負荷の付与を制限又は禁止する引き下げ制限手段32とを有する。 (もっと読む)


【課題】失火検出をより正確に行う。
【解決手段】内燃機関の運動エネルギを利用して作動し、発電電圧を変更可能な発電機110と、充電電圧が相違する複数のバッテリ102a,103aと、複数のバッテリバッテリ102a,103aのそれぞれに接続される電気負荷バッテリ102b,103bと、内燃機関の回転変動に基づいて失火を検出する検出手段20と、複数のバッテリバッテリ102a,103aのなかで、発電機110を接続することで発電負荷が最も大きくなる一のバッテリを選択する選択手段20と、検出手段20により失火を検出するときに、選択手段により選択される一のバッテリを発電機110に接続すると共に、発電機110の発電電圧を該一のバッテリの充電電圧に合わせて該発電機を作動させる制御手段20と、を備える。 (もっと読む)


【課題】ノッキングの発生を抑制しつつ内燃機関の冷却損失の低減を図ることができる内燃機関の制御装置を提供する。
【解決手段】内燃機関10の制御装置120は、シリンダライナの冷却を確保しつつシリンダヘッドにおける冷却損失の発生を抑制可能な構造を有する火花点火式の内燃機関のクランク軸の回転速度を加速状態と減速状態との間で変更可能な回転速度変更手段30を制御する制御部124を備え、制御部は、内燃機関に対して要求される出力に応じて、膨張行程にあるシリンダ11に配置されたピストンのクランク角が所定の角度のときにクランク軸の回転速度が加速状態または減速状態になるように回転速度変更手段を制御し、所定の角度は、燃焼室に占めるシリンダライナの表面積の割合がシリンダヘッドの表面積の割合よりも大きい角度であることを特徴とする。 (もっと読む)


【課題】大容量のコンデンサ(キャパシタ)等を備えることなく、低コストの構成で車両のバッテリの急放電によるバッテリ寿命の低下を防止する。
【解決手段】制御処理部12の判断部12cにより、バッテリ5の所定時間内の放電量が所定の許容値を超えたか否かを判断し、前記放電量が所定の許容値を超えたと判断された場合に、制御指令部12dにより、オルタネータ10の発電制御を開始してバッテリ5を充電し、電装品の使用開始等によってバッテリ5の急放電が発生したときにオルタネータ10の発電出力によりバッテリ5を充電し、大容量のコンデンサ(キャパシタ)等を備えることなく、低コストの構成でバッテリ寿命の低下を防止する。 (もっと読む)


【課題】歯車機構と、発電機とを一体とすることができ、小型化することができるモータジェネレータ付エンジンを提供する。
【解決手段】エンジンは、エンジン本体7と、エンジン本体7の動力によって発電するモータジェネレータ8とを有する。モータジェネレータ8は、第1のフライホイール81と、フライホイール81と対向して同軸上に配設された第2のフライホイール82と、第1のフライホイール81の回転に対して第2のフライホイール82を逆回転させる遊星歯車機構9とを有する。第1のフライホイール81には、回転軸を中心とする円環状に複数の永久磁石81Cが設けられている。第2のフライホイール82には、回転軸を中心とする円環状に複数のコイル82Bが設けられている。複数の永久磁石81Cと、複数のコイル82Bとは対向している。 (もっと読む)


【課題】停止過程の間の内燃機関の挙動を改善する、内燃機関によって駆動される自動車用電気機器(10)の運転方法を提供する。
【解決手段】内燃機関(1)の停止のために燃料供給が中断される、内燃機関によって駆動される自動車用電気機器(10)の運転方法において、燃料供給の中断の後及び内燃機関の停止過程の間に、電気機器(10)が出力側で少なくとも一時に短絡される。 (もっと読む)


【課題】効率を簡易かつ効果的に向上でき得るフリーピストン式発電機を提供する。
【解決手段】本発明のフリーピストン式発電機10は、ピストン20の少なくとも片側に燃料を燃焼する燃焼室26を有し、当該燃焼室26で燃料を燃焼させた際の燃焼圧力でピストン20を直線移動させるエンジンユニット16と、前記ピストン20の往復運動に伴い発電を行う発電ユニット14と、前記エンジンユニット16および発電ユニット14の駆動を制御する制御部50と、を備える。前記制御部50は、前記ピストン20が最も燃焼室側に位置する上死点近傍でのピストン速度を規定の速度範囲内に保つべく発電負荷を調整する。 (もっと読む)


【課題】急速充電用のDC/DCコンバータを用いず、救援対象車両のバッテリーに適した充電電流を供給可能であり、低コストかつ小型の車両間充電装置を提供する。
【解決手段】バッテリーBATと、インバータINVと、インバータINVにより駆動される車両駆動用のモータMと、バッテリーBATの管理機能,インバータINVの制御機能,他の救援対象車両102のバッテリーBATへの充電制御機能を備えた制御装置CONTと、を備えた救援車両101により、救援対象車両102のバッテリーBATを充電する車両間充電装置において、モータMの中性点とインバータINVの正負直流母線の一方とから出力される充電電流をバッテリーBATに供給し、かつ、バッテリーBATに充電するための制御信号を制御装置CONTと救援対象車両102との間で送受信する標準化されたコネクタ4s,4r、ケーブル5を備える。 (もっと読む)


【課題】目標エンジン動作点を設定し、実エンジン動作点が目標エンジン動作点上を追従するようにインバータ装置を制御することにより、排出ガス低減や燃料消費量の低減を図ることができる電気式ディーゼル動車駆動装置を提供する。
【解決手段】エンジン制御装置においては、インバータ装置の消費電力を含む消費電力合計値「ΣP」26とエンジン動作点「P(n)」28の情報とを比較し、エンジン動作点(消費電力合計値「ΣP」26に対応)がP(n)±δの範囲に収まっていない場合には、エンジン回転数指令部からのエンジン回転数指令値を調整して、エンジン動作点が所望の動作点範囲内(P(n)±δpの範囲内)となるようなエンジン回転数指令調整値「n**」24を生成し、エンジンへ伝達する。エンジン出力の時間応答は、インバータ制御装置へ入力され、インバータ装置の交流電力で駆動する主電動機のトルクを制御する。 (もっと読む)


【課題】変速機構の変速段を切り替える際に、回転電機及び内燃機関の双方により、入力部材の回転速度を変化させるためのトルクを出力させることができる制御装置の実現。
【解決手段】回転電機及び内燃機関を有する駆動力源に駆動連結される入力部材と、車輪に駆動連結される出力部材と、選択された変速段の変速比に応じて入力部材の回転速度を変速して出力部材に伝達する変速機構と、を備えた車両用駆動装置を制御するための制御装置であって、変速段を切り替える際に、入力部材の回転速度を変化させるために駆動力源に出力させるトルクの指令値である回転変化トルク指令値を算出し、回転電機に出力させるトルクの絶対値が所定のしきい値より大きくなると判定した場合は、回転電機及び内燃機関の双方により回転変化トルク指令値に応じたトルクを出力させる制御装置。 (もっと読む)


【課題】ハイブリッド車両において、エンジン始動時の急な加速度変動を抑制する。
【解決手段】ハイブリッド車両に搭載されるECU200は、算出部210と、設定部220と、走行制御部230と、設定部240とを含む。算出部210は、ユーザによる要求パワーPreqを算出する。設定部220は、バッテリ出力制限値Woutを設定する。走行制御部230は、EV走行中にPreqがWout+αに達した時にHV走行に移行させる。設定部240は、Preqに基づいて指令パワーPcomを設定する。この際、設定部240は、基準パワーPbaseに対するPcomの単位時間あたりの変化量を制限する緩変化処理を行なう。設定部240は、通常はPbaseを指令パワー前回値Pcom(n−1)に設定するが、エンジン始動条件の成立時点ではPbaseを実走行パワー前回値Pact(n−1)に切り換える。 (もっと読む)


【課題】出力を安定して供給することができ、しかも排気ガスの熱を好適に回収可能な駆動システムを提供する。
【解決手段】第1内燃機関10と、第2内燃機関20と、第1出力軸71Aおよび第2出力軸71Bと、第2トランスミッション30Bと、第2ワンウェイクラッチ60Bと、第1内燃機関10に燃料を供給する燃料供給手段と、第1内燃機関10の排気ガスを第2内燃機関20に供給する排気ガス供給手段と、第2内燃機関20に水含有液体を供給する水含有液体供給手段と、第2クランク軸22に設けられて力行駆動または回生駆動を行う第3モータジェネレータ110と、第3モータジェネレータ110との間で電力の授受を行うバッテリ103と、要求出力に応じて第3モータジェネレータ110を力行駆動または回生駆動するECU80と、を備える。 (もっと読む)


【課題】ハイブリッド車両において、蓄電装置等の異常により回転電機が駆動できなくなった場合であっても、エンジンの始動を可能にする。
【解決手段】ハイブリッド車両100は、蓄電装置110と、エンジン160と、モータジェネレータ130,135とを備える。モータジェネレータ130,135は、蓄電装置110からの電力を用いて駆動力を生成するとともに、駆動輪150の回転力を用いて発電が可能である。ECU300は、エンジン160およびモータジェネレータ130,135からの駆動力を協調的に制御して車両100を走行させる。ECU300は、蓄電装置110からの電力を供給することができず、かつ、車速が予め定められた基準車速を上回る状態において、エンジン160の始動要求を受けた場合は、モータジェネレータ130において発電動作を行なわせてエンジン160の回転速度を上昇させエンジン160を始動する。 (もっと読む)


【課題】クラッチの接続・非接続にかかわらずフリクションを抑えて回生量を十分に大きくとることができるハイブリッド車両における回生システムを提供する。
【解決手段】エンジン22と、モータ106と、エンジン22からの動力を後輪WRに伝達させるかを切り換えるクラッチ104と、クラッチ104を制御して、該クラッチ104の接続、非接続を行うクラッチアクチュエータ120と、エンジン22及びモータ106の駆動制御を行うとともに、クラッチアクチュエータ120を制御するMG−ECU102とを備えたハイブリッド車両における回生システム100において、MG−ECU102は、クラッチ104が接続の状態の場合は、モータ106を駆動制御してモータ106に回生を行わせるとともに、エンジン22を駆動制御して運転状態にし、クラッチ104が非接続の状態の場合は、モータ106を駆動制御して前記モータ106に回生を行わせる。 (もっと読む)


【課題】吸気温が低く内燃機関から過大なパワーが出力されるために内燃機関の運転を制限する制御を行なう場合に安定して制限する制御から通常の制御に移行させる。
【解決手段】処理ルーチンをN回実行する時間毎にその間に記憶された吸気温Ta(n)のうち最小のものを目標温度Ta*として設定すると共に(S350)、設定用温度Tsetをレートリミット処理により目標温度Ta*とし(S370〜S390)、設定用温度Tsetが閾値Tref未満のときには設定用温度Tsetに基づく制限パワーPlimと制限回転数Nlimの運転領域内でエンジンを運転しながら走行するよう制御し(S420)、設定用温度Tsetが閾値Tref以上のときには定格値としての最大パワーと最大回転数とを制限パワーPlimと制限回転数Nlimとして用いた運転領域内でエンジンを運転しながら走行するよう制御する(S410)。 (もっと読む)


【課題】 コースト走行時に安定した減速を達成可能なハイブリッド車両の制御装置を提供すること。
【解決手段】 エンジンとモータジェネレータとからなる動力源と、動力源と駆動輪との間に介装され、複数の変速段を達成すると共に、1速をワンウェイクラッチの係合により達成する自動変速機と、自動変速機を変速する変速手段と、コースト走行中の減速の時は、動力源により負トルクである目標コーストトルクを発生させ、変速手段により1速へのダウンシフトが終了する前に、目標コーストトルクを0または正トルクとするコーストトルク制御手段と、を備えた。 (もっと読む)


【課題】EV走行領域を拡大する。
【解決手段】動力源としてエンジン1及びモータ2を備えるハイブリッド車両100の制御装置であって、エンジン1の廃熱を回生動力として回生する廃熱回生装置6と、モータ2のみを動力源として走行するEV走行時に、廃熱回生装置6によって回生した回生動力をエンジン1の出力軸13に伝達する回生動力伝達機構(11,12,663)と、を備える。これにより、EV走行時に廃熱回生装置6によって回生した回生動力によってエンジン1の出力軸を空回しさせておくことができる。そのため、モータ2によるクランキングを行うことなくエンジン1を自立始動させることが可能となり、EV走行中にエンジン再始動のための余力を残しておく必要がない。したがって、モータ2のみによって走行できる領域を増大させることができる。 (もっと読む)


41 - 60 / 527