説明

ガスエンジンのガス供給装置

【課題】 燃料ガス圧縮用の専用のガスコンプレッサを不要として燃料ガス圧縮のためのエネルギー損失を低減すると共に構造を簡単化し、また低カロリーガス(低発熱量のガス)燃料を容易に使用可能とし、さらには過給機出口での混合ガスの爆発の可能性を皆無としたガスエンジンのガス供給装置を提供する。
【解決手段】 ガスエンジンにおいて、排気ターボ過給機を、燃料ガスを圧縮する燃料ガスコンプレッサ及び排気ガスのエネルギーにより燃料ガスコンプレッサを駆動する第1タービンをそなえた燃料ガス用過給機と、空気を圧縮する空気コンプレッサ及び排気ガスのエネルギーにより空気コンプレッサを駆動する第2タービンをそなえた空気用過給機とにより構成し、前記燃料ガス用過給機で圧縮された燃料ガスと前記空気用過給機で圧縮された空気とを混合して前記各シリンダに供給するように構成されたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に低カロリーガス(低発熱量のガス)を燃料ガスとして用いるガスエンジンに好適であり、排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気をシリンダ内に供給して着火燃焼せしめるガスエンジンのガス供給装置であって、燃料ガスと空気とを別個の過給機で圧縮するように構成されたガスエンジンのガス供給装置に関する。
【背景技術】
【0002】
希薄燃焼ガスエンジンにおいては、燃料ガスと空気とを所要の空燃比に制御して混合し、この混合ガスをスロットル弁等の混合ガス流量調整手段を備えた給気管を通して、エンジンの燃焼室に供給している。
かかる希薄燃焼ガスエンジンのうち、排気ターボ過給機(以下過給機という)を備えたガスエンジンにおいては、次のような2種類の燃料ガスの供給方法が用いられている。
(1)各シリンダの給気枝管に、ガスコンプレッサによって過給空気圧よりも高圧に加圧された燃料ガスを各シリンダの直前で噴射する。
(2)燃料ガスを過給機入口空気と混合してこの混合気を過給機に供給し、過給機にてこの混合気を圧縮してエンジンに供給する。
【0003】
さらに前記(1)の手段と(2)の手段とを組み合わせた技術として、特許文献1(特開2001−132550号公報)の技術が提供されている。
かかる技術においては、ガスコンプレッサによって加圧された燃料ガスを給気通路のシリンダ入口またはシリンダ内に供給するとともに、前記ガスコンプレッサにて加圧する前の燃料ガスを過給機上流側の空気通路に供給して空気と混合し、この混合気を過給機のコンプレッサで圧縮して給気通路のシリンダ入口またはシリンダ内に供給するようにし、さらに前記シリンダ側給気通路への燃料ガスの直接供給と燃料ガスの過給機上流側空気通路への供給とを切換弁により切換え可能に構成している。
【0004】
【特許文献1】特開2001−132550号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1にて提供されている従来技術にあっては、次のような問題点を有している。
即ち、ガスコンプレッサによって加圧された燃料ガスを給気通路のシリンダ入口またはシリンダ内に供給する直接燃料ガス供給系では、燃料ガスを過給空気圧よりも高圧に圧縮する必要があるが、かかる従来技術の直接燃料ガス供給系にあっては専用のガスコンプレッサを設置しているため、燃料ガスとして炭鉱メタンガス等の低カロリーガス(低発熱量のガス)を用いる場合には、低圧で大流量のガスを圧縮するために大型で大容量のガスコンプレッサを必要とする。
一方、かかる従来技術における、前記ガスコンプレッサにて加圧する前の燃料ガスを過給機上流側の空気通路に供給して空気と混合し、該混合気を過給機のコンプレッサで圧縮して給気通路側に供給する過給機圧縮の混合ガス供給系では、燃料ガスと空気が混合して可燃性が高くなっている混合ガスを過給機で高温、高圧に加圧するため、過給機出口で混合ガスが爆発する危険性を内包している。
【0006】
従って、本発明はかかる従来技術の課題に鑑み、燃料ガス圧縮用の専用のガスコンプレッサを不要として、燃料ガス圧縮のためのエネルギー損失を低減すると共に構造を簡単化し、また低カロリーガス(低発熱量のガス)燃料を容易に使用可能とし、さらには過給機出口での混合ガスの爆発の可能性を皆無としたガスエンジンのガス供給装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明はかかる目的を達成するもので、エンジンからの排気ガスにより駆動される排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気を各シリンダ内に供給して着火燃焼せしめるガスエンジンにおいて、前記排気ターボ過給機を、前記燃料ガスを圧縮する燃料ガスコンプレッサ及び前記排気ガスのエネルギーにより燃料ガスコンプレッサを駆動する第1タービンをそなえた燃料ガス用過給機と、前記空気を圧縮する空気コンプレッサ及び前記排気ガスのエネルギーにより空気コンプレッサを駆動する第2タービンをそなえた空気用過給機とにより構成し、前記燃料ガス用過給機で圧縮された燃料ガスと前記空気用過給機で圧縮された空気とを混合して前記各シリンダに供給するように構成されたことを特徴とする。
【0008】
かかる発明によれば、排気ターボ過給機を、燃料ガスを圧縮する燃料ガスコンプレッサ及び該燃料ガスコンプレッサを駆動する第1タービンをそなえた燃料ガス用過給機と、空気を圧縮する空気コンプレッサ及び該空気コンプレッサを駆動する第2タービンをそなえた空気用過給機との2系統の過給機により構成し、燃料ガス用過給機で圧縮された燃料ガスと空気用過給機で圧縮された空気とを各シリンダの入口に供給するように構成したので、排気ガスのエネルギーを利用して燃料ガスを圧縮することとなって、前記特許文献1にて提供されている従来技術のような、燃料ガスを圧縮するための専用のガスコンプレッサが不要をなり、燃料ガス用過給機の容量を制御することにより、炭鉱メタンガス等の低カロリーガスを用いる場合でも所要のガス圧力を容易に得ることができ、従って、燃料ガスを圧縮するための専用のガスコンプレッサを要することなく、炭鉱メタンガス等の低カロリーガスでの安定運転が可能となる。
【0009】
従ってかかる発明によれば、排気ガスのエネルギーを利用して燃料ガスを圧縮するので、燃料ガス圧縮のためのエネルギー損失を低減でき、また排気ターボ過給機の機能を利用して燃料ガスを圧縮することにより、燃料ガスの圧縮用の専用ガスコンプレッサを設ける場合よりも構造が簡単かつ低コストとなる。
【0010】
また、かかる発明によれば、燃料ガス用過給機の燃料ガスコンプレッサで燃料ガスのみを圧縮し、空気用過給機の空気コンプレッサで空気のみを圧縮して、圧縮燃料ガスと圧縮空気とを各シリンダの入口前で混合して混合気を生成し、該混合気を各シリンダ内に供給するように構成したので、前記燃料ガスコンプレッサでは燃料ガスのみを圧縮するため、前記従来技術のような燃料ガスと空気との混合気を圧縮するものに比べて、過給機出口で燃料ガスが爆発を起こす危険性は殆ど無くなり、エンジンの安全運転を実現できる。
【0011】
そして、かかる発明は、具体的には次のように構成するのが好ましい。
(1)エンジンからの排気通路を、前記燃料ガス用過給機の第1タービン入口に接続される第1タービン側排気通路、及び前記空気用過給機の第2タービン入口に接続される第2タービン側排気通路に分岐し、前記第1タービン側排気通路の通路面積及び第2タービン側排気通路の通路面積を、前記燃料ガス用過給機及び空気用過給機の容量に適合した、異なる通路面積に構成する。
このように構成すれば、燃料ガス用過給機の第1タービンへの排気ガス量と空気用過給機の第2タービンの排気ガス量とに流量差を設けて、燃料ガス用過給機及び空気用過給機
の容量を、必要燃料ガス量及び必要空気量に適応した容量に設定できる。
【0012】
(2)前記燃料ガス用過給機の第1タービン入口に接続される第1タービン側排気通路、及び前記空気用過給機の第2タービン入口に接続される第2タービン側排気通路のいずれか一方または双方に、前記排気通路の通路面積を変化させて前記第1タービンあるいは第2タービンへの排気ガス流量を調整する排気ガス流量調整弁を設けるとともに、前記ガスエンジンの運転条件によって前記排気ガス流量調整弁の開度を制御するコントローラをそなえてなる。
このように構成すれば、排気ガス流量調整弁の開度を制御することにより、燃料ガス用過給機の第1タービンへの排気ガス量、及び空気用過給機の第2タービンの排気ガス量の流量割合を、エンジン負荷、給気圧力、給気温度等のガスエンジンの運転条件によって自在に変化できて、エンジンの運転中、必要燃料ガス量及び必要空気量が常時得られる。
【0013】
(3)前記燃料ガス用過給機の第1タービンと空気用過給機の第2タービンとを排気通路に直列に接続し、前記第1タービンあるいは第2タービンのいずれか一方のタービンを駆動した後の排気ガスで他方のタービンを駆動するように構成する。
このように構成すれば、燃料ガス用過給機用タービンと空気用過給機用タービンとを排気通路に直列に接続して配置することにより、エンジンの排気エネルギーを効率的に利用できる。
【0014】
(4)前記燃料ガス用過給機の第1タービン入口及び前記空気用過給機の第2タービン入口に接続される前記排気通路から前記第1タービン及び第2タービンをバイパスして排気出口側に解放される排気バイパス通路を設けるとともに、該排気バイパス通路を開閉する排気バイパス弁を設け、前記エンジンへの混合気量が目標混合気量になるように前記排気バイパス弁の開度を制御するコントローラをそなえる。
このように構成すれば、エンジンの運転条件により排気バイパス弁の開度を制御することにより、燃料ガス用過給機及び空気用過給機に供給される排気ガス量を当該運転条件に適合した排気ガス量に調整し、エンジンへの混合気量を運転条件毎の所要混合気量に制御でき、空気過剰率をほぼ一定に保持してエンジンを運転することが可能となる。
【0015】
(5)前記燃料ガス用過給機の燃料ガスコンプレッサと前記エンジンの各シリンダとを接続する燃料ガス通路に、前記各シリンダへの燃料ガス流量を調整する燃料ガス量調整弁を設けるとともに、前記ガスエンジンの運転条件によって前記燃料ガス量調整弁の開度を制御するコントローラをそなえてなる。
このように構成すれば、各シリンダの燃料ガス通路に設けた燃料ガス量調整弁によって各シリンダ毎に燃料ガス流量を調整することにより、排気温度や空燃比のシリンダ間のばらつきを少なくすることができる。
【0016】
また本発明は、エンジンからの排気ガスにより駆動される排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気を各シリンダ内に供給して着火燃焼せしめるガスエンジンにおいて、前記排気ターボ過給機は、前記燃料ガスを圧縮する燃料ガスコンプレッサと、前記空気を圧縮する空気コンプレッサと、前記燃料ガスコンプレッサ及び空気コンプレッサに連結されて前記排気ガスのエネルギーにより燃料ガスコンプレッサ及び空気コンプレッサを回転駆動する排気タービンと、前記排気タービンと燃料ガスコンプレッサとの連結軸あるいは前記排気タービンと空気コンプレッサとのとの連結軸のいずれか一方または双方に設置されて前記排気タービンの回転を変速して前記燃料ガスコンプレッサあるいは空気コンプレッサに伝達する変速装置とをそなえたことを特徴とする。
【0017】
かかる発明によれば、1つの排気タービンで、燃料ガスコンプレッサ及び空気コンプレッサを駆動し、かつ排気タービンと燃料ガスコンプレッサとの連結軸あるいは該排気タービンと空気コンプレッサとの連結軸に変速装置を介装することにより、燃料ガスコンプレッサからの燃料ガス量と空気コンプレッサの空気量との流量比、及び燃料ガスコンプレッサからの燃料ガス圧力と空気コンプレッサからの空気圧力との圧力比を、エンジン運転条件によって適正値に調整することが可能となる。
また、1台の排気タービンで、燃料ガスコンプレッサ及び空気コンプレッサを駆動するので、排気タービンの台数が最少限で済み、機器数が少なく構造が簡単になる。
【0018】
かかる発明において、好ましくは、前記排気タービン入口の排気通路から該排気タービンをバイパスして排気出口側に解放される排気バイパス通路を設けるとともに、該排気バイパス通路を開閉する排気バイパス弁を設け、前記エンジンへの混合気量が目標混合気量になるように前記排気バイパス弁の開度を制御するコントローラそなえる。
【0019】
このように構成すれば、1台の排気タービンで、燃料ガスコンプレッサ及び空気コンプレッサを駆動する排気ターボ過給機をそなえたガスエンジンにおいて、エンジンの運転条件により排気バイパス弁の開度を制御することにより、燃料ガス用過給機及び空気用過給機の供給される排気ガス量を当該運転条件に適合した排気ガス量に調整し、エンジンへの混合気量を運転条件毎の所要混合気量に制御でき、空気過剰率をほぼ一定に保持してエンジンを運転することが可能となる。
以上の構成からなるガス供給装置は、ガスエンジン全般に適用できる。
【発明の効果】
【0020】
本発明によれば、排気ターボ過給機を、燃料ガス圧縮用の燃料ガスコンプレッサ及びこれを駆動する第1タービンをそなえた燃料ガス用過給機と、空気圧縮用の空気コンプレッサ及びこれを駆動する第2タービンをそなえた空気用過給機との2系統の過給機により構成し、燃料ガス用過給機で圧縮された燃料ガスと空気用過給機で圧縮された空気とを各シリンダの入口に供給するように構成したことにより、排気ガスのエネルギーを利用して燃料ガスを圧縮することができて、従来技術のような燃料ガス圧縮用の専用のガスコンプレッサが不要をなり、炭鉱メタンガス等の低カロリーガスを用いる場合でも燃料ガス用過給機の容量を制御することにより所要のガス圧力を容易に得ることができ、これにより、燃料ガスを圧縮するための専用のガスコンプレッサを要することなく、炭鉱メタンガス等の低カロリーガスでの安定運転が可能となる。
従って本発明によれば、排気ガスのエネルギーを利用して燃料ガスを圧縮することにより、燃料ガス圧縮のためのエネルギー損失を低減できるとともに、排気ターボ過給機の機能を利用して燃料ガスを圧縮することにより燃料ガスの圧縮用の専用ガスコンプレッサを設ける場合よりも構造が簡単かつ低コストとなる。
【0021】
また、本発明によれば、燃料ガス用過給機の燃料ガスコンプレッサで燃料ガスのみを圧縮し、空気用過給機の空気コンプレッサで空気のみを圧縮して、圧縮燃料ガスと圧縮空気とを各シリンダの入口前で混合して混合気を生成して各シリンダ内に供給するように構成したことにより、前記燃料ガスコンプレッサでは燃料ガスのみを圧縮するため、燃料ガスと空気との混合気を圧縮するもののような、過給機出口で燃料ガスが爆発を起こす危険性は殆ど無くなり、エンジンの安全運転を実現できる。
【0022】
また本発明によれば、燃料ガス圧縮用の燃料ガスコンプレッサと、空気圧縮用の空気コンプレッサとを、1台の排気タービンで回転駆動するとともに、排気タービンと燃料ガスコンプレッサとの連結軸あるいは排気タービンと空気コンプレッサとのとの連結軸のいずれか一方または双方に変速装置とをそなえた構造とすることにより、燃料ガスコンプレッサからの燃料ガス量と空気コンプレッサの空気量との流量比、及び燃料ガスコンプレッサからの燃料ガス圧力と空気コンプレッサからの空気圧力との圧力比を、エンジン運転条件によって適正値に調整することが可能となる。
また、1台の排気タービンで、燃料ガスコンプレッサ及び空気コンプレッサを駆動するので、排気タービンの台数が最少限で済み、機器数が少なく構造が簡単になる。
【発明を実施するための最良の形態】
【0023】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【実施例1】
【0024】
図1は本発明の実施例に係るガスエンジンのガス供給装置の全体構成図である。図1において、1はエンジン(ガスエンジン)、4は該エンジン1のシリンダヘッド、130は該エンジン1に直結駆動される発電機、14はフライホイールである。3は前記各シリンダヘッド4の給気入口に接続される給気枝管、2は後述する空気用過給機51の空気コンプレッサ9の給気出口と前記各給気枝管3とを接続する給気管、90は該給気管2を流れる給気を冷却する給気冷却器である。
5は前記各シリンダヘッドの排気出口に接続される排気管、6は前記各排気管5に接続される排気集合管である。
【0025】
21は燃料ガス入口管である。50は燃料ガス用過給機で、前記燃料ガス入口管21からの燃料ガスを圧縮する燃料ガスコンプレッサ7、及び前記エンジン1からの排気ガスのエネルギーにより燃料ガスコンプレッサ7を直結駆動する第1タービン8をそなえており、該第1タービン8は前記排気集合管6から第1タービン入口通路61を通して導入される排気ガスによって駆動される。
51は空気用過給機で、大気から吸入した空気を圧縮する空気コンプレッサ9、及び前記エンジン1からの排気ガスのエネルギーにより空気コンプレッサ9を直結駆動する第2タービン10をそなえており、該第2タービン10は前記排気集合管6から第2タービン入口通路62を通して導入される排気ガスによって駆動される。
【0026】
30は前記第1タービン入口通路61に設けられて第1タービン8への排気ガス流量を調整する排気ガス流量調整弁である。該排気ガス流量調整弁30は前記第2タービン入口通路62に設けることもでき、また前記第1タービン入口通路61及び第2タービン入口通路62の双方に設けることもできる。
12は排気バイパス通路で、前記排気集合管6の前記第1タービン入口通路61及び第2タービン入口通路62の入口手前部位から分岐されて前記該第1タービン8及び第2タービン10をバイパスし、排出管(図示省略)に接続されている。13は該排気バイパス通路12の通路面積を変化せしめる排気バイパス弁である。
【0027】
210は前記燃料ガスコンプレッサ7のガス出口に接続される燃料ガス管で、該燃料ガス管210は途中でシリンダ毎に分岐されガス供給枝管213となって前記各給気枝管3に接続されている。19は前記燃料ガス管210に設置されて該燃料ガス管210の通路面積即ち燃料ガス流量を制御する過給機側ガス量調整弁、20は前記各ガス供給枝管213に設置されて該各ガス供給枝管213の通路面積即ち燃料ガス流量を制御するシリンダ側ガス量調整弁である。
【0028】
15はエンジン回転数を検出する回転数センサ、013は前記発電機13の負荷つまりエンジン負荷を検出する負荷検出器、17は前記給気管2における給気圧力を検出する給気圧力センサ、18は給気温度を検出する給気温度センサである。
24は回転数コントローラ、23は空燃比コントローラ、22はガス量コントローラで、前記回転数センサ15からのエンジン回転数の検出値は前記回転数コントローラ24及びガス量コントローラ22に入力され、前記負荷検出器013からのエンジン負荷の検出値は空燃比コントローラ23に入力され、前記給気圧力センサ17からの給気圧力の検出値は空燃比コントローラ23及びガス量コントローラ22に入力され、前記給気温度センサ18からの給気温度の検出値は空燃比コントローラ23及びガス量コントローラ22に入力される。
【0029】
前記回転数コントローラ24は、通常の電子ガバナーで、前記回転数センサ15からのエンジン回転数の検出値に基づき各シリンダへの燃料ガス量を算出しこの算出値によって前記各シリンダ側ガス量調整弁20の開度を制御する。
前記空燃比コントローラ23は、前記負荷検出器013からのエンジン負荷の検出値、給気圧力センサ17からの給気圧力の検出値、及び給気温度センサ18からの給気温度の検出値に基づき、後述する手段で前記排気バイパス弁12の開度及び前記排気ガス流量調整弁30の開度を制御する。
前記ガス量コントローラ22は、前記回転数センサ15からのエンジン回転数の検出値、給気圧力センサ17からの給気圧力の検出値、及び給気温度センサ18からの給気温度の検出値に基づき、後述する手段で前記過給機側ガス量調整弁19の開度を制御する。
【0030】
かかるガスエンジンの運転時において、前記空気用過給機51の空気コンプレッサ9で圧縮された空気はエアクーラ90で冷却、降温された後、給気管2を通って各シリンダの給気枝管3内に流入する。
一方、前記ガス供給管21からの燃料ガスは前記燃料ガス用過給機50の燃料ガスコンプレッサ7で圧縮され、燃料ガス管210及び過給機側ガス量調整弁19を通り、各シリンダの各ガス供給枝管213に分岐して、前記各給気枝管3に入り、該給気枝管3内において前記空気コンプレッサ9からの空気に混入され、この混合気が各シリンダ内に送り込まれる。
【0031】
そして、エンジン1の各シリンダからの排気ガスは排気管5を通って排気集合管6で合流された後、第1タービン入口通路61と第2タービン入口通路62とに分流し、該第1タービン入口通路61を通った排気ガスは前記燃料ガス用過給機50の第1タービン8を駆動し、該第2タービン入口通路62を通った排気ガスは前記空気用過給機51の第2タービン10を駆動し、図示しない排出管を経て外部に排出される。
また、前記空燃比コントローラ23からの後述するような制御操作信号によって排気バイパス弁13が開かれると、前記排気集合管6内の排気ガスの一部は前記排気バイパス通路12を通って図示しない排出管に排出される。
【0032】
前記ガス量コントローラ22においては、前記回転数センサ15からのエンジン回転数の検出値、給気圧力センサ17からの給気圧力の検出値、及び給気温度センサ18からの給気温度の検出値に基づき、エンジンの給気圧力、給気温度、及び燃料ガス流量の検出値適合する燃料ガス量を算出し、該燃料ガス量に相当する開度に、前記過給機側ガス量調整弁19の開度を制御する。
【0033】
前記空燃比コントローラ23においては、前記負荷検出器013からのエンジン負荷の検出値、給気圧力センサ17からの給気圧力の検出値、及び給気温度センサ18からの給気温度の検出値に基づき、前記エンジン負荷、給気圧力、給気温度に適合する排気バイパス弁13の開度を算出して、かかる算出開度に該排気バイパス弁13の開度を制御する。
また、前記空燃比コントローラ23においては、エンジン負荷の検出値、給気圧力の検出値、及び給気温度の検出値に基づき、これらの検出値に適合する空燃比、及びこの空燃比になるような前記燃料ガス用過給機50の第1タービン8の排気流量と空気用過給機51の第2タービン10の排気流量との流量比を算出して、この流量比になるように前記排気ガス流量調整弁30の開度を制御する。
【0034】
かかる第1実施例によれば、排気ターボ過給機を、燃料ガスを圧縮する燃料ガスコンプレッサ7及び該燃料ガスコンプレッサ7を駆動する第1タービン8をそなえた燃料ガス用過給機50と、空気を圧縮する空気コンプレッサ9及び該空気コンプレッサ9を駆動する第2タービン10をそなえた空気用過給機51との2系統の過給機により構成し、燃料ガス用過給機50で圧縮された燃料ガスと空気用過給機51で圧縮された空気とを各シリンダの入口に供給するように構成したので、エンジン1の排気ガスのエネルギーを利用して燃料ガスを圧縮することとなって、従来技術のように燃料ガスを圧縮するための専用のガスコンプレッサが不要となり、炭鉱メタンガス等の低カロリーガスを用いる場合でも、燃料ガス用過給機50の容量を制御することにより、所要のガス圧力を容易に得ることができる。これにより、燃料ガスを圧縮するための専用のガスコンプレッサを要することなく、炭鉱メタンガス等の低カロリーガスでの安定運転が可能となる。
【0035】
従ってかかる第1実施例によれば、排気ガスのエネルギーを利用して燃料ガスを圧縮するので、燃料ガス圧縮のためのエネルギー損失を低減でき、また排気ターボ過給機の機能を利用して燃料ガスを圧縮することにより、燃料ガスの圧縮用の専用ガスコンプレッサを設ける場合よりも構造が簡単になりかつ低コストとなる。
【0036】
また、かかる第1実施例によれば、燃料ガス用過給機50の燃料ガスコンプレッサ7で燃料ガスのみを圧縮し、空気用過給機51の空気コンプレッサ9で空気のみを圧縮して、圧縮燃料ガスと圧縮空気とを各シリンダの入口前で混合して混合気を生成し、該混合気を各シリンダ内に供給するように構成したので、前記燃料ガスコンプレッサ7では燃料ガスのみを圧縮するため、前記従来技術のような燃料ガスと空気との混合気を圧縮するものに比べて、過給機出口で燃料ガスが爆発を起こす危険性は殆ど無くなり、エンジンの安全運転を実現できる。
【実施例2】
【0037】
図2は本発明の第2実施例を示す燃料ガス用過給機および空気用過給機の系統図である。
かかる第2実施例は、図1の第1実施例のように、エンジンからの排気通路を、燃料ガス用過給機50の第1タービン8入口に接続される第1タービン側排気通路61、及び空気用過給機51の第2タービン10入口に接続される第2タービン側排気通路62に分岐したうえで、前記第1タービン側排気通路61の通路面積及び第2タービン側排気通路62の通路面積を、前記燃料ガス用過給機50及び空気用過給機51の容量に適合した、異なる通路面積に構成している。
かかる第2実施例によれば、燃料ガス用過給機50の第1タービン8への排気ガス量と空気用過給機51の第2タービン10の排気ガス量とに流量差を設けて、燃料ガス用過給機50及び空気用過給機51の容量を、必要燃料ガス量及び必要空気量に適応した容量に設定できる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【実施例3】
【0038】
図3は本発明の第3実施例を示す図2対応図である。
かかる第3実施例においては、第1実施例に係る図1にも示されているように、燃料ガス用過給機50の第1タービン8入口に接続される第1タービン側排気通路61、及び空気用過給機51の第2タービン10入口に接続される第2タービン側排気通路62に排気ガス流量調整弁30を設け(該排気ガス流量調整弁30は前記第2タービン入口通路62に設けることもでき、また前記第1タービン入口通路61及び第2タービン入口通路62の双方に設けることもできる)、前記空燃比コントローラ23にて、エンジン負荷の検出値、給気圧力の検出値、及び給気温度の検出値に適合する空燃比、及びこの空燃比になるような前記燃料ガス用過給機50の第1タービン8の排気流量と空気用過給機51の第2タービン10の排気流量との流量比を算出し、該空燃比コントローラ23によって前記流量比になるように開度を制御している。
かかる第3実施例によれば、排気ガス流量調整弁30の開度を制御することにより、燃料ガス用過給機50の第1タービン8への排気ガス量、及び空気用過給機51の第2タービン10の排気ガス量の流量割合(流量比)を、エンジン負荷、給気圧力、給気温度等のガスエンジンの運転条件によって自在に変化できて、エンジンの運転中、必要燃料ガス量及び必要空気量が常時得られる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【実施例4】
【0039】
図4は本発明の第4実施例を示す図2対応図である。
かかる第4実施例においては、前記燃料ガス用過給機50の第1タービン8と空気用過給機51の第2タービン10とを排気通路において直列に接続し、前記第1タービン8あるいは第2タービン10のいずれか一方のタービンを駆動した後の排気ガスで他方のタービンを駆動するように構成している。
かかる第4実施例によれば、燃料ガス用過給機50用の第1タービン8と空気用過給機51用の第2タービン10とを排気通路に直列に接続して配置することにより、エンジンの排気エネルギーを効率的に利用できる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【実施例5】
【0040】
図5は本発明の第5実施例を示す図2対応図である。
かかる第5実施例においては、第1実施例に係る図1にも示されているように、燃料ガス用過給機50の第1タービン8入口及び空気用過給機51の第2タービン10入口に接続される排気通路から第1タービン8及び第2タービン10をバイパスして排気出口側に解放される排気バイパス通路12を設けている。
そして、前記空燃比コントローラ23にて、エンジン負荷の検出値、給気圧力の検出値、及び給気温度の検出値等のエンジンの運転条件に適合する空燃比になるような排気バイパス弁13の開度を算出して、かかる算出開度に該排気バイパス弁13の開度を制御する。
かかる第5実施例によれば、エンジンの運転条件により排気バイパス弁13の開度を制御することにより、燃料ガス用過給機50及び空気用過給機51に供給される排気ガス量を当該運転条件に適合した排気ガス量に調整し、エンジンへの混合気量を運転条件毎の所要混合気量に制御でき、空気過剰率をほぼ一定に保持してエンジンを運転することが可能となる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【実施例6】
【0041】
図6は本発明の第6実施例を示す図2対応図である。
かかる第6実施例においては、燃料ガスを圧縮する燃料ガスコンプレッサ7と、空気を圧縮する空気コンプレッサ9と、前記燃料ガスコンプレッサ7及び空気コンプレッサ9に連結されて該燃料ガスコンプレッサ7及び空気コンプレッサ9を回転駆動する1台の排気タービン8aとを備え、前記排気タービン8aと燃料ガスコンプレッサ7との連結軸310に前記排気タービン8aの回転を変速(増速あるいは減速)して前記燃料ガスコンプレッサ7に伝達する変速装置31を設けている。尚、前記変速装置31は排気タービン8aと空気コンプレッサ9との連結軸311に設けてもよく、あるいは前記連結軸310及び連結軸311の双方に設けてもよい。
【0042】
かかる第6実施例によれば、1つの排気タービン8aで、燃料ガスコンプレッサ7及び空気コンプレッサ9を駆動し、かつ排気タービン8aと燃料ガスコンプレッサ7との連結軸310あるいは該排気タービン8aと空気コンプレッサ9との連結軸311に変速装置31を介装することにより、燃料ガスコンプレッサ7からの燃料ガス量と空気コンプレッサ9からの空気量との流量比、及び燃料ガスコンプレッサ7からの燃料ガス圧力と空気コンプレッサからの空気圧力との圧力比を、エンジン運転条件によって適正値に調整することが可能となる。
また、1台の排気タービン8aで、燃料ガスコンプレッサ7及び空気コンプレッサ9を駆動するので、排気タービン8aの台数が最少限で済み、機器数が少なく構造が簡単になる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【実施例7】
【0043】
図7は本発明の第7実施例を示す図2対応図である。
かかる第7実施例においては、前記第6実施例に加えて、排気タービン8a入口の排気通路から該排気タービン8aをバイパスして排気出口側に解放される排気バイパス通路12を設けるとともに、該排気バイパス通路12を開閉する排気バイパス弁13を設けている。
そして、前記空燃比コントローラ23にて、エンジン負荷の検出値、給気圧力の検出値、及び給気温度の検出値等のエンジンの運転条件に適合する空燃比になるような排気バイパス弁13の開度を算出して、かかる算出開度に該排気バイパス弁13の開度を制御する。
【0044】
かかる第7実施例によれば、1台の排気タービン8aで、燃料ガスコンプレッサ7及び空気コンプレッサ9を駆動する排気ターボ過給機をそなえたガスエンジンにおいて、エンジンの運転条件により排気バイパス弁13の開度を制御することにより、燃料ガス用過給機50及び空気用過給機51(図1参照)に供給される排気ガス量を当該運転条件に適合した排気ガス量に調整し、エンジンへの混合気量を運転条件毎の所要混合気量に制御でき、空気過剰率をほぼ一定に保持してエンジンを運転することが可能となる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【実施例8】
【0045】
図8は本発明の第8実施例を示す図2対応図である。
かかる第8実施例においては、第1実施例に係る図1にも示されているように、燃料ガス用過給機50の燃料ガスコンプレッサ7から燃料ガス管210を通してシリンダ毎のガス供給枝管213II分岐し、各シリンダの燃焼室36に接続される燃料ガス通路の、給気枝管3との合流部位の上流側に、前記各シリンダへの燃料ガス流量を調整するシリンダ側燃料ガス量調整弁20を設けて、該シリンダ側燃料ガス量調整弁20の開度を前記回転数コントローラ24により制御するように構成している。35はピストンである。
かかる第8実施例によれば、各シリンダの燃料ガス通路に設けたシリンダ側燃料ガス量調整弁20によって各シリンダ毎に燃料ガス流量を調整することにより、排気温度や空燃比のシリンダ間のばらつきを少なくすることができる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
【産業上の利用可能性】
【0046】
本発明によれば、燃料ガス圧縮用の専用のガスコンプレッサを不要として燃料ガス圧縮のためのエネルギー損失を低減可能となると共に構造が簡単化され、また低カロリーガス(低発熱量のガス)燃料が容易に使用可能なり、さらには過給機出口での混合ガスの爆発の可能性が皆無となったガスエンジンを提供できる。
【図面の簡単な説明】
【0047】
【図1】本発明の第1実施例に係るガスエンジンのガスエンジンのガス供給装置の全体構成図である。
【図2】本発明の第2実施例を示す燃料ガス用過給機および空気用過給機の系統図である。
【図3】本発明の第3実施例を示す図2対応図である。
【図4】本発明の第4実施例を示す図2対応図である。
【図5】本発明の第5実施例を示す図2対応図である。
【図6】本発明の第6実施例を示す図2対応図である。
【図7】本発明の第7実施例を示す図2対応図である。
【図8】本発明の第8実施例を示す図2対応図である。
【符号の説明】
【0048】
1 エンジン(ガスエンジン)
2 給気管
3 給気枝管
6 排気集合管
7 燃料ガスコンプレッサ
8 第1タービン
9 空気コンプレッサ
10 第2タービン
7a 排気タービン
12 排気バイパス通路
13 排気バイパス弁
013 負荷検出器
15 回転数センサ
17 給気圧力センサ
18 給気温度センサ
19 過給機側ガス量調整弁
20 シリンダ側ガス量調整弁
21 燃料ガス入口管
22 ガス量コントローラ
23 空燃比コントローラ
24 回転数コントローラ
31 変速装置
30 排気ガス流量調整弁
50 燃料ガス用過給機
51 空気用過給機
61 第1タービン入口通路
62 第2タービン入口通路
210 燃料ガス管
213 ガス供給枝管

【特許請求の範囲】
【請求項1】
エンジンからの排気ガスにより駆動される排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気を各シリンダ内に供給して着火燃焼せしめるガスエンジンにおいて、前記排気ターボ過給機を、前記燃料ガスを圧縮する燃料ガスコンプレッサ及び前記排気ガスのエネルギーにより燃料ガスコンプレッサを駆動する第1タービンをそなえた燃料ガス用過給機と、前記空気を圧縮する空気コンプレッサ及び前記排気ガスのエネルギーにより空気コンプレッサを駆動する第2タービンをそなえた空気用過給機とにより構成し、前記燃料ガス用過給機で圧縮された燃料ガスと前記空気用過給機で圧縮された空気とを混合して前記各シリンダに供給するように構成されたことを特徴とするガスエンジンのガス供給装置。
【請求項2】
前記エンジンからの排気通路を、前記燃料ガス用過給機の第1タービン入口に接続される第1タービン側排気通路、及び前記空気用過給機の第2タービン入口に接続される第2タービン側排気通路に分岐し、前記第1タービン側排気通路の通路面積及び第2タービン側排気通路の通路面積を、前記燃料ガス用過給機及び空気用過給機の容量に適合した、異なる通路面積に構成したことを特徴とする請求項1記載のガスエンジンのガス供給装置。
【請求項3】
前記燃料ガス用過給機の第1タービン入口に接続される第1タービン側排気通路、及び前記空気用過給機の第2タービン入口に接続される第2タービン側排気通路のいずれか一方または双方に、前記排気通路の通路面積を変化させて前記第1タービンあるいは第2タービンへの排気ガス流量を調整する排気ガス流量調整弁を設けるとともに、前記ガスエンジンの運転条件によって前記排気ガス流量調整弁の開度を制御するコントローラをそなえてなることを特徴とする請求項1記載のガスエンジンのガス供給装置。
【請求項4】
前記燃料ガス用過給機の第1タービンと空気用過給機の第2タービンとを排気通路に直列に接続し、前記第1タービンあるいは第2タービンのいずれか一方のタービンを駆動した後の排気ガスで他方のタービンを駆動するように構成したことを特徴とする請求項1記載のガスエンジンのガス供給装置。
【請求項5】
前記燃料ガス用過給機の第1タービン入口及び前記空気用過給機の第2タービン入口に接続される前記排気通路から前記第1タービン及び第2タービンをバイパスして排気出口側に解放される排気バイパス通路を設けるとともに、該排気バイパス通路を開閉する排気バイパス弁を設け、前記エンジンへの混合気量が目標混合気量になるように前記排気バイパス弁の開度を制御するコントローラをそなえたことを特徴とする請求項1記載のガスエンジンのガス供給装置。
【請求項6】
前記燃料ガス用過給機の燃料ガスコンプレッサと前記エンジンの各シリンダとを接続する燃料ガス通路に、前記各シリンダへの燃料ガス流量を調整する燃料ガス量調整弁を設けるとともに、前記ガスエンジンの運転条件によって前記燃料ガス量調整弁の開度を制御するコントローラをそなえてなることを特徴とする請求項1記載のガスエンジンのガス供給装置。
【請求項7】
エンジンからの排気ガスにより駆動される排気ターボ過給機を備え、燃料ガス通路を通して供給される燃料ガスと空気とを混合し、この混合気を各シリンダ内に供給して着火燃焼せしめるガスエンジンにおいて、前記排気ターボ過給機は、前記燃料ガスを圧縮する燃料ガスコンプレッサと、前記空気を圧縮する空気コンプレッサと、前記燃料ガスコンプレッサ及び空気コンプレッサに連結されて前記排気ガスのエネルギーにより燃料ガスコンプレッサ及び空気コンプレッサを回転駆動する排気タービンと、前記排気タービンと燃料ガスコンプレッサとの連結軸あるいは前記排気タービンと空気コンプレッサとのとの連結軸のいずれか一方または双方に設置されて前記排気タービンの回転を変速して前記燃料ガスコンプレッサあるいは空気コンプレッサに伝達する変速装置とをそなえたことを特徴とするガスエンジンのガス供給装置。
【請求項8】
前記排気タービン入口の排気通路から該排気タービンをバイパスして排気出口側に解放される排気バイパス通路を設けるとともに、該排気バイパス通路を開閉する排気バイパス弁を設け、前記エンジンへの混合気量が目標混合気量になるように前記排気バイパス弁の開度を制御するコントローラそなえたことを特徴とする請求項7記載のガスエンジンのガス供給装置。
【請求項9】
請求項1ないし8のいずれかの項に記載のガス供給装置をそなえたガスエンジン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−241979(P2006−241979A)
【公開日】平成18年9月14日(2006.9.14)
【国際特許分類】
【出願番号】特願2005−54287(P2005−54287)
【出願日】平成17年2月28日(2005.2.28)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【出願人】(591178012)財団法人地球環境産業技術研究機構 (153)
【Fターム(参考)】