説明

コプレナ型の酸化物半導体素子とその製造方法

【課題】折り曲げ耐性が向上したコプレナ型の酸化物半導体を提供し、また、コンタクトホールを精巧に形成するコプレナ型の酸化物半導体の製造方法を提供する。
【解決手段】絶縁性を有する基板と、前記基板上に配置され、チャネル領域及び電極接続領域を有する酸化物半導体層と、前記酸化物半導体層上に配置され、コンタクトホールを有するゲート絶縁層と、前記ゲート絶縁層上に配置されたソース電極、ドレイン電極、及びゲート電極と、を有するコプレナ型の酸化物半導体素子であって、前記ゲート絶縁層は、架橋ポリマーで形成されていることを特徴とするコプレナ型の酸化物半導体素子とその製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コプレナ型の酸化物半導体素子とその製造方法に関するものである。
【背景技術】
【0002】
近年、酸化物半導体を用いた酸化物半導体素子の研究が活発に行われている。特許文献1では、In、Ga、Znからなる酸化物(「IGZO」と略す。)の多結晶薄膜を酸化物半導体素子の半導体膜に用いた例が提案され、特許文献2では、IGZOの非晶質薄膜を酸化物半導体素子の半導体膜に用いた例が提案されている。これらのIGZOを半導体膜に用いた酸化物半導体素子は、室温での成膜が可能であり、また、プラスチック基板等の非耐熱性基板に熱ダメージを与えることなく形成が可能であるとされている。
【0003】
酸化物半導体素子の構造は、様々なものが研究されており、例えば、トップゲート型、ボトムゲート型、コプレナ型などが挙げられる。中でも、ソース電極接続領域、ドレイン電極接続領域、及びチャネル領域が同一面内に存在する構造を有しているコプレナ型は、寄生容量が小さいため駆動時の負荷が減り、酸化物半導体素子の動作速度が早いという特長がある。そこで、コプレナ型の酸化物半導体素子では、絶縁層に形成されたコンタクトホールを介してソース電極接続領域及びドレイン電極接続領域が外部の電極と接続されるため、コンタクトホールは素子特性に大きな影響を及ぼすものである。そのため、コプレナ型の酸化物半導体素子の研究においては、絶縁層のコンタクトホールに関する技術開発は特に重要な位置を占めている。
【0004】
従来、コプレナ型の酸化物半導体素子の絶縁層の材料には、誘電率が高い方が好ましいため、もっぱら酸化ケイ素や窒化ケイ素等のケイ素化合物が用いられている(特許文献3)。
【0005】
また、従来、コプレナ型の酸化物半導体素子とその製造方法として種々の手法が各種提案されている。
【0006】
特に、コプレナ型の酸化物半導体素子のコンタクトホールを形成する手法としては、エッチングを用いてコンタクトホールをパターニングする手法が一般的である。その手法は、図3を用いて説明すると次のようなものである。
【0007】
まず、酸化物半導体層上に酸化ケイ素や窒化ケイ素等のケイ素化合物を用いた絶縁層を形成し(図3(3a))、絶縁層上にフォトレジストの層を形成する(図3(3b))。次に、フォトレジストの層を露光し、エッチングすることでレジストマスクを形成する(図3(3c)〜図3(3e))。次いで、絶縁層をエッチングする(図3(3f))。最後に、レジストマスクを除去する(図3(3g))。なお、図3中の口径Xと口径Yの大小関係は、口径X<口径Yとなっている。
【0008】
例えば、特許文献3中の72段落には、絶縁層上に形成されたレジストからなるマスクを用いて絶縁層をエッチングをすることによって、コンタクトホールを形成する方法が開示されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2004―103957号公報
【特許文献2】特開2005−88726号公報
【特許文献3】特開2011−44701号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
上記のようにコプレナ型の酸化物半導体素子の絶縁層の材料にケイ素化合物を用いると、コプレナ型の酸化物半導体素子が折り曲げられたときに、ケイ素化合物は脆性なので、コンタクトホールに欠陥が生じて、素子特性が劣化しやすいという問題がある。
【0011】
また、上記のように、コプレナ型の酸化物半導体素子のコンタクトホールを形成する手法は、一般的に絶縁層上に形成されたレジストからなるマスクを用いて絶縁層をエッチングすることで絶縁層を除去する手法が用いられている。絶縁層上に形成されたレジストからなるマスクを用いて絶縁層をエッチングすることで絶縁層を除去する手法を用いる場合、コンタクトホールの側面にエッチャントが回り込むためにコンタクトホールの口径が大きくなり、また、コンタクトホールの側面に回り込むエッチャントの量にばらつきがあるためコンタクトホールの口径にばらつきが多くなることで、粗雑なコンタクトホールが形成されてしまうという問題がある。コンタクトホールが粗雑であると、種々の問題が発生する。例えば、コンタクトホールを介した配線の電流量がばらつくため半導体素子の特性が不安定になる恐れがある。また、半導体素子をディスプレイに用いたときは開口率が下がるという恐れがある。さらに、絶縁層上に形成されたレジストからなるマスクを用いて絶縁層をエッチングすることで絶縁層を除去する手法では、フォトレジストに係る工程が多くコストが高いという問題がある。
【0012】
本発明は上記問題点に鑑みてなされたものであり、折り曲げ耐性が向上したコプレナ型の酸化物半導体を提供することを目的とするものである。また、コンタクトホールを精巧に形成するコプレナ型の酸化物半導体の製造方法を提供することを目的とするものである。
【課題を解決するための手段】
【0013】
本発明は、上記目的を達成するために、絶縁性を有する基板と、前記基板上に配置され、チャネル領域及び電極接続領域を有する酸化物半導体層と、前記酸化物半導体層上に配置され、コンタクトホールを有するゲート絶縁層と、前記ゲート絶縁層上に配置されたソース電極、ドレイン電極、及びゲート電極と、を有するコプレナ型の酸化物半導体素子であって、前記電極接続領域は、前記チャネル領域の電気抵抗よりも電気抵抗が低い領域であり、前記チャネル領域に隣接して配置されており、前記コンタクトホールは、前記ゲート絶縁層を貫通する孔であり、前記電極接続領域上に配置されており、前記ソース電極及び前記ドレイン電極は、前記コンタクトホールを介して、前記電極接続領域と電気的に接続されており、前記ゲート電極は、前記ソース電極及び前記ドレイン電極から離れて前記チャネル領域上に配置されており、前記ゲート絶縁層は、架橋ポリマーで形成されていることを特徴とするコプレナ型の酸化物半導体素子を提供する。
【0014】
また、本発明は、絶縁性を有する基板を準備する工程と、前記基板上に酸化物半導体層形成用材料を積層することで、酸化物半導体層形成用層を形成する工程、及び前記酸化物半導体層形成用層の一部を活性化処理して電気抵抗を低下させることで、前記酸化物半導体層形成用層にチャネル領域及び前記チャネル領域の電気抵抗よりも電気抵抗が低い電極接続領域を形成する工程、を有する酸化物半導体層の形成工程と、前記酸化物半導体層上にモノマーを含むゲート絶縁層形成用材料を積層することで、ゲート絶縁層形成用層を形成する工程、前記ゲート絶縁層形成用層のチャネル領域上のモノマーを架橋して架橋ポリマーにすることで、ゲート絶縁領域を形成する工程、及び前記ゲート絶縁層形成用層の電極接続領域上のモノマーを除去することで、コンタクトホールを形成する工程、を有するゲート絶縁層の形成工程と、前記コンタクトホールを介して前記電極接続領域と電気的に接続されているソース電極及びドレイン電極を形成する工程、及び
前記ゲート絶縁層のゲート絶縁領域上にゲート電極を形成する工程、を有する電極の形成工程と、を有するコプレナ型の酸化物半導体素子の製造方法を提供する。
【発明の効果】
【0015】
本発明に係るコプレナ型の酸化物半導体素子は、ゲート絶縁層に架橋ポリマーを有しているので、折り曲げられたとしてもコンタクトホールに欠陥が生じにくく、素子の折り曲げ耐性が向上しているという効果を奏する。
【0016】
また、本発明に係るコプレナ型の酸化物半導体素子の製造方法は、コンタクトホールを精巧に形成することができ、さらに、コンタクトホールの形成に係る工程数を削減することができるという効果を奏する。
【図面の簡単な説明】
【0017】
【図1】本発明のコプレナ型の酸化物半導体素子の一例を示す概念図である。
【図2】本発明のコプレナ型の酸化物半導体素子の製造方法の一例を示す概念図である。
【図3】従来のコンタクトホールを形成する工程の一部を示す概念図である。
【発明を実施するための形態】
【0018】
以下、本発明のコプレナ型の酸化物半導体素子とその製造方法について詳細に説明する。
1.コプレナ型の酸化物半導体素子
本発明のコプレナ型の酸化物半導体素子の1実施形態を図1に基づいて説明する。
【0019】
このコプレナ型の酸化物半導体素子は、絶縁性を有する基板1と、前記基板上に配置され、チャネル領域4及び電極接続領域3を有する酸化物半導体層5と、前記酸化物半導体層5上に配置され、コンタクトホール8を有するゲート絶縁層7と、前記ゲート絶縁層上に配置されたソース電極9、ドレイン電極10、及びゲート電極11と、を有するコプレナ型の酸化物半導体素子であって、前記電極接続領域3は、前記チャネル領域4の電気抵抗よりも電気抵抗が低い領域であり、前記チャネル領域3に隣接して配置されており、前記コンタクトホール8は、前記ゲート絶縁層7を貫通する孔であり、前記電極接続領域3上に配置されており、前記ソース電極9及び前記ドレイン電極10は、前記コンタクトホール8を介して、前記電極接続領域3と電気的に接続されており、前記ゲート電極11は、前記ソース電極9及び前記ドレイン電極10から離れて前記チャネル領域4上に配置されており、前記ゲート絶縁層7は、架橋ポリマーで形成されている。
【0020】
本発明に係るコプレナ型の酸化物半導体素子は、ゲート絶縁層に架橋ポリマーを有しているので、折り曲げられたとしてもコンタクトホールに欠陥が生じにくく、素子の折り曲げ耐性が向上している。
【0021】
1−1.基板
基板1は、絶縁性を有し、基板上にコプレナ型の酸化物半導体素子を積層できるものである。
【0022】
1−1−1.基板
基板の材料としては、ガラス、石英、金属、セラミックス、プラスチック等で絶縁性を有すれば特に限定されない。しかし、フレキシブル性を有するデバイスを製造できるため、基板の材料はフレキシブル性を有する材料が好ましい。フレキシブル性を有する材料としては、プラスチックが好ましく、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメタクリレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエステル、ポリカーボネート等が挙げられる。
【0023】
1−1−2.絶縁性
基板が有する絶縁性とは、コプレナ型の酸化物半導体素子の機能に影響が無い程度に基板表面が絶縁性を有していればよい。例えば、ケイ素以上の体積抵抗率以上を有すること、すなわち体積抵抗率が1kΩm以上あることが好ましい。さらに、一般的な多くのプラスチック以上の体積抵抗率以上を有すること、すなわち体積抵抗率が1MΩm以上あることが好ましい。また、基板は、金属性の基板の表面にプラスチック等の絶縁性の材料を配置した構造でもよい。
【0024】
1−2.酸化物半導体層
酸化物半導体層5は、基板上の酸化物半導体層形成用材料、チャネル領域4、及び電極接続領域3で構成される。
【0025】
1−2−1.酸化物半導体層形成用材料
酸化物半導体層形成用材料2としては、InMZnO(MはGa,Al,Feのうち少なくとも1種)を主たる構成元素とするアモルファス酸化物であることが好ましい。中でも、MがGaであるInGaZnO系のアモルファス酸化物が好ましく、この場合、In:Ga:Znの比が1:1:m(m<6)であることが、良好な半導体の特性を得るため好ましい。また、Mgをさらに含む場合においては、In:Ga:Zn1-xMgx の比が1:1:m(m<6)で0<x≦1であることが、良好な半導体の特性を得るため好ましい。なお、酸化物半導体層形成用層2は、酸化物半導体層形成用材料を基板上に形成することで得られる。
【0026】
1−2−2.チャネル領域及び電極接続領域
チャネル領域4とは、酸化物半導体層5の中の後述する電極接続領域3に挟まれた領域のことである。また、電極接続領域3は、チャネル領域4の電気抵抗よりも電気抵抗が低い領域であり、チャネル領域4に隣接して配置された領域のことである。
【0027】
1−3.ゲート絶縁層
ゲート絶縁層7は、酸化物半導体層5上に、架橋ポリマーで形成され、コンタクトホール8を有するものである。ゲート絶縁層7の厚さは、特に限定はないが、酸化物半導体素子を薄くできるため、通常10nm〜250nmの範囲内であることが好ましく、15nm〜80nmの範囲内であることがより好ましい。
【0028】
1−3−1.架橋ポリマーで形成されたゲート絶縁層
本発明のコプレナ型の酸化物半導体素子は、ゲート絶縁層7が架橋ポリマーであることが特徴である。従来のコプレナ型の酸化物半導体素子では、ゲート絶縁層7に脆性のケイ素化合物がもっぱら用いられていたが、本発明のコプレナ型の酸化物半導体素子では、ゲート絶縁層に架橋ポリマーを用いる。ゲート絶縁層7の架橋ポリマーが比較的可とう性が高いので、コプレナ型の酸化物半導体素子が折り曲げられたとしても、ゲート絶縁層7のコンタクトホールに欠陥が生じにくく素子特性が劣化しにくいので、素子の折り曲げ耐性が向上する。
【0029】
ゲート絶縁層の材料としては、架橋ポリマーであれば特に限定されない。三次元網目構造を有する樹脂としては、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂などの材料が挙げられる。樹脂の中でも、ゲート絶縁層のパターニングが容易になるため、ネガ型フォトレジストが特に好ましい。ネガ型フォトレジストとしては、アクリル樹脂にベンゾフェノン類、アントラキノン類などの光開始剤を含有したものなどが挙げられ、市販品としてV−259−PA(新日鉄化学社)、Kayarad INC−116N(日本化薬社)などが挙げられる。なお、架橋ポリマー以外の添加剤が入っていても良い。架橋ポリマー以外の添加剤としては、光硬化性を制御することができる紫外線吸収剤、架橋ポリマーを安定させることができる安定剤、成形性を向上させることができる加工助剤等が好ましく挙げられる。なお、本発明における光硬化性とは、光により硬化する性質のことを意味する。また、本発明における熱硬化性とは、熱により硬化する性質のことを意味する。
【0030】
1−3−2.コンタクトホール
コンタクトホール8は、電極接続領域3がソース電極9及びドレイン電極10に電気的に接続されるために、ゲート絶縁層7に形成され、電極接続領域3の一部上のゲート絶縁層7を貫通した孔である。
【0031】
コンタクトホール8の位置は、コンタクトホールは電極接続領域3がソース電極9及びドレイン電極10に電気的に接続されるために設けるものなので、電極接続領域3の一部上にあれば特に限定されない。
【0032】
本発明のコンタクトホール8の形状は、円柱状、または直方体状等で特に限定はない。また、コンタクトホールの高さは、ゲート絶縁層7の厚さに依存するため、特に限定はない。また、コンタクトホールの口径は、コンタクトホールが大きいと、半導体素子をディスプレイに用いたときは開口率が下がったりするため、30μm以下であることが好ましく、できる限り小さい方が良い。また、コンタクトホールの口径とは、円柱状のコンタクトホールでは貫通孔の両端の円の直径を意味し、直方体状のコンタクトホールでは貫通孔の両端の長方形の辺の長さを意味している。また、コンタクトホールの口径がばらつくと、コンタクトホールを介する電流の電流量がばらつくことで半導体素子が不安定になるので、コンタクトホールの口径はばらつきが少ない方が良い。
【0033】
1−4.電極
ソース電極9及びドレイン電極10は、ゲート絶縁層上に形成され、コンタクトホール8を介して電極接続領域3と電気的に接続されているものである。ゲート電極11は、ゲート絶縁層7上にソース電極9及びドレイン電極10と離れて形成され、チャネル領域4上に配置されているものである。
【0034】
1−4−1.電極
ソース電極9、ドレイン電極10、及びゲート電極11は、導電性を有する材料からなる。導電性を有する材料は、Al、W、Ta、Mo、Cr、Ti、Cu、Au、AlMg、MoW、MoNb等の金属材料;ITO(インジウム錫オキサイド)、酸化インジウム、IZO(インジウム亜鉛オキサイド)、SnO2 、ZnO等の透明導電材料;ポリアニリン、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体のような透明な導電性高分子等を挙げることができる。中でも、コストが低いため、Alが好ましい。
【0035】
コンタクトホール8は、電極接続領域3とソース電極9及びドレイン電極10とを電気的に接続しているものであり、上記のソース電極9、ドレイン電極10、及びゲート電極11の材料と同様な材料を用いることができる。
2.コプレナ型の酸化物半導体素子の製造方法
本発明のコプレナ型の酸化物半導体素子の製造方法の1実施形態を図2に基づいて説明する。
【0036】
このコプレナ型の酸化物半導体素子の製造方法は、絶縁性を有する基板1を準備する工程と、前記基板1上に酸化物半導体層形成用材料を積層することで、酸化物半導体層形成用層2を形成する工程、及び前記酸化物半導体層形成用層2の一部を活性化処理して電気抵抗を低下させることで、前記酸化物半導体層形成用層2にチャネル領域4及び前記チャネル領域の電気抵抗よりも電気抵抗が低い電極接続領域3を形成する工程、を有する酸化物半導体層5の形成工程と、前記酸化物半導体層5上にモノマーを含むゲート絶縁層形成用材料を積層することで、ゲート絶縁層形成用層を形成する工程、前記ゲート絶縁層形成用層のチャネル領域4上のモノマーを架橋して架橋ポリマーにすることで、ゲート絶縁領域を形成する工程、及び前記ゲート絶縁層形成用層の電極接続領域3上のモノマーを除去することで、コンタクトホール8を形成する工程、を有するゲート絶縁層7の形成工程と、前記コンタクトホール8を介して前記電極接続領域と電気的に接続されているソース電極9及びドレイン電極10を形成する工程、及び前記ゲート絶縁層7のゲート絶縁領域上にゲート電極11を形成する工程、を有する電極の形成工程と、を有するものである。
【0037】
本発明によれば、口径の小さいコンタクトホールを有するコプレナ型の酸化物半導体素子を形成することが可能である。また、コプレナ型の酸化物半導体素子の製造工程を簡略にすることができる。
【0038】
2−1.酸化物半導体層の形成工程
本発明における酸化物半導体層の形成工程は、絶縁性を有する基板1を準備する工程、酸化物半導体層形成用層2を形成する工程、並びに酸化物半導体層形成用層2にチャネル領域4及び前記チャネル領域の電気抵抗よりも電気抵抗が低い電極接続領域3を形成する工程を有する工程である。
【0039】
2−1−1.絶縁性を有する基板を準備する工程
絶縁性を有する基板1を準備する工程は、1−1.で説明した絶縁性を有する基板を準備するものである。
【0040】
2−1−2.酸化物半導体層形成用層を形成する工程
酸化物半導体層形成用層2を形成する工程は、酸化物半導体層形成用材料の種類や基板の耐熱性に応じた手段が適用される。例えば、形成手段としてスパッタリング法やCVD法等を適用でき、パターニング手段としてフォトリソグラフィを適用できるが、低温形成が要求される場合には、形成手段としてスパッタリング法やプラズマCVD法を好ましく適用できる。酸化物半導体層形成用層の厚さは、形成条件によって任意に設計されるために一概には言えないが、薄すぎても厚すぎても良好な半導体の特性が出せないため、通常10nm〜150nmの範囲内であることが好ましく、15nm〜100nmの範囲内であることがより好ましい。
【0041】
2−1−3.酸化物半導体層形成用層にチャネル領域4及び前記チャネル領域の電気抵抗よりも電気抵抗が低い電極接続領域3を形成する工程
酸化物半導体層形成用層2にチャネル領域4及び前記チャネル領域の電気抵抗よりも電気抵抗が低い電極接続領域3を形成する工程は、活性化処理により酸化物半導体層形成用層2に電極接続領域3を形成するものである。ここでは、先ず、パターニングされた酸化物半導体層形成用層2を覆うように、感光性レジストを設ける。感光性レジストは市販のものを用いることができる。その後、その感光性レジストをマスク露光し、引き続いて現像して、開口部を有するレジストマスクを形成する。このレジストマスクの開口部は、酸化物半導体層形成用層の電極接続領域となる部分である。その後、活性化処理を行って、開口部の酸化物半導体層形成用層を電極接続領域にする。
【0042】
活性化処理は、酸化物半導体層形成用層の一部を低抵抗化するものであれば特に限定されない。アルゴンガス雰囲気下でプラズマを酸化物半導体層形成用層の一部に照射することや炭素を有するフッ素系ガス雰囲気下でプラズマを酸化物半導体層形成用層の一部に照射することなどが挙げられる。例えば、IGZO系の酸化物半導体層形成用材料で酸化物半導体層形成用層を形成した場合における活性化処理条件としては、CF4 ガス又はCHF3 ガス等の炭素を有するフッ素系ガスを用い、5mW/mm2 程度のRF出力で50sec〜300secの条件を例示できる。なお、同様の効果が得られるガスであれば、炭素を有するフッ素系ガス以外であってもよい。こうすることにより、酸化物半導体層形成用層が有する当初の半導体特性を、導電体特性に変化させることができ、良好な電極接続領域とすることができる。一方、活性化処理されない部分の酸化物半導体層形成用層は、半導体特性のまま保持され、チャネル領域となる。
【0043】
2−2.ゲート絶縁層の形成工程
本発明におけるゲート絶縁層7の形成工程は、ゲート絶縁層形成用層を形成する工程、ゲート絶縁領域を形成する工程、及びコンタクトホール8を形成する工程を有する工程である。
【0044】
2−2−1.ゲート絶縁層形成用層を形成する工程
ゲート絶縁層形成用層を形成する工程は、酸化物半導体層を覆うようにモノマーで形成されたゲート絶縁層形成用層を形成するものである。本発明ではゲート絶縁層形成用層の形成は、特に限定されないが、塗布法、蒸着法等で行われることが好ましい。その中でも、簡単な工程で大量に製造できる塗布法が好ましい。ゲート絶縁層形成用層の材料は、絶縁性を有すれば特に限定されないが、扱いやすくなるため光硬化性又は熱硬化性を有する樹脂が好ましい。光硬化性又は熱硬化性を有する樹脂としては、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂などが挙げられる。
【0045】
ゲート絶縁層形成用層の材料は、絶縁性を有するモノマーであれば特に限定されないが、製造工程を簡略化できるため光硬化性又は熱硬化性を有する樹脂をモノマーとして用いると好ましい。光硬化性又は熱硬化性を有する樹脂としては、各種の樹脂材料を用いることができる。例えば、アクリル系樹脂、フェノール系樹脂、フッ素系樹脂、エポキシ系樹脂、カルド系樹脂、ビニル系樹脂、イミド系樹脂、ノボラック系樹脂等を用いることができる。なお、本発明における光硬化性とは、光により硬化する性質のことを意味する。また、本発明における熱硬化性とは、熱により硬化する性質のことを意味する。
【0046】
ゲート絶縁層形成用層を塗布で形成する場合は、その種類に応じた溶媒に溶解又は/及び分散させて塗布溶液とし、その塗布溶液でゲート絶縁層形成用層を覆うように塗布し、必要に応じ例えば100℃〜150℃等の所定の温度を加えて溶媒除去等を行って、ゲート絶縁層形成用層を形成することができる。溶媒は、材料の種類によって選択されるので、
エステル類、ケトン類、エーテル類、アルコール類、及び芳香族炭化水素類等任意のものを用いることができる。
【0047】
塗布法としては、各種の手段を挙げることができ、スピンコート法、ディップコート法、ダイコート法等を挙げることができる。塗布法で形成したゲート絶縁層形成用層の厚さは、その種類によっても異なるが、通常、0.3μm〜10μmの範囲内である。
【0048】
2−2−2.ゲート絶縁領域を形成する工程
ゲート絶縁領域を形成する工程は、ゲート絶縁層形成用層のチャネル領域上のモノマーを架橋ポリマーにするものである。なお、ゲート絶縁層形成用層のモノマーを架橋ポリマーにする領域は、少なくともチャネル領域上だけであるという意味であり、コンタクトホールを形成する領域以外すべてのモノマーを架橋ポリマーにしても良い。
【0049】
モノマーを架橋ポリマーにする方法は、モノマーの種類によって異なってくるが、光硬化性のモノマーを用いる場合、硬化を引き起こす波長の光をパターン状にゲート絶縁層形成用層に照射すれば良い。熱硬化性のモノマーを用いる場合、硬化を引き起こす温度の熱をパターン状にゲート絶縁層形成用層に加えれば良い。なお、ここでのパターン状とは、モノマーで形成されたコンタクトホールを形成する領域と架橋ポリマーで形成されたコンタクトホールを形成しない領域に分けたパターンを意味する。本発明における硬化とは、モノマーを三次元網目上の架橋ポリマーに変性することを意味する。
【0050】
2−2−3.コンタクトホールを形成する工程
コンタクトホール8を形成する工程は、ゲート絶縁層形成用層の電極接続領域上のモノマーを除去するものである。
【0051】
本発明に係るコンタクトホール8を形成する工程は、従来技術のレジストに相当する架橋ポリマーでゲート絶縁層7が構成されているため、従来技術のレジストマスクを介してゲート絶縁層7をエッチングする工程が無い。従って、コンタクトホール8の口径が大きくなる工程を行う事が無いため、架橋ポリマーで形成されたゲート絶縁層7を有する酸化物半導体素子は口径が小さいコンタクトホール8を有する。また、従来のコンタクトホール8を形成する工程では、エッチングの工程で、コンタクトホール8の側面に回り込むエッチャントの量にばらつきが大きいため、コンタクトホール8の口径にばらつきが大きかった。こちらも上記に従来技術のレジストマスク16を介してゲート絶縁層7をエッチングする工程が無いため、架橋ポリマーで形成されたゲート絶縁層7を有する酸化物半導体素子は口径のばらつきが少ないコンタクトホールを有する
本発明に係るコンタクトホール8を形成する工程は、従来のコンタクトホール8を形成する工程よりも工程数が少ないためコストを削減することができる。具体的には、本発明に係るコンタクトホール8を形成する工程は、従来のコンタクトホール8を形成する工程における、フォトレジストの形成、フォトレジストのパターニング、及びフォトレジストの除去というフォトレジストに係る工程を削減することができる。また、従来のコンタクトホールを形成する工程では、フォトレジストの除去のときにフォトレジストを除去する液体に半導体層が接触するため特性が劣化する可能性があった。しかし、本発明に係るコンタクトホール8を形成する工程では、フォトレジストを除去する液体を用いないため、製造方法全体を通してフォトレジストを除去する液体を半導体層に接触させる回数を減らすことができる。そのため、半導体層の特性が劣化する可能性が減り、歩留まりの向上ができる。
【0052】
パターン状にされたゲート絶縁層形成用層の電極接続領域上のモノマーを除去することで、電極接続領域上に貫通した孔であるコンタクトホールが形成される。ゲート絶縁層形成用層の電極接続領域上のモノマーを除去は、ゲート絶縁層の材料により異なってくるが、エッチャント、現像液、酸性溶液、アルカリ溶液等でゲート絶縁層の材料に適したものを用いれば良い。
【0053】
2−3.電極の形成工程
本発明における電極の形成工程は、コンタクトホールを介して電極接続領域と電気的に接続されているソース電極9及びドレイン電極10を形成する工程、及びゲート絶縁層7のゲート絶縁領域上にゲート電極11を形成する工程を有する工程である。
【0054】
2−3−1.コンタクトホールを介して電極接続領域と電気的に接続されているソース電極及びドレイン電極を形成する工程
コンタクトホールを介して電極接続領域3と電気的に接続されているソース電極9及びドレイン電極10を形成する工程は、ゲート絶縁層7のゲート絶縁領域上にコンタクトホールを介してソース電極9及びドレイン電極10が電極接続領域と電気的に接続するものである。
【0055】
ソース電極9及びドレイン電極10の材料は、1−4−1.で記載した通りである。
【0056】
また、ソース電極9及びドレイン電極10の形成は、電極材料の種類に応じた形成手段とパターニング手段が適用される。例えば、金属材料や透明導電材料でソース電極及びドレイン電極を形成する場合には、形成手段としてスパッタリング法や各種CVD法等を適用でき、パターニング手段としてフォトリソグラフィを適用できる。低温形成が必要な場合には、低温形成可能なスパッタリング法やプラズマCVD法を好ましく適用できる。また、導電性高分子でソース電極及びドレイン電極を形成する場合には、形成手段として真空蒸着法やパターン印刷法等を適用でき、パターニング手段としてフォトリソグラフィを適用できる。ソース電極及びドレイン電極の厚さは、通常、0.05〜0.3μm程度である。
【0057】
2−3−2.ゲート絶縁層のゲート絶縁領域上にゲート電極を形成する工程
ゲート絶縁層7のゲート絶縁領域上にゲート電極11を形成する工程は、ゲート絶縁層のゲート絶縁領域上にゲート電極を形成するものである。
【0058】
ゲート電極の材料は、1−4−1.で記載した通りである。
【0059】
また、ゲート電極11の形成方法は、ソース電極9及びドレイン電極10の形成と同様な方法が用いられる。
【0060】
ソース電極、ドレイン電極、及びゲート電極は、同一材料で同時に形成されることが好ましい。なぜならば、同一材料で同時に形成すれば、製造工程を簡略にすることができるからである。
3.用途
本発明における酸化物半導体素子は、ディスプレイ、オーディオ、白物家電、プリンタ、複写機、スイッチング電源等の様々な電子デバイスに用いることが可能である。特に、ディスプレイにおいて用いられると省エネルギーが可能であるため、電子ブック等に好適に用いられる。
【実施例】
【0061】
以下に実施例を示し、本発明をさらに詳細に説明する。
【0062】
[実施例1]
一辺の長さが150mmの正方形で厚さが0.7mmのガラスを準備した。次に、ガラス上にIGZO膜をスパッタ成膜した。
【0063】
IGZO膜上にポジ型フォトレジストを形成した。フォトレジストをIGZO膜上にスピンコート法で形成した。形成したフォトレジストをホットプレートを用いてベークを行った。ベーク後のレジスト厚は1μmであった。次に、フォトレジストにフォトマスクを介して露光を行った。露光後、フォトレジストの現像を行った。次に、IGZO膜の一部に活性化処理して電極接続領域を作成した。活性化処理を施した後に、アセトンを入れたステンレス製の容器に浸し、5分間超音波で揺動させながらフォトレジストの除去を行った。
【0064】
活性化処理を施した酸化物半導体層上にフォトレジストをスピンコート法で形成し、ベークを行った。ベーク後にフォトマスクを介して露光をし、現像した。次に、酸化物半導体層をエッチング液に180秒間浸し、エッチングした。ステンレス製の容器に入れたアセトンに作製中の半導体素子を浸し、レジストの剥離を行うこととで酸化物半導体層のパターニングをした。
【0065】
酸化物半導体層上にネガ型のフォトレジストのモノマー(新日鐵化学社製のV259−PA)をスピンコートしてゲート絶縁層形成層を形成した。次に、ゲート絶縁層形成用層をベークした。次に、チャネル領域上のフォトレジストにフォトマスクを介して露光を行うことで、フォトレジストのモノマーを架橋ポリマーにしてゲート絶縁領域を作成した。露光後、プラスチック製の容器に入れ入れた現像液中に基板を投入し、現像することでモノマーを除去し、口径が29μm×29μm〜31μm×31μmの立方体状のコンタクトホールを得た。以上により、コンタクトホールを有する絶縁層を形成した。
【0066】
コンタクトホールを有する絶縁層上にTiをDCスパッタ成膜した。次に、レジストを塗布し、フォトマスクを介して露光をしてから現像した。次にTiのエッチングを行うことでソース電極、ドレイン電極、及びゲート電極を形成した。
【0067】
上記の工程により、コプレナ型の酸化物半導体素子を得ることができた。実施例1のコプレナ型の酸化物半導体素子は、コンタクトホールの口径が29μm×29μm〜30μm×30μmであり、コンタクトホールの口径の差が1μmの範囲に収まっている。
【0068】
[比較例]
酸化物半導体層の形成工程までは実施例1と同様に行った。
【0069】
酸化物半導体層上に反応性DCスパッタ法でSiO2を成膜した。ゲート絶縁層形成用層上にレジストを塗布した。塗布後、プリベークを行い、露光をしてから、現像をした。次に、ゲート絶縁層形成用層をRFエッチング装置を用いてエッチングすることで口径が38μm×38μm〜42μm×42μmの立方体状のコンタクトホールを作製した。以上により、コンタクトホールを有するゲート絶縁層を形成した。
【0070】
コンタクトホールを有する絶縁層上にTiをDCスパッタ成膜した。次に、レジストを塗布し、フォトマスクを介して露光をしてから現像した。次にTiのエッチングを行うことでソース電極、ドレイン電極、及びゲート電極を形成した。
【0071】
上記の工程により、コプレナ型の酸化物半導体素子を得た。比較例1のコプレナ型の酸化物半導体素子は、コンタクトホールの口径が38μm×38μm〜42μm×42μmであり、コンタクトホールの口径の差が4μmの範囲内である。
【0072】
上記の実施例1及び比較例1から、 本発明によれば、高精細な口径のコンタクトホール有するコプレナ型の酸化物半導体素子を得ることができることがわかり、さらに、コンタクトホールの形成に係る工程数を削減することができるということがわかる。
【符号の説明】
【0073】
1 … 基板
2 … 酸化物半導体層形成用層
3 … 電極接続領域
4 … チャネル領域
5 … 酸化物半導体層
6 … モノマーで形成されたゲート絶縁層形成用層
7 … 架橋ポリマーで形成されたゲート絶縁層形成用層
8 … コンタクトホール
9 … ソース電極
10 … ドレイン電極
11 … ゲート電極
12 … ゲート絶縁層
13 … 絶縁層
14 … フォトレジストの層
15 … 露光したフォトレジスト(ゲート絶縁領域)
16 … レジストマスク


【特許請求の範囲】
【請求項1】
絶縁性を有する基板と、前記基板上に配置され、チャネル領域及び電極接続領域を有する酸化物半導体層と、前記酸化物半導体層上に配置され、コンタクトホールを有するゲート絶縁層と、前記ゲート絶縁層上に配置されたソース電極、ドレイン電極、及びゲート電極と、を有するコプレナ型の酸化物半導体素子であって、
前記電極接続領域は、前記チャネル領域の電気抵抗よりも電気抵抗が低い領域であり、前記チャネル領域に隣接して配置されており、
前記コンタクトホールは、前記ゲート絶縁層を貫通する孔であり、前記電極接続領域上に配置されており、
前記ソース電極及び前記ドレイン電極は、前記コンタクトホールを介して、前記電極接続領域と電気的に接続されており、
前記ゲート電極は、前記ソース電極及び前記ドレイン電極から離れて前記チャネル領域上に配置されており、
前記ゲート絶縁層は、架橋ポリマーで形成されていることを特徴とするコプレナ型の酸化物半導体素子。
【請求項2】
絶縁性を有する基板を準備する工程と、
前記基板上に酸化物半導体層形成用材料を積層することで、酸化物半導体層形成用層を形成する工程、及び
前記酸化物半導体層形成用層の一部を活性化処理して電気抵抗を低下させることで、前記酸化物半導体層形成用層にチャネル領域及び前記チャネル領域の電気抵抗よりも電気抵抗が低い電極接続領域を形成する工程、
を有する酸化物半導体層の形成工程と、
前記酸化物半導体層上にモノマーを含むゲート絶縁層形成用材料を積層することで、ゲート絶縁層形成用層を形成する工程、
前記ゲート絶縁層形成用層のチャネル領域上のモノマーを架橋して架橋ポリマーにすることで、ゲート絶縁領域を形成する工程、及び
前記ゲート絶縁層形成用層の電極接続領域上のモノマーを除去することで、コンタクトホールを形成する工程、
を有するゲート絶縁層の形成工程と、
前記コンタクトホールを介して前記電極接続領域と電気的に接続されているソース電極及びドレイン電極を形成する工程、及び
前記ゲート絶縁層のゲート絶縁領域上にゲート電極を形成する工程、
を有する電極の形成工程と、
を有するコプレナ型の酸化物半導体素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−222007(P2012−222007A)
【公開日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2011−83239(P2011−83239)
【出願日】平成23年4月5日(2011.4.5)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】