説明

ナビゲーション装置及び、その方法、並びにそのプログラム

【課題】マッチング処理及びセンサ補正の各要求精度を満たし、従来技術に比較して高い精度で車両の現在位置を測定する。
【解決手段】ナビゲーション装置10は、信頼性判定器13と、位置計算器16と、速度計算器15と、センサ部2と、マッチング部4とを備える。信頼性判定器13は、複数のGPS衛星からの各受信無線信号が基準レベルVref1よりも高いとき、当該受信無線信号が位置計算に使用可能と判定し、各受信無線信号が基準レベルVref2よりも高いとき、当該受信無線信号が速度計算に使用可能と判定する。位置計算器16は、位置計算に使用可能と判定された受信無線信号を用いて位置を算出し、速度計算器15は、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する。マッチング部4は、所定の地図データと、センサ部2により算出された速度ベクトルと、位置計算器16により算出された位置とに基づいて、現在位置を算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナビゲーション装置及び、その方法、並びにそのプログラムに関する。特に、GPS(Global Positioning System)等の衛星測位システムからの受信無線信号に基づいて高精度に自車位置を地図上に表示するナビゲーション装置及び、その方法、並びにそのプログラムに関する。
【背景技術】
【0002】
近年、利用者を目的地まで案内する車載用ナビゲーションシステムは、GPS等の衛星測位システムからの受信無線信号に基づいて、位置計算及び速度計算を含む測位計算を行うものが主流となっている。例えば、位置計算は衛星の位置を中心として、衛星からアンテナまでの信号の伝播距離を測定し、その伝播距離を半径とする球の連立方程式を解くことにより算出する。また速度計算は、キャリア信号の測定値から衛星と測位部間のドップラーシフト周波数を算出することにより求める。このようなナビゲーション装置では、衛星測位システムからの受信無線信号に基づいて計算された自車位置及び自車速度は、それぞれ、地図データベースとのマッチング処理、及び自立センサの補正等に使用される。
【0003】
しかし、ビル街等では反射によるマルチパス波の影響を受けるため、衛星からの無線信号の伝播距離を正しく測定できず、測位計算の計算結果に大きな誤差を生じることがあった。その対策として、特許文献1に、ビル街等のマルチパス頻発地域では、各衛星の受信無線信号レベルが予め決められた信号レベル以下である場合、マルチパス波の影響を受けた衛星からの受信無線信号を計算から排除する技術が開示されている。
【0004】
【特許文献1】特開2001−272450号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の技術では、測位計算の信頼性判定のための信号レベルは、車両の現在位置から推測される受信環境に基づいて変更され、マッチング処理及び自立センサの補正については考慮されていなかった。そのため、マッチング処理及びセンサの補正それぞれの処理に対して、測位計算の信頼性判定のための信号レベルが適切でない場合があり、その結果、装置全体としての精度を向上させることが困難であるという問題があった。
【0006】
本発明の目的は、以上の問題点を解決するもので、測位計算の信頼性判定のための信号レベルをマッチング処理及びセンサ補正に対してより適切なものとし、高い精度で自車位置を地図上に表示することが可能なナビゲーション装置及び、その方法、並びにそのプログラムを提供することにある。
【課題を解決するための手段】
【0007】
第1の発明に係るナビゲーション装置は、衛星測位システムからの受信無線信号を用いて、現在位置を地図上に表示するナビゲーション装置において、複数の衛星からの各受信無線信号が第1の基準レベルよりも高いとき、当該受信無線信号が位置計算に使用可能と判定するとともに、複数の衛星からの各受信無線信号が第2の基準レベルよりも高いとき、当該受信無線信号が速度計算に使用可能と判定する信頼性判定手段と、前記信頼性判定手段により、位置計算に使用可能と判定された受信無線信号を用いて位置を算出する位置計算手段と、前記信頼性判定手段により、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する速度計算手段と、少なくとも1つの自立センサからの信号及び前記速度計算手段により算出された速度に基づいて、速度ベクトルを算出するセンサ手段と、所定の地図データと、前記センサ手段により算出された速度ベクトルと、前記位置計算手段により算出された位置とに基づいて、現在位置を算出するマッチング処理を実行するマッチング手段とを備えたことを特徴とする。
【0008】
この構成によれば、受信された無線信号の信号レベルが、当該無線信号が位置計算に利用可能か否かを判定するための第1の基準レベルよりも高いとき、無線信号に基づいて位置計算手段が位置計算を実行し、受信された無線信号の信号レベルが、当該無線信号が速度計算に利用可能か否かを判定するための第2の基準レベルよりも高いとき、受信信号に基づいて速度計算手段が速度計算を実行するので、測位計算の信頼性判定のための信号レベルをマッチング処理及びセンサ補正に対してより適切なものとし、従来技術に比較して高い精度で車両の現在位置を測定できる。
【0009】
また、上記ナビゲーション装置において、前記地図データは道路形状に関する情報を含み、前記マッチング手段は、前記現在位置が前記地図データの道路上に投影されるか否かを判定し、前記信頼性判定手段は、前記マッチング手段が前記現在位置が前記地図データの道路上に投影されると判定されたとき、前記第1の基準レベルを高くするように制御し、前記現在位置が前記地図データの道路上に投影されないと判定されたとき、前記第1の基準レベルを低くするように制御することを特徴とする。
【0010】
この構成によれば、信頼性判定手段は、現在位置と地図データの道路形状との整合性に応じて第1の基準レベルを変更するので、マッチング処理の状況に応じた要求精度で車両の現在位置を測定でき、従来技術に比較してさらに高い精度で車両の現在位置を測定できる。
【0011】
さらに、上記ナビゲーション装置において、前記信頼性判定手段は、前記マッチング手段が前記現在位置が前記地図データの道路上に投影されると判定している期間に応じて、前記第1の基準レベルを変更するように制御することを特徴とする。
【0012】
この構成によれば、測位信頼性判定手段は、現在位置が地図データの道路上に投影されると判定されている期間に応じて第1の基準レベルを変更するので、マッチング処理の安定度に応じた要求精度で車両の現在位置を測定でき、従来技術に比較してさらに高い精度で車両の現在位置を測定できる。
【0013】
またさらに、上記ナビゲーション装置において、前記センサ手段は、算出した速度ベクトルを前記速度計算手段により算出された速度に基づいて補正処理を実行し、前記補正処理の回数及び前記補正処理が行われなかった期間の少なくとも1つに基づいて、センサの学習の度合いを表すセンサ学習レベルを管理し、前記信頼性判定手段は、前記センサ学習レベルに基づいて、前記第2の基準レベルを変更することを特徴とする。
【0014】
この構成によれば、信頼性判定手段は、センサ手段での補正処理の回数及び補正処理が行われなかった期間の少なくとも1つに基づいて第2の基準レベルを変更するので、センサ補正の状況に応じた要求精度で車両の現在位置を測定でき、従来技術に比較してさらに高い精度で車両の現在位置を測定できる。
【0015】
また、上記ナビゲーション装置において、前記信頼性判定手段は、電源投入後所定時間が経過するまでの間、前記第1及び第2の基準レベルをそれぞれ所定のしきい値以下の所定値に保持するように制御することを特徴とする。
【0016】
この構成によれば、信頼性判定手段は、電源投入後所定時間が経過するまでの間、第1の基準レベル及び第2の基準レベルをそれぞれ所定のしきい値以下の所定値に保持するので、初期状態等において精度が低下しても、短時間で精度を向上させることができる。
【0017】
第2の発明に係るナビゲーション方法は、衛星測位システムからの受信無線信号を用いて、現在位置を地図上に表示するナビゲーション方法であって、複数の衛星からの各受信無線信号が第1の基準レベルよりも高いとき、当該受信無線信号が位置計算に使用可能と判定するとともに、複数の衛星からの各受信無線信号が第2の基準レベルよりも高いとき、当該受信無線信号が速度計算に使用可能と判定する信頼性判定ステップと、前記信頼性判定ステップにより、位置計算に使用可能と判定された受信無線信号を用いて位置を算出する位置計算ステップと、前記信頼性判定ステップにより、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する速度計算ステップと、少なくとも1つの自立センサからの信号及び前記速度計算ステップにより算出された速度に基づいて、速度ベクトルを算出するセンサ計算ステップと、所定の地図データと、前記センサ計算ステップにより算出された速度ベクトルと、前記位置計算ステップにより算出された位置とに基づいて、現在位置を算出するマッチング処理を実行するマッチングステップとを備えたことを特徴とする。
【0018】
第3の発明に係るナビゲーションプログラムは、コンピュータによって実行され、衛星測位システムからの受信無線信号を用いて、現在位置を地図上に表示するためのナビゲーションプログラムであって、複数の衛星からの各受信無線信号が第1の基準レベルよりも高いとき、当該受信無線信号が位置計算に使用可能と判定するとともに、複数の衛星からの各受信無線信号が第2の基準レベルよりも高いとき、当該受信無線信号が速度計算に使用可能と判定する信頼性判定ステップと、前記信頼性判定ステップにより、位置計算に使用可能と判定された受信無線信号を用いて位置を算出する位置計算ステップと、前記信頼性判定ステップにより、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する速度計算ステップと、少なくとも1つの自立センサからの信号及び前記速度計算ステップにより算出された速度に基づいて、速度ベクトルを算出するセンサ計算ステップと、所定の地図データと、前記センサ計算ステップにより算出された速度ベクトルと、前記位置計算ステップにより算出された位置とに基づいて、現在位置を算出するマッチング処理を実行するマッチングステップとを含むことを特徴とする。
【発明の効果】
【0019】
本発明に係るナビゲーション装置及び、その方法、並びにそのプログラムによれば、測位計算の信頼性判定のための信号レベルをマッチング処理及びセンサ補正に対してより適切なものとし、高い精度で自車位置を地図上に表示することが可能となる。
【発明を実施するための最良の形態】
【0020】
以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の実施形態において、同様の構成要素については同一の符号を付している。
【0021】
(実施形態)
以下、本発明の一実施形態に係るナビゲーション装置10について、図面を用いて説明する。本実施形態に係るナビゲーション装置10は、GPS(Global Positioning System)衛星からの受信無線信号に基づいて車両の現在位置を測定してユーザに知らせることを目的とする車載用ナビゲーション装置である。
【0022】
GPS衛星測位システムは、一般的に、高度約20000Kmの軌道面で地球を周回し、測位用の無線信号を放送する複数のGPS衛星と、それらGPS衛星を監視する地上局と、GPS衛星から受信無線信号に基づいて位置、速度及び時刻を測定する受信機とで構成されている。GPS衛星は、現在28個打ち上げられており、6つの軌道面をそれぞれ軌道周期約12時間で周回し、地球上どこでもほぼ24時間衛星からの無線信号を受信することができる。以下、このようなGPS衛星測位システムにおいて用いられ、GPS衛星からの無線信号を受信する受信機としてのナビゲーション装置10について説明する。
【0023】
図1は、本実施形態に係るナビゲーション装置10の構成を示すブロック図である。本実施形態に係るナビゲーション装置10は、GPS衛星測位システムからの無線信号を受信して現在位置を測位する。図1において、ナビゲーション装置10は、測位部1と、センサ部2と、地図データベースメモリ3と、マッチング部4と、ディスプレイ5とを備えて構成される。測位部1は、アンテナ11と、信号復調器12と、信頼性判定器13と、速度計算器15と、位置計算器16とを備えて構成される。
【0024】
測位部1は、受信された無線信号の信号レベルが、当該無線信号が位置計算に利用可能か否かを判定するための基準レベルVref1よりも高いとき、無線信号に基づいて位置計算を実行して自車位置を算出するとともに、受信された無線信号の信号レベルが、当該無線信号が速度計算に利用可能か否かを判定するための基準レベルVref2よりも高いとき、受信信号に基づいて速度計算を実行して自車速度を算出する。センサ部2は、角速度センサ22及び車速パルス発生器23からの信号及び算出された自車速度に基づいて、速度ベクトルを算出する。マッチング部4は、所定の地図データと、算出された速度ベクトルと、算出された自車位置とに基づいて、正確な現在位置を特定するようにマッチング処理を実行して現在位置を出力する。
【0025】
ここで、地図データは道路形状に関する情報を含み、マッチング部4は、現在位置が地図データの道路上に投影されるか否かを判定し、測位部1は、現在位置が地図データの道路上に投影されると判定されたとき、基準レベルVref1を高くするように制御し、現在位置が地図データの道路上に投影されないと判定されたとき、基準レベルVref1を低くするように制御する。また、センサ部2は、算出した速度ベクトルを自車速度に基づいて補正処理を実行し、測位部1は、センサ手段による補正処理に基づいて、基準レベルVref2を変更する。さらに、測位部1は、電源投入後所定時間が経過するまでの間、基準レベルVref1及びVref2をそれぞれ所定のしきい値以下の所定値に保持するように制御する。
【0026】
アンテナ11は、GPS衛星からの無線信号を受信する。GPS衛星測位システムにおいて、GPS衛星は、1.57542GHzのL1帯と1.2276GHzのL2帯とを利用して無線信号を放送し、現在L1帯が民生用に利用されている。全てのGPS衛星からの無線信号は、同一のL1帯の周波数を用いて放送されるが、各GPS衛星に固有の擬似ランダムノイズ符号(Pseudo Random Noise:PRN符号)でスペクトラム拡散されるため、同一周波数を用いた場合でも互いに干渉することなくそれぞれ受信できる。L1帯で用いられるPRN符号は1023ビットの符号系列であり、図2に、PRN符号と、それを所定のビットだけシフトした符号とを比較したときの自己相関(信号強度)特性を示す。
【0027】
図2に示すように、2つの符号の位相差が0ビットのとき、つまり2つの符号の位相が完全に一致するとき、自己相関値が最大のピーク値となり、2つの符号の位相差が±1ビット以内のとき、その位相差に比例して相関値が変動し、2つの符号の位相差が+1ビットより大きい、もしくは、2つの符号の位相差が−1ビットよりも小さいとき、相関値はほぼ0に近い値となる。信号復調器12は、無線信号を受信したい衛星のPRN符号と同一のPRN符号(以下、レプリカ信号と言う。)を発生し、そのレプリカ信号を用いて、アンテナ11により受信された無線信号に対して逆拡散処理を行うことで当該無線信号を復調して、信頼性判定器13に出力する。また、信号復調器12は、受信された無線信号の情報データに基づき、発生したレプリカ信号を参照することで、GPS衛星の正確な時刻を取得する。取得された時刻は、信頼性判定器13を介して位置計算器16に出力される。
【0028】
次に、測位部1の各構成について詳しく説明する。信頼性判定器13は、基準レベルメモリ17を備える。基準レベルメモリ17は、信号復調器12により復調された受信無線信号の信号レベルが位置計算器16における位置計算に利用可能か否かを判定するための基準レベルVref1と、信号復調器12により復調された受信無線信号の信号レベルが速度計算器15における速度計算に利用可能か否かを判定するための基準レベルVref2とを格納する。後述するように、信頼性判定器13は、マッチング部4からのマッチング結果に基づいて基準レベルVref1,Vref2を個別に変更する(図4、図5、図6参照)。
【0029】
また、信頼性判定器13は、信号復調器12が復調した受信無線信号の位置計算及び速度計算の信頼性をそれぞれ基準レベルメモリ17に格納された基準レベルVref1,Vref2に基づいて判定する。図2を用いて説明したように、PRN符号の位相とレプリカ信号の位相とが完全に一致しているときに相関値(信号強度)が最大のピーク値となり、PRN符号の位相とレプリカ信号の位相がずれている場合は相関値(信号強度)が上記ピーク値よりも小さくなる。また、周囲のビル等の影響によるマルチパス波は、反射時に一部反射面に吸収されて信号レベルが低下する。そのため、受信無線信号の信号レベルを調べることで、PRN符号の一致度、つまりGPS衛星の時刻の測定誤差や、マルチパス波による影響等を定性的に判定することができる。信頼性判定器13は、受信無線信号の信号レベルが基準レベルVref1を越えているときに、その受信無線信号が位置計算に利用可能であると判断し、位置計算器16に受信無線信号に含まれるデータを出力して位置計算を実行させる。また、信頼性判定器13は、受信無線信号の信号レベルが基準レベルVref2を越えているときに、その受信無線信号が速度計算に利用可能であると判断し、速度計算器15に受信無線信号に含まれるデータを出力して速度計算を実行させる。
【0030】
位置計算器16は、信頼性判定器13において使用できると判定した受信無線信号に含まれるデータを用いて、位置計算を実行して自車位置を算出する。信号復調器12においてレプリカ信号から取得したGPS衛星の正確な時刻情報は、GPS衛星からアンテナの伝播時間だけ遅延することになるため、ナビゲーション装置10が無線信号を受信した瞬間の受信時刻と、レプリカ信号から取得したGPS衛星の送信時刻の差を求め、その差に光速をかけることで無線信号の伝播距離が求められる。また、GPS衛星からの無線受信信号にはそのGPS衛星の詳細な軌道情報が含まれており、レプリカ信号から取得した送信時刻におけるGPS衛星の詳細な位置を算出することができる。このGPS衛星の正確な位置と伝播距離とを用いて、GPS衛星iの位置を中心として伝播距離を半径とする以下の球の方程式を少なくとも3つである複数のGPS衛星について求め、その連立方程式を解くことにより、ナビゲーション装置10のアンテナ11の位置を計算できる。以下の式(1)において、GPS衛星i(i=1,2,…,N;Nは使用する衛星の数)の座標を(Xi,Yi,Zi)とし、ナビゲーション装置10のアンテナ11の座標を(Xr,Yr,Zr)とし、GPS衛星iからナビゲーション装置10のアンテナ11までの伝搬距離をLiとする。位置計算器16は、各衛星i毎にこのように算出した自車位置を含む自車位置データをマッチング部4に送信する。また、位置計算器16は、受信無線信号を使用可能なGPS衛星の数が3より少なく、正確な自車位置を計算できない場合は、計算できなかったことを示す特定の信号を含む自車位置データを送信する。なお、当該明細書において、数式がイメージ入力された墨付き括弧の数番号と、数式が文字入力された大括弧の数式番号とを混在して用いており、また、当該明細書での一連の数式番号として「式(1)」の形式を用いて数式番号を式の最後部に付与して(付与していない数式も存在する)用いることとする。
【0031】
【数1】

【0032】
速度計算器15は、信頼性判定器13において使用できると判定した受信無線信号に含まれるデータを用いて、速度計算を実行して自車速度を算出する。GPS衛星からは、L1帯の固定の周波数で無線信号が放送されるが、GPS衛星の移動とナビゲーション装置10の移動による相対的な位置の変化(速度)により、実際に受信された無線信号のキャリア周波数には最大で±5000Hz程度のドップラーシフト周波数が発生する。従って、速度計算器15は、受信無線信号のキャリア周波数の測定値から、このドップラーシフト周波数を算出することで、GPS衛星とナビゲーション装置10間の相対速度を求めることができる。また、GPS衛星から送られる軌道情報からGPS衛星の正確な速度を算出することができるため、測定した相対速度からGPS衛星の移動速度を除去することで、ナビゲーション装置10の各GPS衛星方向の速度の大きさを算出できる。従って、以下に示す式(2)を、少なくとも3つである複数のGPS衛星について求め、その連立方程式を解くことにより、ナビゲーション装置10のアンテナ11の速度を計算できる。以下の式(2)において、ナビゲーション装置10のアンテナ11の各座標方向速度を(Vx,Vy,Vz)とし、ナビゲーション装置10のアンテナ11からGPS衛星iを見た場合の各座標方向角度を(αi,βi,γi)とし、ドップラーシフト周波数から算出した相対速度をVdopとし、GPS衛星の軌道情報から算出したアンテナ方向速度をVsvとする。速度計算器15は、各衛星毎にこのように算出した自車速度を含む自車速度データをセンサ部2に送信する。また、速度計算器15は、受信無線信号を使用可能なGPS衛星の数が3より少なく、正確な自車速度を計算できない場合は、計算できなかったことを示す特定の信号を含む自車速度データを送信する。
【0033】
【数2】

【0034】
次にセンサ部2の各構成について詳しく説明する。センサ部2は、振動ジャイロ等の角速度センサ22と、車速パルス発生器23と、センサ補正処理部21とを備えることは前述した。角速度センサ22は、車両の相対的な角速度を検出する。車速パルス発生器23は、タイヤの回転等から、車両の速度に応じたパルス信号を出力する。センサ補正処理部21は、角速度センサ22から算出される角速度を積分することにより車両の相対的な角度を求め、車速パルス発生器23から速度を求めることで、車両の速度ベクトルを出力する。なお、初期方位については、速度計算器15で算出された自車速度の変化から推定する。また、一般に、角速度センサ22は温度変化等による影響を受けやすく、角速度センサ22の出力値と、実際の角速度との間には誤差がある。そのため、センサ補正処理部21は、速度計算器15で算出された自車速度の方位変化から求めた角度と、角速度センサ22の出力値を積分した角度とを比較して、角速度センサ22の感度を補正する。また、車速パルス発生器23は、車の種類、タイヤのサイズ、タイヤの空気圧等により、走行距離に対するパルス間隔が異なる。そのため、センサ補正処理部21では、単位時間当たりの車速パルス数を計測し、速度計算器15で算出された自車速度と比較して、1パルス当たりの距離変換係数を補正する。これらの補正は、速度計算器15で算出される自車速度に誤差が含まれる可能性があるため、センサ補正処理部21は、センサの補正回数に基づいて変化してセンサの学習の度合いを表すセンサ学習レベルLsを管理することで段階的に学習するが、詳細は後述する(図3参照)。また、これらの補正は、速度計算器15から受信される自車速度データが、正確に自車速度を計算できなかったことを示す特定の信号を含む場合には行われない。センサ学習レベルLsはマッチング部を介して、測位部1の信頼性判定器13に出力され、基準レベルVref2の変更に用いられる。なお、図1において、自立センサとして角速度センサ22及び車速パルス発生器23のみ図示しているが、それ以外にも2軸又は3軸の加速度センサや地磁気センサ等を備えていてもよい。
【0035】
地図データベースメモリ3は、道路形状や建物形状等に関する情報含む地図データを格納する。マッチング部4は、位置計算器15で算出した自車位置の誤差を補償するために、地図データベースメモリ3に格納されている地図データに含まれる道路形状、センサ部2から出力される速度ベクトルを積分することで求められる相対位置、及び、位置計算器16で求められた自車位置を用いて総合的にマッチング処理を行い、現在位置を地図データ上で特定する。しかし、ビル街等におけるマルチパス波の影響等により位置計算結果が数十mの誤差を含んでしまう可能性がある。このマルチパス波の影響を排除するために、マッチング部4は、上記マッチング処理において特定した現在位置が地図データの道路上に投影されるか否かを判定し、この判定結果を含むマッチング結果を測位部1の信頼性判定器13に出力する。ディスプレイ5は、マッチング部4で決定されたナビゲーション装置の現在位置を地図上に表示する。
【0036】
次に、測位部1の信頼性判定器13における、基準信号レベルVref1,Vref2の変更について詳しく説明する。信頼性判定器13は、マッチング部4からのマッチング結果、及び、センサ補正処理部21からマッチング部4を介して入力されるセンサ学習レベルLsに基づいて、基準信号レベルVref1,Vref2をそれぞれ変更する。基準レベルVref1,Vref2が比較的低く設定された場合、位置計算及び速度計算で利用できるGPS衛星数が増加し、GPS衛星からの無線信号の受信回数に対する位置計算及び速度計算の回数の比(以下、計算確率という。)が大きくなる一方、誤差のあるGPS衛星からの受信無線信号を計算に使用する可能性が高くなるため、一般的に位置計算及び速度計算の精度(以下、計算精度という。)が低下する。反対に、基準レベルVref1,Vref2が比較的高く設定された場合、誤差のあるGPS衛星からの受信無線信号を計算に使用する可能性が低くなり計算精度が向上する一方、位置計算及び速度計算で利用できるGPS衛星数が減少し計算確率が低くなる。例えば、センサ部4では、ナビゲーション装置10を車両に設置した直後においては、初期方位が不明で、角速度センサ22及び車速パルス発生器23の補正も行われていないので、センサ学習レベルLsが低く、センサ補正処理部21が算出する速度ベクトルの誤差が大きい。したがって、後述する図4〜図6に示すように、信頼性判定器13は、センサ学習レベルLsが低いときは、基準レベルVref2を低くすることで、速度計算器15での速度計算の計算確率を高くするように制御して、短時間でセンサ学習レベルLsを向上させる。逆に、センサ学習レベルLsが高いときは、基準レベルVref2を高くすることで、速度計算器15での速度計算の計算精度を高くするように制御して、センサ部2の補正精度を向上させる。また、ナビゲーション装置10を車両に設置した直後においては、自車位置が不明で、マッチングの精度が低下する。従って、信頼性判定器13は、マッチング部4におけるマッチング処理において、現在位置を地図上で特定できたと判定された場合、基準レベルVref1を低くすることで、位置計算器16での位置計算の計算確率を高くするよう制御して、短時間で精度を向上させて、初期位置を決定できるようにする。逆に、マッチング部4におけるマッチング処理において、現在位置を地図上で特定できなかったと判定された場合、基準レベルVref1を高くすることで、位置計算器16での位置計算の計算精度を高くするよう制御して、マッチングの精度を向上させる。
【0037】
なお、以上説明した信頼性判定器13、速度計算器15、位置計算器16、センサ補正処理部21、マッチング部4における各処理は、コンピュータが所定のプログラムを実行することにより実行される。
【0038】
図3、図4、図5、図6を参照して、以上のように構成されたナビゲーション装置における動作を説明する。図3は、センサ補正処理部21におけるセンサ学習レベル更新処理を示すフローチャートである。
【0039】
図3のステップS30Aにおいて、まず、補正計数値CNTを1に初期化し、ステップS30において、測位部1の速度計算器15から自車速度データを受信したか否かが判定され、YESのときはステップS31に進む一方、NOのときはステップS30に戻って処理を繰り返す。ステップS31において、受信した自車速度データが有効であるか否かが判断され、YESのときはステップS32に進む一方、NOのときはステップS34に進む。受信した自車速度データの有効性は、例えば、受信無線信号が使用可能な衛星が3より少なく、速度計算が行えない場合に、そのことを示す特定の信号が速度計算器15から受信されることによって判定し得る。ステップS32において、角速度センサ22及び車速パルス発生器23に対して自立センサ補正処理を実行する。各センサの補正処理については、既に上で述べた。ステップS33において、補正計数値CNTを所定数NUMinc(例えば3)だけ増やす。ステップS34において、補正計数値CNTを所定数NUMdec(例えば1)だけ減ずる。これは、長時間センサ補正処理が行われない状態が続いた場合、センサ誤差が蓄積して大きくなる可能性があるため、補正計数値CNTを減ずるように制御することでセンサ学習レベルLsを下げ、計算確率を上げるように制御するためである。ステップS35において、補正計数値CNTが第1のしきい値TH1(例えば1800)を越えているか否かを判断し、YESのときはステップS37に進む一方、NOのときはステップS36に進む。ステップS36において、補正計数値CNTが第1のしきい値TH1よりも小さい第2のしきい値TH2(例えば900)を越えているか否かを判断し、YESのときはステップS38に進む一方、NOのときはステップS39に進む。ステップS39において、センサ学習レベルLsを所定値Llowに設定した後、ステップS30に戻って処理を繰り返す。ステップS38において、センサ学習レベルLsを所定値Lmidに設定した後、ステップS30に戻って処理を繰り返す。ステップS37において、センサ学習レベルLsを所定値Lhighに設定する。ステップS40において、補正計数値CNTが第1のしきい値TH1よりも大きい上限値CNTMAX(例えば2700)を越えているか否かを判断し、YESのときはステップS41に進む一方、NOのときは処理を終了する。ステップS41において、補正計数値CNTを上限値CNTMAXに設定した後、ステップS30に戻って処理を繰り返す。
【0040】
図4は、信頼性判定器13における基準レベル変更処理を示すフローチャートである。図4のステップS1において、所定期間、例えば1秒間待機する。ステップS2において、基準レベルVref1変更処理を実行する。ステップS3において、基準レベルVref2変更処理を実行した後、ステップS1に戻って処理を繰り返す。
【0041】
図5は、図4におけるステップS2の基準レベルVref1変更処理の詳細を示すフローチャートである。
【0042】
図5のステップS11において、まず、ナビゲーション装置10の電源投入後N分(例えば5分)以内か否かを判断し、YESのときはステップS18に進む一方、NOのときはステップS12に進む。ステップS12において、マッチング状態であるか否かを判断し、YESのときはステップS13に進む一方、NOのときはステップS18に進む。ここで、マッチング状態とは、マッチング部4のマッチング処理において特定した車両の現在位置が地図データの道路上に投影されている状態であることをいう。ステップS18において、マッチング状態であると判定された回数を示すマッチング計数値CNTmを0にリセットする。ステップS19において、電源投入後N分以内は、初期位置が不明である可能性があるので、基準レベルVref1を基準レベル値Vlowに設定し、その後、図4の元のルーチンに戻る。ステップS13において、マッチング計数値CNTmを1だけ増やす。ステップS14において、マッチング計数値CNTmに基づいてマッチング状態の継続時間Tm(以下、マッチング継続時間Tm(分)という)を算出する。マッチング継続時間Tmは、例えば、マッチング計数値CNTmと、図4の基準レベル変更処理のステップS1での待機時間との積を算出することにより求められる。ステップS15において、マッチング継続時間TmがM(例えば5(分))より小さいか否かを判断し、YESのときはステップS17に進む一方、NOのときはステップS16に進む。ステップS17において、基準レベルVref1を基準レベル値Vmidに設定した後、図4の元のルーチンに戻る。ステップS16において、マッチング継続時間TmがM分よりも長い場合は、無線信号の受信状況が良好で安定していると判断し、基準レベルVref1を基準レベル値Vhighに設定し、その後、図4の元のルーチンに戻る。なお、ここで、基準レベル値Vlow,Vmid,Vhighの間には、以下の関係式(3)が成り立つ。基準レベルVref1が高い程、位置計算の計算精度が向上し、基準レベルVref1が低い程、位置計算の計算確率が向上する。
【0043】
[数1]
Vlow<Vmid<Vhigh (3)
【0044】
図6は、図4におけるステップS3の基準レベルVref2変更処理の詳細を示すフローチャートである。
【0045】
図6のステップS21において、まず、電源投入後N分(例えば5分)以内か否かを判断し、YESのときはステップS24に進む一方、NOのときはステップS22に進む。ステップS22において、図3のセンサ学習レベル更新処理において更新されたセンサ学習レベルLsがセンサ学習レベル値Llowと等しいか否かが判断され、YESのときはステップS24に進む一方、NOのときはステップS23に進む。ステップS24において、電源投入後N分以内は、角速度センサ22及び車速パルス発生器23の補正が十分行われておらず、センサ補正処理部21が算出する速度ベクトルの誤差が大きいと判断し、基準レベルVref2を基準レベル値Vlowに設定し、その後、図4の元のルーチンに戻る。ステップS23において、センサ学習レベルLsがセンサ学習レベル値Lmidと等しいか否かが判断され、YESのときはステップS25に進む一方、NOのときはステップS26に進む。ステップS25において、基準レベルVref2を基準レベル値Vmidに設定した後、図4の元のルーチンに戻る。ステップS26において、センサ学習レベルLsが一定レベルまで向上した後は、より正確なセンサ補正値を算出する必要があるため、基準レベルVref2を基準レベル値Vhighに設定し、その後、図4の元のルーチンに戻る。なお、ここでも、図5の基準レベルVref1変更処理と同様に、基準レベル値Vlow,Vmid,Vhighの間には、上記関係式(3)が成り立つ。基準レベルVref2が高い程、速度計算の計算精度が向上し、基準レベルVref2が低い程、速度計算の計算確率が向上する。
【0046】
以上のように構成されたナビゲーション装置10では、センサ部2が要求する速度計算の計算精度とマッチング部4が要求する位置計算の計算精度とが異なる場合、例えば、センサ学習レベルは高いが自車位置が不定である場合には、基準レベルVref2を高く保持したまま、基準レベルVref1を低く設定できる。これにより、角速度センサ22及び車速パルス発生器23の補正の精度を保持しつつ、位置計算の計算確率を上げ、短時間で自車位置を修正でき、マッチング処理の精度を向上させることができる。また、逆に、長時間トンネル等を走行して角速度センサ22及び車速パルス発生器23のセンサ学習レベルLsは低下したが、自車位置は地図データとそれまでの走行軌跡からほぼ正確に特定できる場合には、基準レベルVref1を高く保持したまま、基準レベルVref2を低く設定できる。これにより、自車位置の精度を保持しつつ、速度計算の計算確率を上げ、角速度センサ22及び車速パルス発生器23のセンサ学習レベルLsを短時間で向上させ、センサ補正の精度を向上させることができる。
【0047】
また、センサ部2で算出した各センサの補正値やマッチング部4で求めた車両の現在位置は、通常、ナビゲーション装置10の電源が遮断された場合でも、バックアップ用のメモリ等に保存され、次の電源投入後、メモリから読み出して使用される。しかし、ナビゲーション装置10の電源が遮断されている間に、例えば、立体駐車場におけるターンテーブル等により車両が回転した場合、フェリーなどで車両が移動した場合等には、車両の方位や位置が大きく変化する。そこで、電源投入直後M分以内(例えば5分以内)は、基準レベルVref1,Vref2を共に所定のしきい値以下の所定値に保持し、自車位置及び自車速度の計算確率を上げるように制御して現在位置及びセンサ補正状態の検証を行う。このとき、メモリに保存した位置と新たに計算した位置がある範囲内で一致すれば、基準レベルVref1を高く設定し、また速度計算で算出した速度と自立センサから算出した速度が、ある範囲内で一致すれば基準レベルVref2を高く設定することで、電源遮断期間に車両の方位又は位置が大きく変化した場合にも対応できる。
【0048】
なお、本実施形態において、米国が運用するGPS衛星からの無線信号を受信する場合について説明した。しかし、本発明はこの構成に限らず、ロシアが運用するGLONASS(Global Navigation Satellite System)や欧州が計画しているGalileoシステム等のGPS以外の衛星測位システムにおいて適用してもよい。
【0049】
また、本実施形態において、基準レベルVref1及びVref2の設定値として、ともに同じ基準レベル値Vlow,Vmid,Vhighを用いた。しかし、本発明はこの構成に限らず、基準レベルVref1及びVref2の設定値として、互いに異なる基準レベル値を用いてもよく、また、これらの設定値は3段階に限らず、2段階であっても、4段階以上であってもよい。
【0050】
以上説明したように、本発明に係るナビゲーション装置によれば、GPS衛星から受信された無線信号の信号レベルが、当該無線信号が位置計算に利用可能か否かを判定するための基準レベルVref1よりも高いと信頼性判定器13が判定したとき、位置計算器16は、無線信号に基づいて位置計算を実行して自車位置を算出し、GPS衛星から受信された無線信号の信号レベルが、当該無線信号が速度計算に利用可能か否かを判定するための基準レベルVref2よりも高いと信頼性判定器13が判定したとき、速度計算器15は、受信信号に基づいて速度計算を実行して自車速度を算出するので、測位計算の信頼性判定のための信号レベルをマッチング処理及びセンサ補正に対してより適切なものとし、従来技術に比較して高い精度で車両の現在位置を測定できる。
【0051】
また、マッチング部4は、現在位置が地図データの道路上に投影されるか否かを判定し、信頼性判定器13は、現在位置が地図データの道路上に投影されると判定されたとき、基準レベルVref1を高くするように制御するので、位置計算器16でマルチパス波等による影響を低減した高精度な位置計算を行うことができる。また、現在位置が地図データの道路上に投影されないと判定されたとき、基準レベルVref1を低くするように制御するので、位置計算器16の位置計算の計算確率を上げてすばやく自車位置を修正することができ、初期状態等において精度が低下しても、短時間で精度を向上させることができる。これにより、マッチング処理の状況に応じた要求精度で車両の現在位置を測定でき、従来技術に比較してさらに高い精度で車両の現在位置を測定できる。
【0052】
さらに、信頼性判定器13は、マッチング部4が現在位置が地図データの道路上に投影されると判定している期間に応じて、基準レベルVref1を変更するので、マッチング処理の安定度に応じた要求精度で車両の現在位置を測定でき、従来技術に比較してさらに高い精度で車両の現在位置を測定できる。
【0053】
さらに、センサ部2は、算出した速度ベクトルを自車速度に基づいて補正処理を実行し、信頼性判定器13は、センサ部2による補正処理に基づいて、基準レベルVref2を変更するので、センサ学習レベルLsが高く、精度よくセンサ補正が行われているときは、基準レベルVref2を高く設定することで、速度計算器15で高精度な速度計算を行い、更にセンサ補正精度を向上させることができる。反対に、センサ学習レベルLsが低いときは、基準レベルVref2を低く設定することで、速度計算器15の速度計算の計算確率を上げ、すばやくセンサ学習レベルLsを引き上げることができ、初期状態等において精度が低下しても、短時間で精度を向上させることができる。これにより、センサ補正の状況に応じた要求精度で車両の現在位置を測定でき、従来技術に比較してさらに高い精度で車両の現在位置を測定できる。
【0054】
またさらに、信頼性判定器13は、電源投入後所定時間が経過するまでの間、基準レベルVref1及びVref2をそれぞれ所定のしきい値以下の所定値に保持するように制御するので、位置計算及び速度計算の計算確率を上げることにより、初期状態等において精度が低下しても、短時間で精度を向上させることができる。
【産業上の利用可能性】
【0055】
以上詳述したように、本発明に係るナビゲーション装置及び、その方法、並びにそのプログラムによれば、測位計算の信頼性判定のための信号レベルをマッチング処理及びセンサ補正に対してより適切なものとし、高い精度で自車位置を地図上に表示することが可能となる。本発明に係るナビゲーション装置及び、その方法、並びにそのプログラムは、例えばGPS衛星測位システムを利用した車載用ナビゲーション装置に利用できる。
【図面の簡単な説明】
【0056】
【図1】本発明の一実施形態に係るナビゲーション装置の構成を示すブロック図である。
【図2】本発明の一実施形態で用いる一般的なPRN符号の自己相関を示す特性図である。
【図3】図1の信頼性判定器13における基準レベル変更処理を示すフローチャートである。
【図4】図3のフローチャートにおけるステップS1の基準レベルVref1変更処理を示すフローチャートである。
【図5】図3のフローチャートにおけるステップS2の基準レベルVref2変更処理を示すフローチャートである。
【図6】図1のセンサ補正処理部21におけるセンサ学習レベル更新処理を示すフローチャートである。
【符号の説明】
【0057】
1…測位部、
2…センサ部、
3…地図データベースメモリ、
4…マッチング部、
5…ディスプレイ、
10…ナビゲーション装置、
11…アンテナ、
12…信号復調器、
13…信頼性判定器、
15…速度計算器、
16…位置計算器、
21…センサ補正処理部、
22…角速度センサ、
23…車速パルス発生器。

【特許請求の範囲】
【請求項1】
衛星測位システムからの受信無線信号を用いて、現在位置を地図上に表示するナビゲーション装置において、
複数の衛星からの各受信無線信号が第1の基準レベルよりも高いとき、当該受信無線信号が位置計算に使用可能と判定するとともに、複数の衛星からの各受信無線信号が第2の基準レベルよりも高いとき、当該受信無線信号が速度計算に使用可能と判定する信頼性判定手段と、
前記信頼性判定手段により、位置計算に使用可能と判定された受信無線信号を用いて位置を算出する位置計算手段と、
前記信頼性判定手段により、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する速度計算手段と、
少なくとも1つの自立センサからの信号及び前記速度計算手段により算出された速度に基づいて、速度ベクトルを算出するセンサ手段と、
所定の地図データと、前記センサ手段により算出された速度ベクトルと、前記位置計算手段により算出された位置とに基づいて、現在位置を算出するマッチング処理を実行するマッチング手段とを備えたことを特徴とするナビゲーション装置。
【請求項2】
前記地図データは道路形状に関する情報を含み、
前記マッチング手段は、前記現在位置が前記地図データの道路上に投影されるか否かを判定し、
前記信頼性判定手段は、前記マッチング手段が前記現在位置が前記地図データの道路上に投影されると判定されたとき、前記第1の基準レベルを高くするように制御し、前記現在位置が前記地図データの道路上に投影されないと判定されたとき、前記第1の基準レベルを低くするように制御することを特徴とする請求項1記載のナビゲーション装置。
【請求項3】
前記信頼性判定手段は、前記マッチング手段が前記現在位置が前記地図データの道路上に投影されると判定している期間に応じて、前記第1の基準レベルを変更するように制御することを特徴とする請求項2記載のナビゲーション装置。
【請求項4】
前記センサ手段は、算出した前記速度ベクトルを前記速度計算手段により算出された速度に基づいて補正処理を実行し、前記補正処理の回数及び前記補正処理が行われなかった期間の少なくとも1つに基づいて、センサの学習の度合いを表すセンサ学習レベルを管理し、
前記信頼性判定手段は、前記センサ学習レベルに基づいて、前記第2の基準レベルを変更することを特徴とする請求項1乃至3のいずれかに記載のナビゲーション装置。
【請求項5】
前記信頼性判定手段は、電源投入後所定時間が経過するまでの間、前記第1及び第2の基準レベルをそれぞれ所定のしきい値以下の所定値に保持するように制御することを特徴とする請求項1乃至3のいずれかに記載のナビゲーション装置。
【請求項6】
衛星測位システムからの受信無線信号を用いて、現在位置を地図上に表示するナビゲーション方法であって、
複数の衛星からの各受信無線信号が第1の基準レベルよりも高いとき、当該受信無線信号が位置計算に使用可能と判定するとともに、複数の衛星からの各受信無線信号が第2の基準レベルよりも高いとき、当該受信無線信号が速度計算に使用可能と判定する信頼性判定ステップと、
前記信頼性判定ステップにより、位置計算に使用可能と判定された受信無線信号を用いて位置を算出する位置計算ステップと、
前記信頼性判定ステップにより、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する速度計算ステップと、
少なくとも1つの自立センサからの信号及び前記速度計算ステップにより算出された速度に基づいて、速度ベクトルを算出するセンサ計算ステップと、
所定の地図データと、前記センサ計算ステップにより算出された速度ベクトルと、前記位置計算ステップにより算出された位置とに基づいて、現在位置を算出するマッチング処理を実行するマッチングステップとを備えたことを特徴とするナビゲーション方法。
【請求項7】
コンピュータによって実行され、衛星測位システムからの受信無線信号を用いて、現在位置を地図上に表示するためのナビゲーションプログラムであって、
複数の衛星からの各受信無線信号が第1の基準レベルよりも高いとき、当該受信無線信号が位置計算に使用可能と判定するとともに、複数の衛星からの各受信無線信号が第2の基準レベルよりも高いとき、当該受信無線信号が速度計算に使用可能と判定する信頼性判定ステップと、
前記信頼性判定ステップにより、位置計算に使用可能と判定された受信無線信号を用いて位置を算出する位置計算ステップと、
前記信頼性判定ステップにより、速度計算に使用可能と判定された受信無線信号を用いて速度を算出する速度計算ステップと、
少なくとも1つの自立センサからの信号及び前記速度計算ステップにより算出された速度に基づいて、速度ベクトルを算出するセンサ計算ステップと、
所定の地図データと、前記センサ計算ステップにより算出された速度ベクトルと、前記位置計算ステップにより算出された位置とに基づいて、現在位置を算出するマッチング処理を実行するマッチングステップとを含むことを特徴とするナビゲーションプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−39454(P2008−39454A)
【公開日】平成20年2月21日(2008.2.21)
【国際特許分類】
【出願番号】特願2006−210685(P2006−210685)
【出願日】平成18年8月2日(2006.8.2)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】