説明

ニュートンリング防止フィルム及びタッチパネル

【課題】抵抗膜方式タッチパネルにおけるニュートンリングの発生を有効に抑制できるニュートンリング防止フィルムを提供する。
【解決手段】1又は複数のポリマーと1又は複数の硬化性樹脂前駆体と溶媒とを含む液相から、前記溶媒の蒸発に伴うスピノーダル分解により、複数のポリマー同士、ポリマーと硬化性樹脂前駆体、又は複数の硬化性樹脂前駆体同士が相分離構造を形成し、前記樹脂前駆体を硬化させてアンチニュートンリング層を形成することによりニュートンリング防止フィルムを製造する。このフィルムは、前記アンチニュートンリング層が、表面に凹凸構造を有しており、入射光を等方的に透過して散乱し、かつ散乱光強度の極大値を示す散乱角が0.1〜10°であるとともに、全光線透過率が70〜100%である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、抵抗膜方式タッチパネルで発生するニュートンリングを防止又は抑制するためのフィルム、このフィルムを備えたタッチパネル用電極基板及びタッチパネルに関する。
【背景技術】
【0002】
近年、マンマシンインターフェースとしての電子ディスプレイの進歩に伴い、対話型の入力システムが普及し、なかでもタッチパネル(座標入力装置)をディスプレイと一体化した装置がATM(現金自動受払機)、商品管理、アウトワーカー(外交、セールス)、案内表示、娯楽機器などで広く使用されている。液晶ディスプレイなどの軽量・薄型ディスプレイでは、キーボードレスにでき、その特長が生きることから、モバイル機器にもタッチパネルが使用されるケースが増えている。タッチパネルは、位置検出の方法により、光学方式、超音波方式、静電容量方式、抵抗膜方式などに分類できる。これらのうち、抵抗膜方式は、構造が単純で価格/性能比も優れるため、近年、急速に普及している。
【0003】
抵抗膜方式のタッチパネルは、対向する側に透明電極を有する2枚のフィルム又は板を一定間隔で保持して構成されている電気部品である。その作動方式は、一方の透明電極を固定した上で、視認側からペン又は指で他方の透明電極を押圧し、撓ませて、固定した透明電極と接触、導通することにより、検出回路が位置を検知し、所定の入力がなされる。このような作動方式において、ペン又は指で電極を押圧する際、押圧している指やペンなどのポインティング治具の周辺に、干渉による虹模様(いわゆる、「ニュートンリング」と呼ばれる干渉色又は干渉縞)が現れることがあり、画面の視認性を低下させる。詳しくは、2枚の透明電極が接触するか又は接触のために撓み、対向する2枚の透明電極の間隔が可視光の波長程度(約0.5μm)となったときに、2枚の透明電極に挟まれた空間で反射光の干渉を生じ、ニュートンリングが発生する。このようなニュートンリングの発生は、抵抗膜方式のタッチパネルの原理上、不可避の現象である。
【0004】
このようなタッチパネルにおけるニュートンリングを軽減する対策として、透明電極を形成する支持体フィルムの表面に凹凸構造を形成する方法が提案されている。特公平5−54207号公報(特許文献1)には、一定間隔で形成された光伝送平行層の層間に、3〜100μm程度の不導体粒子を介在させて、ニュートンリングの発生を回避する装置が開示されている。
【0005】
また、特開平11−250764号公報(特許文献2)及び特開平7−169367号公報(特許文献3)には、透明プラスチックフィルム又はガラス基板の表面に対して、エンボス又はエッチング加工や、透明無機微粒子を含有させる方法により、所定の表面粗さを有する凹凸構造を形成した抵抗膜式透明タッチパネルが開示されている。
【0006】
さらに、特開平8−281856号公報(特許文献4)、特開平9−272183号公報(特許文献5)、特開平10−323931号公報(特許文献6)及び特開2002−373056号公報(特許文献7)にも、サンドブラストやエンボス加工、フィラーや顔料を含む樹脂溶液をコーティングする方法により、表面に凹凸構造を形成した透明導電フィルムが開示されている。
【0007】
しかし、従来の方法は、いずれも機械的に凹凸構造を形成する方法や、フィラーを用いる方法であるため、得られるフィルム表面の凹凸構造は、局部的な段差が発生するなど、均一性が低い。また、ニュートンリング防止効果はあっても、光散乱性が充分でなく、表示装置の視認性を有効に向上できない。さらに、このようなフィルムは、強度や剛性も充分でなく、長期間に亘り繰り返し使用すると、タッチパネルとしての機能、性能及び耐久性が低下する。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特公平5−54207号公報(特許請求の範囲)
【特許文献2】特開平11−250764号公報(特許請求の範囲、段落[0040]〜[0044])
【特許文献3】特開平7−169367号公報(特許請求の範囲)
【特許文献4】特開平8−281856号公報(特許請求の範囲、段落[0009])
【特許文献5】特開平9−272183号公報(特許請求の範囲、段落[0011])
【特許文献6】特開平10−323931号公報(特許請求の範囲)
【特許文献7】特開2002−373056号公報(特許請求の範囲、段落[0009])
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、本発明の目的は、抵抗膜方式タッチパネルにおけるニュートンリングの発生を有効に抑制できるニュートンリング防止フィルム、このフィルムを備えた抵抗膜方式タッチパネル用電極基板及びタッチパネルを提供することにある。
【0010】
本発明の他の目的は、ニュートンリングの発生を抑制でき、かつギラツキが抑制された鮮明な画像を表示できるニュートンリング防止フィルム、このフィルムを備えた抵抗膜方式タッチパネル用電極基板及びタッチパネルを提供することにある。
【0011】
本発明のさらに他の目的は、繰り返し使用してもニュートンリング防止効果が低下せず、耐久性に優れるニュートンリング防止フィルム、このフィルムを備えた抵抗膜方式タッチパネル用電極基板及びタッチパネルを提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは、前記課題を達成するため鋭意検討した結果、1又は複数のポリマーと、1又は複数の硬化した硬化性樹脂前駆体とで構成され、かつ相分離構造を有するアンチニュートンリング層を、抵抗膜方式タッチパネルの電極基板に利用すると、抵抗膜方式タッチパネルにおけるニュートンリングの発生を有効に抑制できることを見いだし、本発明を完成した。
【0013】
すなわち、本発明のニュートンリング防止フィルムは、1又は複数のポリマーと、1又は複数の硬化した硬化性樹脂前駆体とで構成され、かつ相分離構造を有するアンチニュートンリング層を含む。前記アンチニュートンリング層は、表面に凹凸構造を有しており、入射光を等方的に透過して散乱し、かつ散乱光強度の極大値を示す散乱角が0.1〜10°であるとともに、全光線透過率が70〜100%である。前記アンチニュートンリング層は、全光線透過率が80〜100%であり、0.5mm幅の光学櫛を用いた写像性測定器で測定した透過像鮮明度が60〜100%であり、かつヘイズが1〜20%であるアンチニュートンリング層で構成されていてもよい。前記アンチニュートンリング層は、複数のポリマー同士、ポリマーと硬化性樹脂前駆体、又は複数の硬化性樹脂前駆体同士を液相からのスピノーダル分解により相分離した構造であってもよい。前記ポリマーは、液相からのスピノーダル分解により相分離可能な複数のポリマーで構成されるとともに、複数のポリマーのうち、少なくとも1つのポリマーが、硬化性樹脂前駆体の硬化反応に関与する官能基を有し、かつ硬化性樹脂前駆体が、複数のポリマーのうち、少なくとも一種のポリマーと相溶性を有していてもよい。液相からのスピノーダル分解により相分離する複数のポリマーは、セルロース誘導体と、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂及びポリエステル系樹脂から選択された少なくとも一種の樹脂とで構成されるとともに、前記ポリマーのうち少なくとも1つのポリマーが、重合性基を有していてもよい。前記硬化性樹脂前駆体は、少なくとも2つの重合性不飽和結合を有する多官能単量体で構成されていてもよい。前記アンチニュートンリング層は、ポリマーと硬化性樹脂前駆体とを5/95〜60/40(重量比)の割合で含んでいてもよい。前記アンチニュートンリング層は透明支持体上に形成されていてもよい。
【0014】
本発明には、抵抗膜方式タッチパネルの電極基板であって、前記ニュートンリング防止フィルムのアンチニュートンリング層の上に透明導電層が形成された電極基板も含まれる。この電極基板において、アンチニュートンリング層の散乱光強度の極大値を示す散乱角は0.5〜2°であり、かつヘイズは1〜10%であってもよい。また、アンチニュートンリング層は、セルロース誘導体と、重合性基を有する(メタ)アクリル系樹脂と、3以上の(メタ)アクリロイル基を有する硬化性化合物と、フッ素含有硬化性化合物とで構成されていてもよい。この電極基板は、透明支持体が透明プラスチックフィルムで構成され、かつ指又は押圧部材と接触する側の上部電極基板であってもよい。
【0015】
また、本発明には、前記電極基板を備える抵抗膜方式タッチパネルも含まれる。さらに、本発明には、前記電極基板を用いて抵抗膜方式タッチパネルにおけるニュートンリングの発生を防止する方法も含まれる。
【発明の効果】
【0016】
本発明では、相分離により、規則的で均一性が高く、なだらかな凹凸構造が形成されているため、抵抗膜方式タッチパネルにおけるニュートンリングの発生を有効に抑制できる。また、ニュートンリングの発生を抑制できるだけでなく、ギラツキが抑制された鮮明な画像も表示できる。すなわち、抵抗膜方式タッチパネルにおけるアンチニュートンリング性と、表示装置の表示部における視認性とを両立できる。さらに、抵抗膜方式タッチパネルの電極基板として、繰り返し使用してもニュートンリング防止効果が低下せず、耐久性に優れる。例えば、ITOなどの金属酸化物で透明導電層が形成されていても、打鍵耐久性に優れ、繰り返し打鍵しても、透明導電層の割れや損傷を抑制できる。
【図面の簡単な説明】
【0017】
【図1】図1は、ニュートンリング防止フィルムの光透過散乱特性(透過散乱光の角度分布)を測定するための装置を示す概略図である。
【図2】図2は、本発明のタッチパネルの一例を示す概略断面図である。
【図3】図3は、実施例1〜4で得られたニュートンリング防止フィルムの散乱角度と散乱光強度との関係を示すグラフである。
【図4】図4は、実施例1で得られたニュートンリング防止フィルムの表面のレーザー顕微鏡写真である。
【図5】図5は、実施例1で得られたニュートンリング防止フィルムの打鍵試験における打鍵開示時の波形を示すグラフである。
【図6】図6は、実施例1で得られたニュートンリング防止フィルムの打鍵試験における打鍵50万回後の波形を示すグラフである。
【図7】図7は、実施例1で得られたニュートンリング防止フィルムの打鍵試験における打鍵100万回後の波形を示すグラフである。
【図8】図8は、実施例2で得られたニュートンリング防止フィルムの表面のレーザー顕微鏡写真である。
【図9】図9は、実施例3で得られたニュートンリング防止フィルムの表面のレーザー顕微鏡写真である。
【図10】図10は、比較例1で得られたニュートンリング防止フィルムの打鍵試験における打鍵開示時の波形を示すグラフである。
【図11】図11は、比較例1で得られたニュートンリング防止フィルムの打鍵試験における打鍵50万回後の波形を示すグラフである。
【図12】図12は、比較例1で得られたニュートンリング防止フィルムの打鍵試験における打鍵100万回後の波形を示すグラフである。
【発明を実施するための形態】
【0018】
[ニュートンリング防止フィルム]
ニュートンリング防止フィルム(アンチニュートンリングフィルム)は、少なくともアンチニュートンリング層で構成されており、このアンチニュートンリング層の相分離構造は、液相からのスピノーダル分解(湿式スピノーダル分解)により形成されている。すなわち、ポリマーと硬化性樹脂前駆体と溶媒とで構成された樹脂組成物を用い、この樹脂組成物の液相(又は均一溶液やその塗布層)から、溶媒を乾燥などにより蒸発又は除去する過程で、濃縮に伴って、スピノーダル分解による相分離が生じ、相間距離が比較的規則的な相分離構造を形成できる。より具体的には、前記湿式スピノーダル分解は、通常、1又は複数のポリマーと1又は複数の硬化性樹脂前駆体と溶媒とを含む混合液又は樹脂組成物(均一溶液)を支持体にコーティングし、形成された塗布層から溶媒を蒸発させることにより行うことができる。前記支持体として剥離性支持体を用いる場合には、硬化した塗布層を支持体から剥離することによりアンチニュートンリング層単独で構成されたニュートンリング防止フィルムを得ることができ、支持体として非剥離性支持体(好ましくは透明支持体)を用いることにより、支持体とアンチニュートンリング層とで構成された積層構造のニュートンリング防止フィルムを得ることができる。
【0019】
(ポリマー成分)
ポリマー成分としては、通常、熱可塑性樹脂が使用される。熱可塑性樹脂としては、スチレン系樹脂、(メタ)アクリル系樹脂、有機酸ビニルエステル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、オレフィン系樹脂(脂環式オレフィン系樹脂を含む)、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン系樹脂(ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル系樹脂(2,6−キシレノールの重合体など)、セルロース誘導体(セルロースエステル類、セルロースカーバメート類、セルロースエーテル類など)、シリコーン樹脂(ポリジメチルシロキサン、ポリメチルフェニルシロキサンなど)、ゴム又はエラストマー(ポリブタジエン、ポリイソプレンなどのジエン系ゴム、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、アクリルゴム、ウレタンゴム、シリコーンゴムなど)などが例示できる。これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。
【0020】
スチレン系樹脂には、スチレン系単量体の単独又は共重合体(ポリスチレン、スチレン−α−メチルスチレン共重合体、スチレン−ビニルトルエン共重合体など)、スチレン系単量体と他の重合性単量体[(メタ)アクリル系単量体、無水マレイン酸、マレイミド系単量体、ジエン類など]との共重合体などが含まれる。スチレン系共重合体としては、例えば、スチレン−アクリロニトリル共重合体(AS樹脂)、スチレンと(メタ)アクリル系単量体との共重合体[スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、スチレン−メタクリル酸メチル−(メタ)アクリル酸共重合体など]、スチレン−無水マレイン酸共重合体などが挙げられる。好ましいスチレン系樹脂には、ポリスチレン、スチレンと(メタ)アクリル系単量体との共重合体[スチレン−メタクリル酸メチル共重合体などのスチレンとメタクリル酸メチルを主成分とする共重合体]、AS樹脂、スチレン−ブタジエン共重合体などが含まれる。
【0021】
(メタ)アクリル系樹脂としては、(メタ)アクリル系単量体の単独又は共重合体、(メタ)アクリル系単量体と共重合性単量体との共重合体などが使用できる。(メタ)アクリル系単量体には、例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシルなどの(メタ)アクリル酸C1−10アルキル;(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸シクロアルキル;(メタ)アクリル酸フェニルなどの(メタ)アクリル酸アリール;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;グリシジル(メタ)アクリレート;N,N−ジアルキルアミノアルキル(メタ)アクリレート;(メタ)アクリロニトリル;イソボルニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの橋架環式炭化水素基を有する(メタ)アクリレートなどが例示できる。共重合性単量体には、前記スチレン系単量体、ビニルエステル系単量体、無水マレイン酸、マレイン酸、フマル酸などが例示できる。これらの単量体は、単独で又は二種以上組み合わせて使用できる。
【0022】
(メタ)アクリル系樹脂としては、例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル−(メタ)アクリル酸共重合体、メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、メタクリル酸メチル−アクリル酸エステル−(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル−スチレン共重合体(MS樹脂など)、(メタ)アクリル酸−(メタ)アクリル酸メチル−(メタ)アクリル酸イソボルニルなどが挙げられる。好ましい(メタ)アクリル系樹脂としては、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1−6アルキル、特にメタクリル酸メチルを主成分(50〜100重量%、好ましくは70〜100重量%程度)とするメタクリル酸メチル系樹脂が挙げられる。さらに、(メタ)アクリル系樹脂は、シリコーン含有(メタ)アクリル系樹脂であってもよい。
【0023】
有機酸ビニルエステル系樹脂としては、ビニルエステル系単量体の単独又は共重合体(ポリ酢酸ビニル、ポリプロピオン酸ビニルなど)、ビニルエステル系単量体と共重合性単量体との共重合体(エチレン−酢酸ビニル共重合体、酢酸ビニル−塩化ビニル共重合体、酢酸ビニル−(メタ)アクリル酸エステル共重合体など)又はそれらの誘導体が挙げられる。ビニルエステル系樹脂の誘導体には、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリビニルアセタール樹脂などが含まれる。
【0024】
ビニルエーテル系樹脂としては、ビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルt−ブチルエーテルなどのビニルC1−10アルキルエーテルの単独又は共重合体、ビニルC1−10アルキルエーテルと共重合性単量体との共重合体(ビニルアルキルエーテル−無水マレイン酸共重合体など)が挙げられる。
【0025】
ハロゲン含有樹脂としては、ポリ塩化ビニル、ポリフッ化ビニリデン、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−(メタ)アクリル酸エステル共重合体、塩化ビニリデン−(メタ)アクリル酸エステル共重合体などが挙げられる。
【0026】
オレフィン系樹脂には、例えば、ポリエチレン、ポリプロピレンなどのオレフィンの単独重合体、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体などの共重合体が挙げられる。脂環式オレフィン系樹脂としては、環状オレフィン(ノルボルネン、ジシクロペンタジエンなど)の単独又は共重合体(例えば、立体的に剛直なトリシクロデカンなどの脂環式炭化水素基を有する重合体など)、前記環状オレフィンと共重合性単量体との共重合体(エチレン−ノルボルネン共重合体、プロピレン−ノルボルネン共重合体など)などが例示できる。脂環式オレフィン系樹脂は、例えば、商品名「トパス(TOPAS)」、商品名「アートン(ARTON)」、商品名「ゼオネックス(ZEONEX)」などとして入手できる。
【0027】
ポリカーボネート系樹脂には、ビスフェノール類(ビスフェノールAなど)をベースとする芳香族ポリカーボネート、ジエチレングリコールビスアリルカーボネートなどの脂肪族ポリカーボネートなどが含まれる。
【0028】
ポリエステル系樹脂には、テレフタル酸などの芳香族ジカルボン酸を用いた芳香族ポリエステル[ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリC2−4アルキレンテレフタレートやポリC2−4アルキレンナフタレートなどのホモポリエステル、C2−4アルキレンアリレート単位(C2−4アルキレンテレフタレート及び/又はC2−4アルキレンナフタレート単位)を主成分(例えば、50重量%以上)として含むコポリエステルなど]が例示できる。コポリエステルとしては、ポリC2−4アルキレンアリレートの構成単位のうち、C2−4アルキレングリコールの一部を、ポリオキシC2−4アルキレングリコール、C5−10アルキレングリコール、脂環式ジオール(シクロヘキサンジメタノール、水添ビスフェノールAなど)、芳香環を有するジオール(9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、ビスフェノールA、ビスフェノールA−アルキレンオキサイド付加体など)などで置換したコポリエステル、芳香族ジカルボン酸の一部を、フタル酸、イソフタル酸などの非対称芳香族ジカルボン酸、アジピン酸などの脂肪族C6−12ジカルボン酸などで置換したコポリエステルが含まれる。ポリエステル系樹脂には、ポリアリレート系樹脂、アジピン酸などの脂肪族ジカルボン酸を用いた脂肪族ポリエステル、ε−カプロラクトンなどのラクトンの単独又は共重合体も含まれる。好ましいポリエステル系樹脂は、通常、非結晶性コポリエステル(例えば、C2−4アルキレンアリレート系コポリエステルなど)などのように非結晶性である。
【0029】
ポリアミド系樹脂としては、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12などの脂肪族ポリアミド、ジカルボン酸(例えば、テレフタル酸、イソフタル酸、アジピン酸など)とジアミン(例えば、ヘキサメチレンジアミン、メタキシリレンジアミン)とから得られるポリアミドなどが挙げられる。ポリアミド系樹脂には、ε−カプロラクタムなどのラクタムの単独又は共重合体であってもよく、ホモポリアミドに限らずコポリアミドであってもよい。
【0030】
セルロース誘導体のうちセルロースエステル類としては、例えば、脂肪族有機酸エステル(セルロースジアセテート、セルローストリアセテートなどのセルロースアセテート;セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのC1−6有機酸エステルなど)、芳香族有機酸エステル(セルロースフタレート、セルロースベンゾエートなどのC7−12芳香族カルボン酸エステル)、無機酸エステル類(例えば、リン酸セルロース、硫酸セルロースなど)が例示でき、酢酸・硝酸セルロースエステルなどの混合酸エステルであってもよい。セルロース誘導体には、セルロースカーバメート類(例えば、セルロースフェニルカーバメートなど)、セルロースエーテル類(例えば、シアノエチルセルロース;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシC2−4アルキルセルロース;メチルセルロース、エチルセルロースなどのC1−6アルキルセルロース;カルボキシメチルセルロース又はその塩、ベンジルセルロース、アセチルアルキルセルロースなど)も含まれる。
【0031】
好ましい熱可塑性樹脂としては、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂、及びゴム又はエラストマーなどが挙げられる。樹脂としては、通常、非結晶性であり、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶な樹脂が使用される。特に、成形性又は製膜性、透明性や耐候性の高い樹脂、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類など)などが好ましい。
【0032】
ポリマー成分としては、硬化反応に関与する官能基(又は硬化性化合物と反応可能な官能基)を有するポリマーを用いることもできる。前記ポリマーは、官能基を主鎖に有していてもよく、側鎖に有していてもよい。前記官能基は、共重合や共縮合などにより主鎖に導入されてもよいが、通常、側鎖に導入される。このような官能基としては、縮合性基や反応性基(例えば、ヒドロキシル基、酸無水物基、カルボキシル基、アミノ基又はイミノ基、エポキシ基、グリシジル基、イソシアネート基など)、重合性基(例えば、ビニル、プロペニル、イソプロペニル、ブテニル、アリルなどのC2−6アルケニル基、エチニル、プロピニル、ブチニルなどのC2−6アルキニル基、ビニリデンなどのC2−6アルケニリデン基、又はこれらの重合性基を有する基((メタ)アクリロイル基など)など)などが挙げられる。これらの官能基のうち、重合性基が好ましい。
【0033】
重合性基を側鎖に導入する方法としては、例えば、反応性基や縮合性基などの官能基を有する熱可塑性樹脂と、前記官能基との反応性基を有する重合性化合物とを反応させる方法を用いることができる。
【0034】
官能基を有する熱可塑性樹脂としては、カルボキシル基又はその酸無水物基を有する熱可塑性樹脂(例えば、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂など)、ヒドロキシル基を有する熱可塑性樹脂(例えば、(メタ)アクリル系樹脂、ポリウレタン系樹脂、セルロース誘導体、ポリアミド系樹脂など)、アミノ基を有する熱可塑性樹脂(例えば、ポリアミド系樹脂など)、エポキシ基を有する熱可塑性樹脂(例えば、エポキシ基を有する(メタ)アクリル系樹脂やポリエステル系樹脂など)などが例示できる。また、スチレン系樹脂やオレフィン系樹脂、脂環式オレフィン系樹脂などの熱可塑性樹脂に、前記官能基を共重合やグラフト重合で導入した樹脂であってもよい。
【0035】
重合性化合物としては、カルボキシル基又はその酸無水物基を有する熱可塑性樹脂の場合は、エポキシ基やヒドロキシル基、アミノ基、イソシアネート基などを有する重合性化合物などを用いることができる。ヒドロキシル基を有する熱可塑性樹脂の場合は、カルボキシル基又はその酸無水物基やイソシアネート基などを有する重合性化合物などが挙げられる。アミノ基を有する熱可塑性樹脂の場合は、カルボキシル基又はその酸無水物基やエポキシ基、イソシアネート基などを有する重合性化合物などが挙げられる。エポキシ基を有する熱可塑性樹脂の場合は、カルボキシル基又はその酸無水物基やアミノ基などを有する重合性化合物などが挙げられる。
【0036】
前記重合性化合物のうち、エポキシ基を有する重合性化合物としては、例えば、エポキシシクロヘキセニル(メタ)アクリレートなどのエポキシシクロC5−8アルケニル(メタ)アクリレート、グリシジル(メタ)アクリレート、アリルグリシジルエーテルなどが例示できる。ヒドロキシル基を有する化合物としては、例えば、ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシC1−4アルキル(メタ)アクリレート、エチレングリコールモノ(メタ)アクリレートなどのC2−6アルキレングリコール(メタ)アクリレートなどが例示できる。アミノ基を有する重合性化合物としては、例えば、アミノエチル(メタ)アクリレートなどのアミノC1−4アルキル(メタ)アクリレート、アリルアミンなどのC3−6アルケニルアミン、4−アミノスチレン、ジアミノスチレンなどのアミノスチレン類などが例示できる。イソシアネート基を有する重合性化合物としては、例えば、(ポリ)ウレタン(メタ)アクリレートやビニルイソシアネートなどが例示できる。カルボキシル基又はその酸無水物基を有する重合性化合物としては、例えば、(メタ)アクリル酸や無水マレイン酸などの不飽和カルボン酸又はその無水物などが例示できる。
【0037】
代表的な例としては、カルボキシル基又はその酸無水物基を有する熱可塑性樹脂とエポキシ基含有化合物、特に(メタ)アクリル系樹脂((メタ)アクリル酸−(メタ)アクリル酸エステル共重合体など)とエポキシ基含有(メタ)アクリレート(エポキシシクロアルケニル(メタ)アクリレートやグリシジル(メタ)アクリレートなど)の組み合わせが挙げられる。具体的には、(メタ)アクリル系樹脂のカルボキシル基の一部に重合性不飽和基を導入したポリマー、例えば、(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4−エポキシシクロヘキセニルメチルアクリレートのエポキシ基を反応させて、側鎖に光重合性不飽和基を導入した(メタ)アクリル系ポリマー(サイクロマーP、ダイセル化学工業(株)製)などが使用できる。
【0038】
熱可塑性樹脂に対する硬化反応に関与する官能基(特に重合性基)の導入量は、熱可塑性樹脂1kgに対して、0.001〜10モル、好ましくは0.01〜5モル、さらに好ましくは0.02〜3モル程度である。
【0039】
これらのポリマーは適宜組み合わせて使用できる。すなわち、ポリマーは複数のポリマーで構成されていてもよい。複数のポリマーは、液相スピノーダル分解により、相分離可能であってもよい。また、複数のポリマーは、互いに非相溶であってもよい。複数のポリマーを組み合わせる場合、第1の樹脂と第2の樹脂との組み合わせは特に制限されないが、加工温度付近で互いに非相溶な複数のポリマー、例えば、互いに非相溶な2つのポリマーとして適当に組み合わせて使用できる。例えば、第1の樹脂がスチレン系樹脂(ポリスチレン、スチレン−アクリロニトリル共重合体など)である場合、第2の樹脂は、セルロース誘導体(例えば、セルロースアセテートプロピオネートなどのセルロースエステル類)、(メタ)アクリル系樹脂(ポリメタクリル酸メチルなど)、脂環式オレフィン系樹脂(ノルボルネンを単量体とする重合体など)、ポリカーボネート系樹脂、ポリエステル系樹脂(前記ポリC2−4アルキレンアリレート系コポリエステルなど)などであってもよい。また、例えば、第1のポリマーがセルロース誘導体(例えば、セルロースアセテートプロピオネートなどのセルロースエステル類)である場合、第2のポリマーは、スチレン系樹脂(ポリスチレン、スチレン−アクリロニトリル共重合体など)、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂(ノルボルネンを単量体とする重合体など)、ポリカーボネート系樹脂、ポリエステル系樹脂(前記ポリC2−4アルキレンアリレート系コポリエステルなど)などであってもよい。複数の樹脂の組合せにおいて、少なくともセルロースエステル類(例えば、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースC2−4アルキルカルボン酸エステル類)を用いてもよい。
【0040】
なお、スピノーダル分解により生成された相分離構造は、活性光線(紫外線、電子線など)や熱などにより最終的に硬化し、硬化樹脂を形成する。そのため、硬化樹脂で構成されたアンチニュートンリング層の存在により、ITOなどの透明導電層をスパッタリングなどにより形成する際における透明支持体のダメージを軽減できる。特に、透明支持体がポリエチレンテレフタレートなどのプラスチックである場合、ダメージの軽減に加えて、透明支持体の内部から熱によりオリゴマーなどの低分子成分が析出することも抑制できる。さらに、アンチニュートンリング層に耐擦傷性を付与でき、タッチパネル操作を繰り返しても表面構造の損傷などが抑制でき、耐久性を向上できる。
【0041】
硬化後の耐擦傷性の観点から、複数のポリマーのうち、少なくとも一つのポリマー、例えば、互いに非相溶なポリマーのうち一方のポリマー(第1の樹脂と第2の樹脂とを組み合わせる場合、特に両方のポリマー)が硬化性樹脂前駆体と反応可能な官能基を側鎖に有するポリマーであるのが好ましい。
【0042】
第1のポリマーと第2のポリマーとの割合(重量比)は、例えば、前者/後者=1/99〜99/1、好ましくは5/95〜95/5、さらに好ましくは10/90〜90/10程度の範囲から選択でき、通常、20/80〜80/20程度、特に30/70〜70/30程度である。
【0043】
なお、相分離構造を形成するためのポリマーとしては、前記非相溶な2つのポリマー以外にも、前記熱可塑性樹脂や他のポリマーが含まれていてもよい。
【0044】
ポリマーのガラス転移温度は、例えば、−100〜250℃、好ましくは−50〜230℃、さらに好ましくは0〜200℃程度(例えば、50〜180℃程度)の範囲から選択できる。なお、表面硬度の観点から、ガラス転移温度は、50℃以上(例えば、70〜200℃程度)、好ましくは100℃以上(例えば、100〜170℃程度)であるのが有利である。なお、ガラス転移温度は、示差走査熱量計を用いて測定でき、例えば、示差走査熱量計(セイコー電子工業(株)製「DSC6200」)を用い、窒素気流下、昇温速度10℃/分で測定できる。ポリマーの重量平均分子量は、例えば、1,000,000以下、好ましくは1,000〜500,000程度の範囲から選択できる。
【0045】
(硬化性樹脂前駆体)
硬化性樹脂前駆体としては、熱や活性エネルギー線(紫外線や電子線など)などにより反応する官能基を有する化合物であり、熱や活性エネルギー線などにより硬化又は架橋して樹脂(特に硬化又は架橋樹脂)を形成可能な種々の硬化性化合物が使用できる。前記樹脂前駆体としては、例えば、熱硬化性化合物又は樹脂[エポキシ基、重合性基、イソシアネート基、アルコキシシリル基、シラノール基などを有する低分子量化合物(例えば、エポキシ系樹脂、不飽和ポリエステル系樹脂、ウレタン系樹脂、シリコーン系樹脂など)]、活性光線(紫外線など)により硬化可能な光硬化性化合物(光硬化性モノマー、オリゴマーなどの紫外線硬化性化合物など)などが例示でき、光硬化性化合物は、EB(電子線)硬化性化合物などであってもよい。なお、光硬化性モノマー、オリゴマーや低分子量であってもよい光硬化性樹脂などの光硬化性化合物を、単に「光硬化性樹脂」という場合がある。
【0046】
光硬化性化合物には、例えば、単量体、オリゴマー(又は樹脂、特に低分子量樹脂)が含まれる。単量体は、例えば、1つの重合性基を有する単官能単量体と、少なくとも2つの重合性基を有する多官能単量体とに分類できる。
【0047】
単官能単量体としては、例えば、(メタ)アクリル酸エステルなどの(メタ)アクリル系単量体、ビニルピロリドンなどのビニル系単量体、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの橋架環式炭化水素基を有する(メタ)アクリレートなどが挙げられる。
【0048】
多官能単量体には、2〜8程度の重合性基を有する多官能単量体が含まれ、2官能単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレートなどのアルキレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリオキシテトラメチレングリコールジ(メタ)アクリレートなどの(ポリ)オキシアルキレングリコールジ(メタ)アクリレート;トリシクロデカンジメタノールジ(メタ)アクリレート、アダマンタンジ(メタ)アクリレートなどの橋架環式炭化水素基を有するジ(メタ)アクリレートなどが挙げられる。
【0049】
3〜8官能単量体としては、例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
【0050】
オリゴマー又は樹脂としては、ビスフェノールA−アルキレンオキサイド付加体の(メタ)アクリレート、エポキシ(メタ)アクリレート(ビスフェノールA型エポキシ(メタ)アクリレート、ノボラック型エポキシ(メタ)アクリレートなど)、ポリエステル(メタ)アクリレート(例えば、脂肪族ポリエステル型(メタ)アクリレート、芳香族ポリエステル型(メタ)アクリレートなど)、(ポリ)ウレタン(メタ)アクリレート(ポリエステル型ウレタン(メタ)アクリレート、ポリエーテル型ウレタン(メタ)アクリレートなど)、シリコーン(メタ)アクリレートなどが例示できる。これらの(メタ)アクリレートオリゴマー又は樹脂には、前記ポリマー成分における(メタ)アクリル系樹脂の項で例示された共重合性単量体が含まれていてもよい。これらの光硬化性化合物は単独で又は二種以上組み合わせて使用できる。
【0051】
さらに、硬化性樹脂前駆体は、アンチニュートンリング層の強度を向上する点などから、フッ素原子や無機粒子を含有していてもよい。フッ素原子を含有する前駆体(フッ素含有硬化性化合物)としては、前記単量体及びオリゴマーのフッ化物、例えば、フッ化アルキル(メタ)アクリレート[例えば、パーフルオロオクチルエチル(メタ)アクリレートやトリフルオロエチル(メタ)アクリレートなど]、フッ化(ポリ)オキシアルキレングリコールジ(メタ)アクリレート[例えば、フルオロエチレングリコールジ(メタ)アクリレート、フルオロプロピレングリコールジ(メタ)アクリレートなど]、フッ素含有エポキシ樹脂、ウレタン系樹脂などが挙げられる。無機粒子を含有する前駆体としては、例えば、表面に重合性基を有する無機粒子(例えば、重合性基を有するシランカップリング剤で表面を修飾したシリカ粒子など)などが例示できる。表面に重合性基を有するナノサイズのシリカ粒子としては、例えば、JSR(株)製から、多官能ハイブリッド系UV硬化剤(Z7501)が市販されている。
【0052】
好ましい硬化性樹脂前駆体は、短時間で硬化できる光硬化性化合物、例えば、紫外線硬化性化合物(モノマー、オリゴマーや低分子量であってもよい樹脂など)、EB硬化性化合物である。特に、実用的に有利な樹脂前駆体は、紫外線硬化性樹脂である。さらに、繰り返しの使用に対する耐久性を向上させるため、光硬化性樹脂は、2官能以上(好ましくは2〜10官能、さらに好ましくは3〜8官能程度)の光硬化性化合物、特に、多官能(メタ)アクリレート、例えば、3官能以上(特に4〜8官能)の(メタ)アクリレートを含むのが好ましい。
【0053】
さらに、本発明では、硬化性樹脂前駆体は、5〜7官能(メタ)アクリレートと、3〜4官能(メタ)アクリレートとを組み合わせてもよい。両者の割合(重量比)は、例えば、前者/後者=100/0〜30/70、好ましくは99/1〜50/50、さらに好ましくは90/10〜60/40程度である。
【0054】
また、硬化性樹脂前駆体は、表面張力を低下させ、塗膜表面に滑らか(又はなだらか)な凹凸構造を形成し、ヘイズ値を低下できるとともに、層の強度も向上できる点から、多官能(メタ)アクリレートに加えて、前記フッ素含有硬化性化合物(特に、フッ化アルキル鎖を含む(メタ)アクリレートなどのフッ素原子及び(メタ)アクリロイル基を有する単量体)を含むのが好ましい。フッ素含有硬化性化合物の割合は、多官能(メタ)アクリレート100重量部に対して、例えば、0.01〜5重量部、好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部程度である。
【0055】
硬化性樹脂前駆体の数平均分子量としては、ポリマーとの相溶性を考慮して5000以下、好ましくは2000以下、さらに好ましくは1000以下程度である。なお、数平均分子量は、膜浸透圧法で測定できる。
【0056】
硬化性樹脂前駆体は、その種類に応じて、硬化剤を含んでいてもよい。例えば、熱硬化性樹脂では、アミン類、多価カルボン酸類などの硬化剤を含んでいてもよく、光硬化性樹脂では光重合開始剤を含んでいてもよい。光重合開始剤としては、慣用の成分、例えば、アセトフェノン類又はプロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類、アシルホスフィンオキシド類などが例示できる。光硬化剤などの硬化剤の含有量は、硬化性樹脂前駆体100重量部に対して0.1〜20重量部、好ましくは0.5〜10重量部、さらに好ましくは1〜8重量部(特に1〜5重量部)程度であり、3〜8重量部程度であってもよい。
【0057】
さらに、硬化性樹脂前駆体は硬化促進剤を含んでいてもよい。例えば、光硬化性樹脂は、光硬化促進剤、例えば、第三級アミン類(ジアルキルアミノ安息香酸エステルなど)、ホスフィン系光重合促進剤などを含んでいてもよい。
【0058】
少なくとも1つのポリマー及び少なくとも1つの硬化性樹脂前駆体のうち、少なくとも2つの成分が、加工温度付近で互いに相分離する組み合わせで使用される。相分離する組み合わせとしては、例えば、(a)複数のポリマー同士が互いに非相溶で相分離する組み合わせ、(b)ポリマーと硬化性樹脂前駆体とが非相溶で相分離する組み合わせや、(c)複数の硬化性樹脂前駆体同士が互いに非相溶で相分離する組み合わせなどが挙げられる。これらの組み合わせのうち、通常、(a)複数のポリマー同士の組み合わせや、(b)ポリマーと硬化性樹脂前駆体との組み合わせであり、特に(a)複数のポリマー同士の組み合わせが好ましい。相分離させる両者の相溶性が高い場合、溶媒を蒸発させるための乾燥過程で両者が有効に相分離せず、アンチニュートンリング層としての機能が低下する。
【0059】
なお、熱可塑性樹脂と硬化性樹脂前駆体(又は硬化樹脂)とは、互いに相溶であってもよく、非相溶であってもよい。ポリマーと硬化性樹脂前駆体とが非相溶で相分離する場合に、ポリマーとして複数のポリマーを用いてもよい。複数のポリマーを用いる場合、少なくとも1つのポリマーが樹脂前駆体(又は硬化樹脂)に対して非相溶であればよく、他のポリマーは前記樹脂前駆体と相溶してもよい。
【0060】
また、互いに非相溶な2つの熱可塑性樹脂と、硬化性化合物(特に複数の硬化性官能基を有するモノマー又はオリゴマー)との組み合わせであってもよい。さらに、硬化後の耐擦傷性の観点から、前記非相溶な熱可塑性樹脂のうち一方のポリマー(特に両方のポリマー)が硬化反応に関与する官能基(前記硬化性樹脂前駆体の硬化に関与する官能基)を有する熱可塑性樹脂であってもよい。
【0061】
ポリマーを互いに非相溶な複数のポリマーで構成して相分離する場合、硬化性樹脂前駆体は、非相溶な複数のポリマーのうち、少なくとも1つのポリマーと加工温度付近で互いに相溶する組合せで使用される。すなわち、互いに非相溶な複数のポリマーを、例えば、第1の樹脂と第2の樹脂とで構成する場合、硬化性樹脂前駆体は少なくとも第1の樹脂又は第2の樹脂のどちらかと相溶すればよく、好ましくは両方のポリマー成分と相溶してもよい。両方のポリマー成分に相溶する場合、第1の樹脂及び硬化性樹脂前駆体を主成分とした混合物と、第2の樹脂及び硬化性樹脂前駆体を主成分とした混合物との少なくとも二相に相分離する。
【0062】
具体的には、複数のポリマーがセルロース誘導体と重合性基を有する(メタ)アクリル系樹脂の組み合わせであり、かつ硬化性樹脂前駆体が多官能(メタ)アクリレートである場合、ポリマー同士が非相溶で相分離するとともに、重合性基を有する(メタ)アクリル系樹脂と多官能(メタ)アクリレートとの組み合わせも非相溶で相分離し、セルロース誘導体と多官能(メタ)アクリレートとが相溶であってもよい。
【0063】
選択した複数のポリマー及び硬化性樹脂前駆体の相溶性が高い場合、溶媒を蒸発させるための乾燥過程でポリマー同士又はポリマーと前駆体とが有効に相分離せず、アンチニュートンリング層としての機能が低下する。複数のポリマーや前駆体の相分離性は、双方の成分に対する良溶媒を用いて均一溶液を調製し、溶媒を徐々に蒸発させる過程で、残存固形分が白濁するか否かを目視にて確認することにより簡便に判定できる。
【0064】
さらに、ポリマーと硬化又は架橋樹脂との屈折率の差、複数のポリマー(第1の樹脂と第2の樹脂)との屈折率の差は、例えば、0.001〜0.2、好ましくは0.05〜0.15程度であってもよい。なお、屈折率は、プリズムカップラー(メトリコン社製)を用いて、波長633nmで測定できる。
【0065】
スピノーダル分解において、相分離の進行に伴って共連続相構造を形成し、さらに相分離が進行すると、連続相が自らの表面張力により非連続化し、液滴相構造(球状、真球状、円盤状や楕円体状などの独立相の海島構造)となる。従って、相分離の程度によって、共連続相構造と液滴相構造との中間的構造(上記共連続相から液滴相に移行する過程の相構造)も形成できる。本発明のアンチニュートンリング層の相分離構造は、海島構造(液滴相構造、又は一方の相が独立または孤立した相構造)、共連続相構造(又は網目構造)であってもよく、共連続相構造と液滴相構造とが混在した中間的構造であってもよい。これらの相分離構造により溶媒乾燥後にはアンチニュートンリング層の表面に微細な凹凸を形成できる。
【0066】
前記相分離構造において、表面凹凸構造を形成し、かつ表面硬度を高める点からは、少なくとも島状ドメインを有する液滴相構造であるのが有利である。なお、ポリマーと前記前駆体(又は硬化樹脂)とで構成された相分離構造が海島構造である場合、ポリマー成分が海相を形成してもよいが、表面硬度の観点から、ポリマー成分が島状ドメインを形成するのが好ましい。なお、島状ドメインの形成により、乾燥後にはアンチニュートンリング層の表面に微細な凹凸を形成できる。本発明では、相分離した樹脂成分で凹凸構造が形成されているため、硬質の微粒子などを含有させて凹凸構造を形成した場合に比べて、表面の凹凸構造がなだらかな形状であり、かつ凸部の脱落も抑制できる。従って、打鍵耐久性に優れ、ITOなどの金属酸化物で透明導電層を形成し、繰り返し打鍵しても(例えば、数十万回以上打鍵しても)、透明導電層の割れや損傷を抑制できる。
【0067】
さらに、前記相分離構造のドメイン間の平均距離は、不規則であってもよいが、通常、実質的に規則性又は周期性を有している。例えば、ドメインの平均相間距離は、例えば、1〜70μm(例えば、1〜40μm)、好ましくは2〜50μm(例えば、3〜30μm)、さらに好ましくは5〜20μm(例えば、10〜20μm)程度であってもよい。なお、ドメインの平均相間距離は、透過型電子顕微鏡写真の観察により測定できる。
【0068】
ポリマーと硬化性樹脂前駆体との割合(重量比)は、特に制限されず、例えば、前者/後者=5/95〜95/5程度の範囲から選択でき、表面硬度の観点から、好ましくは5/95〜60/40程度であり、さらに好ましくは10/90〜50/50、特に10/90〜40/60程度である。
【0069】
アンチニュートンリング層の厚みは、例えば、0.3〜20μm程度、好ましくは1〜15μm(例えば、1〜10μm)程度であってもよく、通常、2〜10μm(特に3〜7μm)程度である。なお、アンチニュートンリング層単独でニュートンリング防止フィルムを構成する場合、アンチニュートンリング層の厚みは、例えば、1〜100μm、好ましくは3〜50μm程度の範囲から選択してもよい。
【0070】
前記のように、ニュートンリング防止フィルムは、アンチニュートンリング層単独で構成してもよく、支持体と、この支持体上に形成されたアンチニュートンリング層とで構成してもよい。支持体としては、光透過性を有する支持体、例えば、合成樹脂フィルムなどの透明支持体が使用される。また、光透過性を有する支持体は、光学部材を形成するための透明ポリマーフィルムで構成されていてもよい。
【0071】
(透明支持体)
透明支持体(又は基材シート)としては、ガラス、セラミックスの他、樹脂シートが例示できる。透明支持体を構成する樹脂としては、前記アンチニュートンリング層と同様の樹脂が使用できる。好ましい透明支持体としては、透明性ポリマーフィルム、例えば、セルロース誘導体[セルローストリアセテート(TAC)、セルロースジアセテートなどのセルロースアセテートなど]、ポリエステル系樹脂[ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアリレート系樹脂など]、ポリスルホン系樹脂[ポリスルホン、ポリエーテルスルホンなど]、ポリエーテルケトン系樹脂[ポリエーテルケトン、ポリエーテルエーテルケトンなど]、ポリカーボネート系樹脂(ビスフェノールA型ポリカーボネートなど)、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、環状ポリオレフィン系樹脂[トパス(TOPAS)、アートン(ARTON)、ゼオネックス(ZEONEX)など]、ハロゲン含有樹脂(ポリ塩化ビニリデンなど)、(メタ)アクリル系樹脂、スチレン系樹脂(ポリスチレンなど)、酢酸ビニル又はビニルアルコール系樹脂(ポリビニルアルコールなど)などで形成されたフィルムが挙げられる。透明支持体は1軸又は2軸延伸されていてもよい。
【0072】
光学的に等方性の透明支持体には、ガラス、未延伸又は延伸プラスチックシート又はフィルムが例示でき、例えば、ポリエステル系樹脂(PET、PBTなど)、セルロースエステル類(セルロースジアセテート、セルローストリアセテートなどのセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースアセテートC3−4有機酸エステル)、特に、PETなどのポリエステル系樹脂で形成されたシート又はフィルムが例示できる。これらの支持体のうち、ニュートンリング防止フィルムを上部電極基板(指又はペンなどの押圧部材と接触する側の電極基板)に用いる場合は、可撓性が必要であるため、プラスチックシート又はフィルム(未延伸又は延伸プラスチックシート又はフィルム)を利用できる。
【0073】
二次元的構造の支持体の厚みは、例えば、5〜2000μm、好ましくは15〜1000μm、さらに好ましくは20〜500μm程度の範囲から選択できる。
【0074】
(ニュートンリング防止フィルムの特性)
本発明のニュートンリング防止フィルムは、表面に前記相分離構造に対応した微細な凹凸構造が多量に形成されているため、タッチパネル(特に抵抗膜方式タッチパネル)におけるニュートンリングの発生を有効に予防又は抑制できる。さらに、透過像の鮮明性も高いため、表示装置の表示部に対して、ギラツキが抑制された鮮明な画像を表示できる。
【0075】
さらに、前記のように、相分離構造において、ドメインの平均相間距離は実質的に規則性又は周期性を有している。そのため、ニュートンリング防止フィルムに入射して透過する光は、相間平均距離(又は表面凹凸構造の周期性)に対応したブラッグ反射により、直進透過光とは離れた特定角度に散乱光極大を示す。すなわち、本発明のニュートンリング防止フィルムは、入射光を等方的に透過して散乱又は拡散するものの、散乱光(透過散乱光)は、散乱中心からシフトした散乱角[例えば、0.1〜10°、好ましくは0.2〜8°、さらに好ましくは0.3〜5°(特に、0.5〜2°)程度]で光強度の極大値を示す。従って、直進透過光のプロファイルに対して表面凹凸による散乱光が悪影響を及ぼすことがなく、従来の微粒子分散型のアンチニュートンリング層とは異なり、ニュートンリングを抑制するとともに、表示装置の画像に対してギラツキも解消できる。
【0076】
透過光散乱強度の極大値の判定としては、散乱光強度の角度分布プロファイルにおいて、ピーク状に分離した場合に加えて、ショルダー状ピークや平坦状ピークである場合も極大値を有するとみなして、その角度をピーク角度とした。
【0077】
なお、ニュートンリング防止フィルムを透過した光の角度分布は、図1に示すように、He−Neレーザなどのレーザ光源1と、ゴニオメーターに設置した光受光器4を備えた測定装置を用いて測定できる。なお、この例では、レーザ光源1からのレーザ光をNDフィルタ2を介して試料3に照射し、試料からの散乱光を、レーザ光の光路に対して散乱角度θで変角可能であり、かつ光電子増幅管を備えた検出器(光受光器)4により検出し、散乱強度と散乱角度θとの関係を測定している。
【0078】
また、タッチパネルの下部に配設される表示装置の表示部におけるギラツキや文字ボケの評価は、目視による蛍光灯の映りこみによる評価、及びJlS K7105に従ってグロスメーターを用いて評価できる。さらに、ギラツキ及び文字ボケの評価は、解像度200ppi程度の高精細液晶表示装置を用いて評価でき、より簡単には高精細CRTディスプレイ装置や150ppi程度の液晶用カラーフィルターとバックライトとを組み合わせた簡易評価装置を用いて目視にて評価できる。
【0079】
本発明のニュートンリング防止フィルムの全光線透過率は、例えば、70〜100%、好ましくは80〜100%、さらに好ましくは85〜100%(例えば、85〜95%)、特に90〜100%(例えば、90〜99%)程度である。
【0080】
本発明のニュートンリング防止フィルムのヘイズは、0.1〜50%程度の範囲から選択でき、例えば、0.1〜30%、好ましくは0.5〜20%、さらに好ましくは1〜10%(特に2〜8%)程度である。本発明では、このような低いヘイズ値を有することにより、アンチニュートンリング性と表示装置の表示部における視認性とを両立できる。
【0081】
本発明のニュートンリング防止フィルムの透過像鮮明度は、0.5mm幅の光学櫛を使用した場合、例えば、50〜l00%、好ましくは60〜99%、さらに好ましくは65〜90%程度である。透過像鮮明度が前記範囲にあると、直進透過光の散乱が少ないため、タッチパネルを高精細表示装置の上に配設した場合であっても、各々の画素からの散乱が少なくなり、その結果ギラツキを防止できる。
【0082】
透過像鮮明度とは、フィルムを透過した光のボケや歪みを定量化する尺度である。透過像鮮明度は、フィルムからの透過光を移動する光学櫛を通して測定し、光学櫛の明暗部の光量により値を算出する。すなわち、フィルムが透過光をぼやかす場合、光学櫛上に結像されるスリットの像は太くなるため、透過部での光量は100%以下となり、一方、不透過部では光が漏れるため0%以上となる。透過像鮮明度の値Cは光学櫛の透明部の透過光最大値Mと不透明部の透過光最小値mから次式により定義される。
【0083】
C(%)=[(M−m)/(M+m)]×100
すなわち、Cの値が100%に近づく程、ニュートンリング防止フィルムによる像のボケが小さい[参考文献;須賀、三田村,塗装技術,1985年7月号]。
【0084】
湿式スピノーダル分解において、溶媒は、前記ポリマー及び硬化性樹脂前駆体の種類及び溶解性に応じて選択でき、少なくとも固形分(複数のポリマー及び硬化性樹脂前駆体、反応開始剤、その他添加剤)を均一に溶解できる溶媒であればよい。そのような溶媒としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(トルエン、キシレンなど)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(エタノール、イソプロパノール、ブタノール、シクロヘキサノール、1−メトキシ−2−プロパノールなど)、セロソルブ類(メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテルなど)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシドなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)などが例示できる。また、溶媒は混合溶媒であってもよい。
【0085】
本発明のニュートンリング防止フィルムは、前記ポリマーと硬化性樹脂前駆体と溶媒とを含む液相(又は液状組成物)から、前記溶媒の蒸発に伴うスピノーダル分解により、相分離構造を形成する工程と、前記硬化性樹脂前駆体を硬化させ、少なくともアンチニュートンリング層を形成する工程とを経ることによりを得ることができる。前記相分離工程は、通常、前記ポリマーと硬化性樹脂前駆体と溶媒とを含む混合液(特に均一溶液などの液状組成物)を前記支持体に塗布又は流延する工程と、塗布層又は流延層から溶媒を蒸発させて規則的又は周期的な平均相間距離を有する相分離構造を形成する工程とで構成されており、前記前駆体を硬化させることによりニュートンリング防止フィルムを得ることができる。好ましい態様では、前記混合液として、前記熱可塑性樹脂と、光硬化性化合物と、光重合開始剤と、前記熱可塑性樹脂および光硬化性化合物を可溶な溶媒とを含む組成物が使用でき、スピノーダル分解により形成された相分離構造の光硬化成分を光照射により硬化することによりアンチニュートンリング層が形成される。また、他の好ましい態様では、前記混合液として、前記互いに非相溶な複数のポリマーと、光硬化性化合物と、光重合開始剤と、溶媒とを含む組成物が使用でき、スピノーダル分解により形成された相分離構造の光硬化成分を光照射により硬化することによりアンチニュートンリング層が形成される。
【0086】
混合液中の溶質(ポリマー及び硬化性樹脂前駆体、反応開始剤、その他添加剤)の濃度は、相分離が生じる範囲及び流延性やコーティング性などを損なわない範囲で選択でき、例えば、1〜80重量%、好ましくは5〜60重量%、さらに好ましくは15〜40重量%(特に20〜40重量%)程度である。
【0087】
なお、透明支持体に前記混合液を塗布すると、溶媒の種類によっては透明支持体が溶解又は膨潤する場合がある。例えば、トリアセチルセルロースフィルムに、複数の樹脂を含有する塗布液(均一溶液)を塗布すると、溶媒の種類によって、トリアセチルセルロースフィルムの塗布面が溶出、侵食若しくは膨潤する場合がある。このような場合、透明支持体(トリアセチルセルロースフィルムなど)の塗布面に予め耐溶剤性コーティング剤を塗布し、光学的に等方性の耐溶剤性コーティング層を形成していてもよい。このようなコーティング層は、例えば、AS樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂(ポリビニルアルコール、エチレン−ビニルアルコール共重合体など)などの熱可塑性樹脂、エポキシ系樹脂、シリコーン系樹脂、紫外線硬化型樹脂などの硬化性樹脂などを用いて形成できる。
【0088】
また、混合液又は塗布液を透明支持体に塗布する場合、透明支持体の種類に応じて、透明支持体を溶解・侵食若しくは膨潤しない溶媒を選択してもよい。例えば、透明支持体としてポリエステルフィルムを用いる場合、混合液又は塗布液の溶媒として、例えば、テトラヒドロフラン、メチルエチルケトン、イソプロパノール、1−ブタノール、1−メトキシ−2−プロパノール、トルエンなどを用いると、フィルムの性質を損なうことなく、アンチニュートンリング層を形成できる。
【0089】
前記混合液を流延又は塗布した後、溶媒の沸点よりも低い温度(例えば、溶媒の沸点よりも1〜120℃、好ましくは5〜50℃、特に10〜50℃程度低い温度)で溶媒を蒸発させることにより、スピノーダル分解による相分離を誘起することができる。溶媒の蒸発は、通常、乾燥、例えば、溶媒の沸点に応じて、30〜200℃、(例えば、30〜100℃)、好ましくは40〜120℃、さらに好ましくは40〜80℃程度の温度で乾燥させることによリ行うことができる。
【0090】
このような溶媒の蒸発を伴うスピノーダル分解により、相分離構造のドメイン間の平均距離に規則性又は周期性を付与できる。そして、スピノーダル分解により形成された相分離構造は、前駆体を硬化させることにより直ちに固定化できる。前駆体の硬化は、硬化性樹脂前駆体の種類に応じて、加熱、光照射など、あるいはこれらの方法の組合せにより行うことができる。加熱温度は、前記相分離構造を有する限り、適当な範囲、例えば、50〜150℃程度から選択でき、前記層分離工程と同様の温度範囲から選択してもよい。
【0091】
光照射は、光硬化成分などの種類に応じて選択でき、通常、紫外線、電子線などが利用できる。汎用的な露光源は、通常、紫外線照射装置である。なお、光照射は、必要であれば、不活性ガス雰囲気中で行ってもよい。
【0092】
[電極基板]
本発明の電極基板は、タッチパネル(特に抵抗膜方式タッチパネル)の電極基板であり、前記ニュートンリング防止フィルムのアンチニュートンリング層の上に透明導電層が形成されている。
【0093】
透明導電層は、透明電極として利用されている慣用の透明導電層、例えば、酸化インジウム−酸化錫系複合酸化物(ITO)、フッ素ドープ酸化錫(FTO)、InO、SnO、ZnOなどの金属酸化物や、金、銀、白金、パラジウムなどの金属で構成された層(特に、ITO膜などの金属酸化物層)で構成されている。このような透明導電層は、慣用の方法、例えば、スパッタリング、蒸着、化学的気相成長法など(通常、スパッタリング)により形成できる。透明導電層の厚みは、例えば、0.01〜0.05μm、好ましくは0.015〜0.03μm、さらに好ましくは0.015〜0.025μm程度である。本発明では、アンチニュートンリング層の凹凸構造を有する表面に、透明導電層を形成することにより、透明導電層を均一で規則的な凹凸構造とすることができ、透明導電層と両極の透明導電層間に含まれる空気層との界面反射光の干渉によるニュートンリングの発生を抑制できる。さらに、このような凹凸構造は、相分離により形成されているため、なだらかで且つ規則的な凹凸構造を有し、透明導電層がITOなどの金属酸化物で形成されていても、打鍵耐久性に優れる。
【0094】
アンチニュートンリング層の上に形成される透明導電層は、タッチパネルの種類に応じて、通常、アナログ方式では面状に形成され、デジタル方式ではストライプ状に形成される。透明導電層を面状又はストライプ状に形成する方法としては、例えば、アンチニュートンリング層の全面に透明導電層を形成した後、エッチングにより面状又はストライプ状にパターン化する方法、予めパターン状に形成する方法などが挙げられる。
【0095】
本発明の電極基板は、透明導電層が形成された面の反対面に、さらにハードコート層が形成されていてもよい。ハードコート層としては、慣用の透明樹脂層、例えば、前記硬化性樹脂前駆体の項で例示された光硬化性化合物で形成されたハードコート層の他、透明樹脂中に無機又は有機微粒子を含有する防眩性ハードコート層、アンチニュートンリング層と同様に透明樹脂を相分離させて得られる防眩性ハードコート層などが利用できる。ハードコート層の厚みは、例えば、例えば、0.5〜30μm、好ましくは1〜20μm、さらに好ましくは2〜15μm程度である。
【0096】
本発明の電極基板は、さらに他の光学要素(例えば、偏光板、位相差板、導光板などの光路内に配設される種々の光学要素)と組み合わせてもよい。すなわち、光学要素の少なくとも一方の光路面に前記電極基板を配設又は積層してもよい。例えば、前記位相差板の少なくとも一方の面に電極基板を積層してもよく、導光板の出射面に電極基板を配設又は積層してもよい。偏光板や位相差フィルムと組み合わされた電極基板は、反射防止機能を有するインナー型タッチパネルに好適に利用できる。
【0097】
[タッチパネル]
本発明のタッチパネル(特に抵抗膜方式タッチパネル)は、前記電極基板を備えている。図2は、本発明のタッチパネルの一例を示す概略断面図である。このタッチパネル10は、上部電極基板11と下部電極基板13とがスペーサー12を介して積層されており、上部電極基板11の透明導電層11aと下部電極基板13の透明導電層13aとが対向し、液晶パネル20の上に配設されている。
【0098】
上部電極基板11は、透明プラスチックフィルムで構成された透明基板11cの一方の面(パネル表側又は上部の面)にハードコート層11dが形成され、他方の面(パネル裏側又は下部の面)にアンチニュートンリング層11bが形成されている。アンチニュートンリング層11bの表面(パネル裏側又は下部の面)には前記透明導電層11aが形成されており、アンチニュートンリング層11bの表面が均一で規則的な凹凸構造を有するため、透明導電層11aの表面もアンチニュートンリング層11bの凹凸構造に追従した凹凸構造を有している。上部電極基板11は、指やペンなどの押圧部材によって押圧することより、透明導電層11aが撓んで下部電極基板13の透明導電層13aと接触して導通し、位置検出が行われる。本発明では、上部電極基板11の透明導電層11aの表面がアンチニュートンリング層11bに追随して均一な凹凸構造を有しているため、上部電極基板11を押圧しても、上部電極基板11とスペーサー12によって形成された空間(空気層)との界面反射光の干渉によるニュートンリングの発生を抑制できる。
【0099】
スペーサー12は、透明樹脂で構成されており、タッチパネルの非押圧時に上部電極基板11と下部電極基板13とを非接触状態に保持するため、透明導電層11a及び13aの表面でパターン化された点状又はドット状に形成されている。このようなスペーサー12は、通常、硬化性樹脂前駆体の項で例示された光硬化性化合物などを用いて光照射に対するマスクを利用したパターニングにより形成される。スペーサーは形成しなくてもよく、形成する場合には、例えば、隣接するスペーサー同士の間隔を、例えば、0.1〜20mm(特に1〜10mm)程度に調整してもよい。スペーサーの形状は、特に限定されず、円柱状、四角柱状、球状などであってもよい。スペーサーの高さは、例えば、1〜100μm程度であり、通常、3〜50μm(特に5〜20μm)程度である。スペーサーの平均径は、例えば、1〜100μm程度であり、通常、10〜80μm(特に20〜50μm)程度である。
【0100】
下部電極基板13は、前記スペーサー12を介在させて、上部電極基板11の下部に配設されており、ガラスで構成された透明基板13cの一方の面(パネル表側又は上部の面)に、透明導電層13aが形成され、他方の面(パネル裏側又は下部の面)にハードコート層13dが形成されている。下部電極基板13の透明導電層13aの表面は平滑であるが、上部電極基板11と同様に、アンチニュートンリング層を形成し、表面に凹凸構造を形成してもよい。上部電極基板11及び下部電極基板13の双方にアンチニュートンリング層を形成することにより、アンチニュートンリング効果を向上できる。一方、上部電極基板11に凹凸構造を形成することなく、下部電極基板13にアンチニュートンリング層を形成してもよい。アンチニュートンリング効果とタッチパネルの下部に配設する表示装置の視認性とを両立できる点からは、一方の電極基板(特に上部電極基板)にアンチニュートンリング層を形成するのが好ましい。透明基板13cは、上部電極基板の透明基板11cとは異なり、可撓性は必要ないため、ガラス基板などの非可撓性材料であってもよいが、透明基板11cと同様の可撓性を有する透明プラスチックフィルムであってもよい。
【0101】
このような上下電極基板を備えたタッチパネル10は、液晶表示(LCD)装置である液晶パネル20の上に配設されている。本発明では、前記アンチニュートンリング層11bは、透過光を等方的に透過して散乱させながら、特定の角度範囲での光散乱強度を向上できるため、ニュートンリングの防止だけでなく、液晶パネル20の視認性をも向上できる。具体的には、液晶パネルの表示部におけるギラツキを抑制できるとともに、透過像の鮮明性に優れ、表示面での文字ボケを抑制できる。
【0102】
なお、液晶表示装置は、外部光を利用して、液晶セルを備えた表示ユニットを照明する反射型液晶表示装置であってもよく、表示ユニットを照明するためのバックライトユニットを備えた透過型液晶表示装置であってもよい。前記反射型液晶表示装置では、外部からの入射光を、表示ユニットを介して取り込み、表示ユニットを透過した透過光を反射部材により反射して表示ユニットを照明できる。反射型液晶表示装置では、前記反射部材から前方の光路内に、偏光板とニュートンリング防止フィルムとを組み合わせたタッチパネルを配設してもよい。
【0103】
透過型液晶表示装置において、バックライトユニットは、光源(冷陰極管などの管状光源,発光ダイオードなどの点状光源など)からの光を一方の側部から入射させて前面の出射面から出射させるための導光板(例えば、断面楔形状の導光板)を備えていてもよい。また、必要であれば、導光板の前面側にはプリズムシートを配設してもよい。
【0104】
タッチパネルの下部に配設する表示装置は、液晶表示装置に限定されず、プラズマディスプレイ装置、有機又は無機EL(エレクトロルミネッセンス)表示装置などの表示装置であってもよい。
【実施例】
【0105】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で得られたニュートンリング防止フィルムを以下の項目で評価した。
【0106】
[ヘイズ及び全光線透過率]
ヘイズメーター(日本電色(株)製、商品名「NDH−5000W」)を用いて、JIS K7136に準拠して測定した。なお、ヘイズの測定は、凹凸構造を有する表面が受光器側となるように配置して測定した。
【0107】
[透過像鮮明度]
ニュートンリング防止フィルムの写像鮮明度を、写像測定器(スガ試験機(株)製、商品名「ICM−1T」)を用いて、光学櫛(櫛歯の幅=0.5mm)で、JIS K7105に基づいて測定した。
【0108】
[透過散乱光強度]
ニュートンリング防止フィルムを透過した光の角度分布を、図1に示すように、He−Neレーザ光源1と、ゴニオメーターに設置した光受光器4を備えた測定装置(レーザ光散乱自動測定装置、ネオアーク(株)製)を用いて測定した。
【0109】
[鉛筆硬度]
JIS K5400に準拠し、荷重500gで測定した。
【0110】
[アンチニュートンリング性]
ニュートンリング防止フィルムのアンチニュートンリング層の上にIn(ITO)をスパッタリングすることにより透明導電層を形成し、上部電極基板とした。このITO処理による透明導電層の厚みは0.02μmであった。更に、基板としてガラス基板を用い、同様のITO処理を行って透明導電層を設けることにより、下部電極基板を作製した。下部電極基板の透明導電層の上に、光硬化性アクリル樹脂(デュポン(株)製、リストン)を塗布して層を設け、パターニングして紫外線露光することによりスペーサーを形成した。このスペーサーは、高さ9μm、直径30μmの円柱で、スペーサー間隔は3mmとした。このようにして作製した上部電極基板と下部電極基板とを透明電極層が対向するように配置することにより、タッチパネルを構成した。上部電極基板と下部電極基板との間の間隔はスペーサーの高さに相当する。タッチパネルの上部電極基板を26g/cmの圧力でペン先によって押圧し、ニュートンリングの発生状況を目視にて確認し、以下の基準で判定した。
【0111】
◎:ニュートンリングの発生がなかった
○:ニュートンリングの発生が若干あるものの、気にならない程度であった
×:ニュートンリングが発生した。
【0112】
[ギラツキの評価]
表示面におけるギラツキの判定は、17インチサイズのLCDモニター(画素数1024×1280;SXGA、解像度96ppi)上に、厚み3mmの透明アクリル板(住友化学(株)製、スミペックス)を載置し、その上に得られたニュートンリング防止フィルムを配設し、白表示として目視にて以下の基準で評価した。なお、用いたLCDモニターの表層側偏光板は、クリアタイプの偏光板であった。
【0113】
◎:ギラツキが感じられない
○:ギラツキが僅かに感じられる
×:ギラツキが感じられる。
【0114】
[文字ボケの評価]
表示面における文字ボケの判定は、17インチサイズのLCDモニター(画素数1024×1280;SXGA、解像度96ppi)上に、得られたニュートンリング防止フィルムを配設し、白背景に黒文字を表示させて目視にて以下の基準で評価した。
【0115】
◎:文字ボケが感じられない
○:文字ボケが僅かに感じられる
×:文字ボケが感じられる。
【0116】
[打鍵耐久性]
実施例1又は比較例1で得られたニュートンリング防止フィルム(サイズ100mm×70mm)のアンチニュートンリング層の上にIn(ITO)をスパッタリングすることにより透明導電層を形成し、上部電極基板とした。このITO処理による透明導電層の厚みは0.02μmであった。更に、基板としてガラス基板を用い、同様のITO処理を行って透明導電層を設けることにより、下部電極基板を作製した。下部電極基板の透明導電層の上に、光硬化性アクリル樹脂(デュポン(株)製、リストン)を塗布して層を設け、パターニングして紫外線露光することによりスペーサーを形成した。このスペーサーは、高さ9μm、直径30μmの円柱で、スペーサー間隔は3mmとした。このようにして作製した上部電極基板と下部電極基板とを透明電極層が対向するように配置することにより、タッチパネルを構成した。このタッチパネルについて、打鍵試験機((株)タッチパネル研究所製「201型−300−3」)を用いて打鍵耐久性を評価した。前記打鍵試験機は、仮想指としてシリコーンゴム(3mmφ)を備え、上部電極基板を仮想指で打鍵し、下部電極基板と接触させる打鍵を繰り返して、負荷電圧による波形を検出して、打鍵耐久性を評価する試験機であり、以下の条件で測定した。
【0117】
打鍵荷重:250g
打鍵速度:10回/秒(Hz)
負荷電圧:3V
プルアップ抵抗:1kΩ。
【0118】
実施例1
側鎖に重合性不飽和基を有するアクリル樹脂[(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4−エポキシシクロヘキセニルメチルアクリレートを付加させた化合物;ダイセル化学工業(株)製、商品名「サイクロマーP(ACA)Z321M」、固形分44重量%、溶剤:1−メトキシ−2−プロパノール(MMPG)(沸点119℃)]15.8重量部、セルロースアセテートプロピオネート(アセチル化度=2.5%、プロピオニル化度=46%、ポリスチレン換算数平均分子量75,000;イーストマン社製、商品名「CAP−482−20」)1.7重量部、六官能アクリル系UV硬化モノマー(ダイセルサイテック(株)製、商品名「DPHA」)19.6重量部、三官能アクリル系UV硬化モノマー(ダイセルサイテック(株)製、商品名「PETIA」)8.4重量部、フッ素含有UV硬化性化合物(Omnova Solution社製、商品名「Polyfox3320」)0.04重量部、光開始剤(チバ・ジャパン(株)製、商品名「イルガキュア184」)0.3重量部を、メチルエチルケトン(MEK)(沸点80℃)39.2重量部、1−ブタノール(BuOH)(沸点113℃)11.4重量部、及び1−メトキシ−2−プロパノール(MMPG)(沸点119℃)3.8重量部の混合溶媒に溶解した。この溶液を、ワイヤーバー♯28を用いてPETフィルム(東レ(株)製、商品名「U46」、厚み125μm)上に流延した後、50℃のオーブン内で30秒間放置し、溶媒を蒸発させて厚み約12μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:800mJ/cm)に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。
【0119】
得られたニュートンリング防止フィルムの評価結果を表1に示す。さらに、透過光散乱測定結果を図3に示す。この図は、横軸の散乱角度(図1におけるθ;すなわち0度は透過直進光を示す)に対して、縦軸は散乱光強度(相対強度測定のため単位はない)をプロットしたグラフである。図3から明らかなように、直進透過光とは分離した0.7〜1.7°の角度範囲に散乱光のピークが見られ、散乱極大位置は1.3°であった。
【0120】
得られたニュートンリング防止フィルムの表面をレーザー顕微鏡で観察した結果を図4に示す。図4から、凸部は、共連続構造状又は独立した島状に形成されており、かつ視野内で偏りなく均一に存在している様子が観察できる。この凹凸構造の平均的な周期が、図3における散乱光の極大に対応していると考えられる。
【0121】
さらに、得られたニュートンリング防止フィルムを打鍵試験(n=3)に供した結果、100万回の打鍵試験後も矩形波の乱れが若干あった程度であり、透明電極の機能を充分に保持している。図5〜7に、それぞれ、打鍵試験開始時、打鍵50万回後、及び打鍵100万回後における波形(時間−電圧)を示す。
【0122】
実施例2
側鎖に重合性不飽和基を有するアクリル樹脂[サイクロマーP(ACA)Z321M]14.5重量部、セルロースアセテートプロピオネート(CAP−482−20)1.5重量部、六官能アクリル系UV硬化モノマー(DPHA)25.4重量部、三官能アクリル系UV硬化モノマー(PETIA)4.2重量部、フッ素含有UV硬化性化合物(Polyfox3320)0.12重量部、光開始剤(イルガキュア184)0.3重量部を、MEK39.1重量部、BuOH11.0重量部及びMMPG4.4重量部の混合溶媒に溶解した。この溶液を、ワイヤーバー♯26を用いてPETフィルム(U46)上に流延した後、65℃のオーブン内で60秒間放置し、溶媒を蒸発させて厚み約10μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。
【0123】
得られたニュートンリング防止フィルムの評価結果を表1に示す。さらに、透過光散乱測定結果を図3に示す。図3から明らかなように、直進透過光とは分離した0.5〜1.5°の角度範囲に散乱光のピークが見られ、散乱極大位置は0.7°であった。
【0124】
得られたニュートンリング防止フィルムの表面をレーザー顕微鏡で観察した結果を図8に示す。図8から、凸部は、共連続構造状又は独立した島状に形成されており、かつ視野内で偏りなく均一に存在している様子が観察できる。
【0125】
実施例3
側鎖に重合性不飽和基を有するアクリル樹脂[サイクロマーP(ACA)Z321M]15.9重量部、セルロースアセテートプロピオネート(CAP−482−20)2.5重量部、六官能アクリル系UV硬化モノマー(DPHA)15.5重量部、光開始剤(イルガキュア184)0.5重量部、光開始剤(チバ・ジャパン(株)製、商品名「イルガキュア907」)0.5重量部を、MEK50.3重量部、BuOH13.5重量部及びMMPG2.3重量部の混合溶媒に溶解した。この溶液を、ワイヤーバー♯24を用いてPETフィルム(東洋紡(株)製、商品名「A4300」、厚み188μm、コロナ処理済み)上に流延した後、60℃のオーブン内で60秒間放置し、溶媒を蒸発させて厚み約8μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。
【0126】
得られたニュートンリング防止フィルムの評価結果を表1に示す。さらに、透過光散乱測定結果を図3に示す。図3から明らかなように、直進透過光とは分離した0.5〜1.6°の角度範囲に散乱光のピークが見られ、散乱極大位置は1.1°であった。
【0127】
得られたニュートンリング防止フィルムの表面をレーザー顕微鏡で観察した結果を図9に示す。図9から、凸部は、共連続構造状又は独立した島状に形成されており、かつ視野内で偏りなく均一に存在している様子が観察できる。
【0128】
実施例4
側鎖に重合性不飽和基を有するアクリル樹脂[サイクロマーP(ACA)Z321M]13.6重量部、セルロースアセテートプロピオネート(CAP−482−20)1.5重量部、六官能アクリル系UV硬化モノマー(DPHA)17.5重量部、光開始剤(イルガキュア184)0.5重量部、光開始剤(イルガキュア907)0.5重量部を、MEK50.3重量部、BuOH13.5重量部及びMMPG3.6重量部の混合溶媒に溶解した。この溶液を、ワイヤーバー♯24を用いてPETフィルム(A4300)上に流延した後、60℃のオーブン内で60秒間放置し、溶媒を蒸発させて厚み約8μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。
【0129】
得られたニュートンリング防止フィルムの評価結果を表1に示す。さらに、透過光散乱測定結果を図3に示す。図3から明らかなように、直進透過光とは分離した1.1〜2.8°の角度範囲に散乱光のピークが見られ、散乱極大位置は2.1°であった。
【0130】
実施例5
側鎖に重合性不飽和基を有するアクリル樹脂[サイクロマーP(ACA)Z321M]13.6重量部、セルロースアセテートプロピオネート(CAP−482−20)2.0重量部、六官能アクリル系UV硬化モノマー(DPHA)12.0重量部、光開始剤(イルガキュア184)0.28重量部、光開始剤(イルガキュア907)0.28重量部を、テトラヒドロフラン(THF)70.4重量部及びMMPG2.0重量部の混合溶媒に溶解した。この溶液を、ワイヤーバー♯20を用いてPETフィルム(A4300)上に流延した後、80℃のオーブン内で30秒間放置し、溶媒を蒸発させて厚み約6μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。得られたニュートンリング防止フィルムの評価結果を表1に示す。
【0131】
実施例6
撹拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた1000ml反応容器に、酢酸ブチル270.0gを投入し、120℃に加温した。この反応容器に、アゾ基含有ポリシロキサン化合物(和光純薬工業(株)製、商品名「VPS−1001N」、ポリシロキサン鎖の分子量10,000、固形分50%)243.9g、シクロヘキシルメタクリレート144.0g、スチレン43.7g、ヒドロキシルエチルメタクリレート52.3g及び酢酸ブチル343.3gの混合溶液を、窒素雰囲気下で3時間かけて等速で滴下した後、120℃で30分間混合して反応させた。さらに、t−ブチルペルオキシ−2−エチルヘキサノエート0.60gを含む酢酸ブチル溶液15.0gを、30分間かけて等速で滴下した後、120℃で1時間混合して反応させ、シリコーンアクリルブロック共重合体を得た。
【0132】
また、別途用意した撹拌羽根、窒素導入管、冷却管及び滴下漏斗を備えた1000ml反応容器に、プロピレングリコールモノメチルエーテル200gを投入し、110℃に加温した。この反応容器に、イソボロニルメタクリレート280.8g、メチルメタクリレート4.2g、メタクリル酸15.0g及びプロピレングリコールモノメチルエーテル340.0gの混合液を、窒素雰囲気下で3時間かけて等速で滴下した後、110℃で30分間混合して反応させた。さらに、t−ブチルペルオキシ−2−エチルヘキサノエート3.0gを含むプロピレングリコールモノメチルエーテル溶液120gを、30分間かけて等速で滴下した後、さらにt−ブチルペルオキシ−2−エチルヘキサノエート0.3gを含むプロピレングリコールモノメチルエーテル溶液25.5gを30分間滴下して、アクリル共重合体を得た。
【0133】
得られたシリコーンアクリルブロック共重合体3.0重量部、アクリル共重合体4.5重量部、三官能アクリル系UV硬化モノマー(PETIA)17.5重量部、光開始剤(イルガキュア184)0.25重量部、光開始剤(イルガキュア907)0.25重量部を、溶媒であるアニソール37.5重量部及びMEK37.5重量部の混合溶媒に溶解して溶液を作製した。この溶液を、ワイヤーバー♯24を用いてPETフィルム(A4300)上に流延した後、80℃のオーブン内で30秒間加熱し、溶媒を蒸発させて厚み約8μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。得られたニュートンリング防止フィルムの評価結果を表1に示す。
【0134】
比較例1
六官能アクリル系UV硬化モノマー(DPHA)15.4重量部、三官能アクリル系UV硬化モノマー(PETIA)15.4重量部をMEK52.0重量部及びMMPG13.0重量部の混合溶媒に溶解し、ポリスチレンビーズ(総研化学(株)製、平均粒子径4μm)4.2重量部を添加した。この塗布液に、光開始剤(イルガキュア184)0.2重量部及び光開始剤(イルガキュア907)0.2重量部を溶解した。この溶液を、ワイヤーバー♯24を用いてPETフィルム(A4300)上に流延した後、60℃のオーブン内で30秒間放置し、溶媒を蒸発させて厚み約10μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。得られたニュートンリング防止フィルムの評価結果を表1に示す。
【0135】
さらに、得られたニュートンリング防止フィルムを打鍵試験(n=2)に供した結果、いずれのフィルムも10万回あたりから矩形波の波形が崩れ始め、50万回前後では、波形が完全に崩れてしまい、透明電極の機能を保持できなかった。図10〜12に、それぞれ、打鍵試験開始時、打鍵50万回後、及び打鍵100万回後における波形(時間−電圧)を示す。この結果は、凹凸構造が硬質の微粒子で形成されているため、透明導電層に割れが発生したと推定できる。
【0136】
比較例2
六官能アクリル系UV硬化モノマー(DPHA)16.8重量部、三官能アクリル系UV硬化モノマー(PETIA)16.8重量部をMEK52.0重量部及びMMPG13.0重量部の混合溶媒に溶解し、ポリスチレンビーズ(総研化学(株)製、平均粒子径4μm)1.4重量部を添加した。この塗布液に、光開始剤(イルガキュア184)0.2重量部及び光開始剤(イルガキュア907)0.2重量部を溶解した。この溶液を、ワイヤーバー♯24を用いてPETフィルム(A4300)上に流延した後、60℃のオーブン内で30秒間放置し、溶媒を蒸発させて厚み約10μmのアンチニュートンリング層を形成した。その後、コートフィルムを紫外線照射装置に通して、紫外線硬化処理を行い、ハードコート性及び表面凹凸構造を有する層を形成した。得られたニュートンリング防止フィルムの評価結果を表1に示す。
【0137】
【表1】

【0138】
表1の結果から明らかなように、実施例のニュートンリング防止フィルムは、ニュートンリングの発生を抑制するとともに、表示部の視認性も優れている。特に、実施例1〜3のフィルムは、光学的特性に優れ、なかでも実施例1及び2のフィルムは硬度も高い。一方、比較例のニュートンリング防止フィルムは、アンチニュートンリング及び視認性を向上できない。
【産業上の利用可能性】
【0139】
本発明のニュートンリング防止フィルムは、パーソナルコンピューター、テレビ、携帯電話、遊技機器、モバイル機器、時計、電卓などの電気・電子又は精密機器の表示部において、表示装置(液晶表示装置、プラズマディスプレイ装置、有機又は無機EL表示装置など)と組み合わせて用いられるタッチパネル(特に抵抗膜方式タッチパネル)に利用できる。
【符号の説明】
【0140】
1…白色平行光光源
2…NDフィルター
3…試料
4…検出器
10…タッチパネル
11…上部電極基板
12…スペーサー
13…下部電極基板
11a,13a…透明導電層
11b…アンチニュートンリング層
11c,13c…透明基板
11d,13d…ハードコート層
20…液晶パネル

【特許請求の範囲】
【請求項1】
1又は複数のポリマーと、1又は複数の硬化した硬化性樹脂前駆体とで構成され、かつ相分離構造を有するアンチニュートンリング層を含むフィルムであって、前記アンチニュートンリング層が、表面に凹凸構造を有しており、入射光を等方的に透過して散乱し、かつ散乱光強度の極大値を示す散乱角が0.1〜10°であるとともに、全光線透過率が70〜100%であるニュートンリング防止フィルム。
【請求項2】
全光線透過率が80〜100%であり、0.5mm幅の光学櫛を用いた写像性測定器で測定した透過像鮮明度が60〜100%であり、かつヘイズが1〜20%であるアンチニュートンリング層で構成されている請求項1記載のニュートンリング防止フィルム。
【請求項3】
アンチニュートンリング層が、複数のポリマー同士、ポリマーと硬化性樹脂前駆体、又は複数の硬化性樹脂前駆体同士を液相からのスピノーダル分解により相分離した構造である請求項1又は2記載のニュートンリング防止フィルム。
【請求項4】
ポリマーが、液相からのスピノーダル分解により相分離可能な複数のポリマーで構成されるとともに、複数のポリマーのうち、少なくとも1つのポリマーが、硬化性樹脂前駆体の硬化反応に関与する官能基を有し、かつ硬化性樹脂前駆体が、複数のポリマーのうち、少なくとも一種のポリマーと相溶性を有する請求項1〜3のいずれかに記載のニュートンリング防止フィルム。
【請求項5】
液相からのスピノーダル分解により相分離する複数のポリマーが、セルロース誘導体と、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂及びポリエステル系樹脂から選択された少なくとも一種の樹脂とで構成され、前記ポリマーのうち少なくとも1つのポリマーが、重合性基を有するとともに、硬化性樹脂前駆体が、少なくとも2つの重合性不飽和結合を有する多官能単量体で構成されている請求項4記載のニュートンリング防止フィルム。
【請求項6】
アンチニュートンリング層が、ポリマーと硬化性樹脂前駆体とを5/95〜60/40(重量比)の割合で含む請求項1〜5のいずれかに記載のニュートンリング防止フィルム。
【請求項7】
アンチニュートンリング層が透明支持体上に形成されている請求項1〜6のいずれかに記載のニュートンリング防止フィルム。
【請求項8】
抵抗膜方式タッチパネルの電極基板であって、請求項7記載のニュートンリング防止フィルムのアンチニュートンリング層の上に透明導電層が形成された電極基板。
【請求項9】
アンチニュートンリング層の散乱光強度の極大値を示す散乱角が0.5〜2°であり、かつヘイズが1〜10%である請求項8記載の電極基板。
【請求項10】
アンチニュートンリング層が、セルロース誘導体と、重合性基を有する(メタ)アクリル系樹脂と、3以上の(メタ)アクリロイル基を有する硬化性化合物と、フッ素含有硬化性化合物とで構成されている請求項8又は9記載の電極基板。
【請求項11】
透明支持体が透明プラスチックフィルムで構成され、かつ指又は押圧部材と接触する側の上部電極基板である請求項8〜10のいずれかに記載の電極基板。
【請求項12】
請求項8〜11のいずれかに記載の電極基板を備える抵抗膜方式タッチパネル。
【請求項13】
請求項8〜11のいずれかに記載の電極基板を用いて抵抗膜方式タッチパネルにおけるニュートンリングの発生を防止する方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図4】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−2820(P2011−2820A)
【公開日】平成23年1月6日(2011.1.6)
【国際特許分類】
【出願番号】特願2010−112333(P2010−112333)
【出願日】平成22年5月14日(2010.5.14)
【出願人】(000002901)ダイセル化学工業株式会社 (1,236)
【Fターム(参考)】