説明

リッジ型半導体レーザ及びその製造方法

【課題】リッジ型半導体レーザを精度よく簡易的に製造することができる製造方法等を提供する。
【解決手段】リッジ型半導体レーザの製造方法は、活性層13とエッチングストップ層17を含む半導体積層23を形成する半導体積層形成工程S1と、第1半導体積層エッチング工程S3と、半導体部形成工程S5と、リッジ導波路部形成工程S7と、半導体回折格子要素形成工程S9とを備える。リッジ導波路部形成工程S7における第1マスク部パターニング工程S7−1と半導体回折格子要素形成工程S9における第2マスク部パターニング工程S9−1とは、一つのマスターパターン40Mからのパターン転写によって一括して行われる。リッジ導波路部形成工程S7における第2半導体積層エッチング工程S7−3と、半導体回折格子要素形成工程S9における第1半導体部エッチング工程S9−3とは、一括して行われる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リッジ型半導体レーザ及びその製造方法に関する。
【背景技術】
【0002】
下記非特許文献1には、分布ブラッグ反射型(Distributed Bragg Reflector, 以下「DBR」という場合がある)半導体レーザの製造方法が記載されている。この製造方法においては、まず、半導体基板の主面全体上に、活性層を含む半導体レーザのための半導体積層を形成する。その後、電子ビーム露光とリフトオフプロセスにより、半導体レーザ部及びDBR反射器を規定するためのTiマスクを形成し、これをマスクとして用いて半導体積層をエッチングすることにより、半導体基板上に半導体レーザ部とDBR反射器とを形成している。この製造方法によれば、半導体レーザ部とDBR反射器とは、半導体基板上に同様の半導体積層構造を有する。
【0003】
下記非特許文献2には、リッジ型半導体レーザ部と、リング共振器等を含むフィルタ部とが集積された半導体集積デバイスが記載されている。また、この非特許文献2には、半導体基板上に形成された活性層を含む半導体レーザのための半導体積層に対する2回のエッチング工程によって、このような半導体集積デバイスを製造する方法が記載されている。この製造方法では、1回目のエッチング工程において、半導体積層の第1の領域を第1の深さだけエッチングして一対のストライプ状の溝部を形成することにより、リッジ導波路部を形成する。これにより、リッジ型半導体レーザ部が形成される。続いて、2回目のエッチング工程において、半導体積層の第1の領域に隣接する第2の領域を、第1の深さよりも深い第2の深さだけ所定形状にエッチングすることにより、ハイメサ形状を有するフィルタ部を形成する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】M. M. Raj et. al., “High-ReflectivitySemiconductor/Benzocyclobutene Bragg Reflector Mirrors for GaInAsP/InP Lasers”,Jpn. J. Appl. Phys., The Japan Society of Applied Physics, April 2001, Vol. 40,p.2269-2277, Part 1, No. 4A
【特許文献2】T. Okamoto et. al.,“Monolithic Integration of a 10 Gb/s Mach-Zehnder Modulator and a WidelyTunable Laser based on a 2-Ring Loop-Filter”, 2010 International Conferenceon Indium Phosphide and Related Materials, IEEE, 2010, p.390-393 (ThA1-3)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記非特許文献1に記載のDBR半導体レーザにおいては、DBR反射器は、半導体レーザ部の活性層と同様の構成の活性層を含んでいる。そのため、半導体レーザ部で発生した光の一部は、DBR反射器の活性層で吸収されてしまうため、DBR反射器での反射率が低下してしまう。その結果、半導体レーザの出力値が低下したり、しきい値電流が増加したりといった問題があった。
【0006】
また、特にリッジ型半導体レーザに製造においては、製造工程が複雑であり、半導体レーザ部とDBR反射器とを精度よく位置合わせすることが困難であるという問題があった。即ち、このような半導体レーザを製造する際には、例えば、半導体基板の主面全体上に半導体レーザのための半導体積層を形成する工程と、上記半導体積層のうち、半導体レーザ部となるべき領域の一部をエッチングしてリッジ導波路部を形成するリッジ導波路部形成工程と、上記半導体積層のうち、DBR反射器となるべき他の領域の一部をエッチングしてDBR反射器の周期構造を形成するDBR反射器形成工程と、を行うことができる。
【0007】
しかし、リッジ導波路部は、半導体レーザ部の活性層よりも上部に形成する必要があるのに対して、DBR反射器は、半導体レーザ部の活性層と同一高さの領域を含む領域に形成する必要がある。そのため、リッジ導波路部形成工程で必要な半導体積層のエッチング深さと、DBR反射器形成工程で必要な半導体積層のエッチング深さとは異なるため、これらの工程を一回のエッチングによってまとめて行うことは困難であった。
【0008】
そのため、上記非特許文献2におけるリッジ型半導体レーザ部とリング共振器等を含むフィルタ部とを含む半導体集積デバイスの製造方法と同様に、リッジ導波路部形成工程とDBR反射器形成工程とを、別個の2つのエッチング工程として行う必要があった。その結果、工程が複雑になる上、1回目のエッチングのためのマスクと、2回目のエッチングのためのマスクとの間に位置ずれが生じてしまうため、リッジ型半導体レーザ部とDBR反射器とを精度よく位置合わせすることが困難であるという問題があった。
【0009】
本発明は、このような課題に鑑みてなされたものであり、反射率の高いDBR反射器を有するリッジ型半導体レーザ、及び、リッジ型半導体レーザを精度よく簡易的に製造することができる製造方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上述の課題を解決するため、本発明に係るリッジ型半導体レーザの製造方法は、リッジ型半導体レーザ部と当該リッジ型半導体レーザ部と光学的に結合する分布ブラッグ反射器とを備えるリッジ型半導体レーザの製造方法であって、半導体基板の主面におけるリッジ型半導体レーザ部が形成されるべき第1面と分布ブラッグ反射器が形成されるべき第2面上に、活性層と、活性層上に設けられたエッチングストップ層と、を含む半導体積層を形成する半導体積層形成工程と、第2面上の半導体積層を、当該半導体積層中の少なくともエッチングストップ層及び活性層が除去されるようにエッチングする第1半導体積層エッチング工程と、第1半導体積層エッチング工程後に、第2面上に、半導体部を形成する半導体部形成工程と、半導体部形成工程後に、第1面上の半導体積層の一部をエッチングすることにより、当該半導体積層にリッジ導波路部を形成するリッジ導波路部形成工程と、第2面上の半導体部の一部をエッチングすることにより、第2面上にリッジ型半導体レーザ部の共振方向に沿って周期的に設けられた複数の半導体回折格子要素を形成する半導体回折格子要素形成工程と、半導体回折格子要素形成工程後に、複数の半導体回折格子要素間に複数の樹脂回折格子要素を形成することにより、複数の半導体回折格子要素と複数の樹脂回折格子要素とからなる上記分布ブラッグ反射器の回折格子領域を形成する回折格子形成工程と、を備え、エッチングストップ層は、半導体部とは異なる半導体材料で構成され、リッジ導波路部形成工程は、半導体積層上に形成された第1マスク部をパターニングする第1マスク部パターニング工程と、パターニングされた第1マスク部をマスクとして半導体積層を前記エッチングストップ層に達するまでエッチングすることにより、エッチングストップ層に達する第1の深さだけ半導体積層の一部を除去し、リッジ導波路を得る第2半導体積層エッチング工程と、を有し、半導体回折格子要素形成工程は、半導体部上に形成された第2マスク部をパターニングする第2マスク部パターニング工程と、パターニングされた第2マスク部をマスクとして半導体部をエッチングすることにより、第1の深さよりも深い第2の深さだけ半導体部の一部を除去し、複数の半導体回折格子要素を形成する第1半導体部エッチング工程と、を有し、第1マスク部パターニング工程と第2マスク部パターニング工程とは、一つのマスターパターンからのパターン転写によって一括して行われ、リッジ導波路部形成工程における第2半導体積層エッチング工程と、半導体回折格子要素形成工程における第1半導体部エッチング工程とが、一括して行われることを特徴とする。
【0011】
本発明に係るリッジ型半導体レーザの製造方法によれば、得られるリッジ型半導体レーザにおいて、リッジ型半導体レーザ部の活性層で生じた光は、当該リッジ型半導体レーザ部と光学的に結合する分布ブラッグ反射器に入射する。分布ブラッグ反射器の回折格子領域の回折作用により、分布ブラッグ反射器に入射した光のうち、特定の波長を有する光のみが反射され、活性層内に戻される。このような分布ブラッグ反射器の作用により、特定の波長においてレーザ発振が起こる。
【0012】
そして、本発明に係るリッジ型半導体レーザの製造方法においては、第2半導体積層エッチング工程で半導体積層をエッチングする深さ(第1の深さ)は、第1半導体部エッチング工程で半導体部をエッチングする深さ(第2の深さ)と異なる。しかし、半導体積層はエッチングストップ層を含むのに対して、半導体部はエッチングストップ層を含まない上に、エッチングストップ層は、半導体部とは異なる半導体材料で形成されている。そのため、エッチングストップ層のエッチングレートが半導体部のエッチングレートよりも小さくなるようなエッチング法を採用することにより、第2半導体積層エッチング工程と第1半導体部エッチング工程とを一括して行うことができる。
【0013】
これにより、第2半導体積層エッチング工程と第1半導体部エッチング工程とを別個に行う場合と比較して、工程が簡易化される。また、第2半導体積層エッチング工程の前に行う第1マスク部パターニング工程と、半導体部エッチング工程の前に行う第2マスク部パターニング工程とは、一つのマスターパターンからの転写によって一括して行われるため、リッジ型半導体レーザ部と分布ブラッグ反射器とを精度よく位置合わせすることができる。
【0014】
その結果、本発明に係るリッジ型半導体レーザの製造方法によれば、リッジ型半導体レーザを精度よく簡易的に製造することができる。
【0015】
さらに、本発明に係るリッジ型半導体レーザの製造方法は、半導体基板の主面における第1面と第2面との間の第3面上に、介在光導波路部を形成する介在光導波路部形成工程をさらに備え、半導体積層形成工程においては、第1面及び第2面上に加えて、第3面上にも半導体積層を形成し、第1半導体積層エッチング工程においては、第2面上の半導体積層に加えて、第3面上の半導体積層を、当該半導体積層中の少なくともエッチングストップ層及び活性層が除去されるようにエッチングし、半導体部形成工程においては、第2面上に加えて、第3面上にも半導体部を形成し、介在光導波路部形成工程は、第3面上の半導体部上に形成された第3マスク部をパターニングする第3マスク部パターニング工程と、パターニングされた第3マスク部をマスクとして半導体部をエッチングすることにより、リッジ型半導体レーザ部と分布ブラッグ反射器との間に介在する介在光導波路部を形成する第2半導体部エッチング工程と、を有し、第1マスク部パターニング工程と、第2マスク部パターニング工程と、第3マスク部パターニング工程とは、一つのマスターパターンからのパターン転写によって一括して行われ、リッジ導波路部形成工程における第2半導体積層エッチング工程と、半導体回折格子要素形成工程における第1半導体部エッチング工程と、介在光導波路部形成工程における第2半導体部エッチング工程とが、一括して行われ、介在光導波路部のバンドギャップは、活性層のバンドギャップよりも大きいことが好ましい。
【0016】
これにより、介在光導波路部の屈折率は、活性層の屈折率よりも小さくなる。そのため、介在光導波路部は、低損失の光導波路として機能するため、このような介在光導波路部が設けられていない場合と比較して、活性層から分布ブラッグ反射器へ光が導波する際の、これらの間の領域における光の散乱損失を低下させることができる。その結果、レーザ出力値を増加させ、しきい値電流を低下させることができる。
【0017】
その上、介在光導波路部形成工程における第2半導体部エッチング工程は、リッジ導波路部形成工程における第2半導体積層エッチング工程、及び、半導体回折格子要素形成工程における第1半導体部エッチング工程と一括して行われる。そのため、介在光導波路部形成工程をさらに行っても、リッジ型半導体レーザを簡易的に製造することができる。また、介在光導波路部形成工程における第3マスク部パターニング工程は、一つのマスターパターンからのパターン転写によって、第1マスク部パターニング工程、及び、第2マスク部パターニング工程と一括して行われる。そのため、介在光導波路部形成工程をさらに行っても、リッジ型半導体レーザ部、分布ブラッグ反射器、及び、介在光導波路部を精度よく位置合わせすることができるため、リッジ型半導体レーザを精度よく製造することができる。
【0018】
さらに、本発明に係るリッジ型半導体レーザの製造方法において、エッチングストップ層は、アルミニウム含有の半導体材料で構成され、リッジ導波路部形成工程における第2半導体積層エッチング工程と、半導体回折格子要素形成工程における第1半導体部エッチング工程は、メタンガスと水素ガスの混合ガスを用いた反応性イオンエッチング法によって行われることが好ましい。これにより、第2半導体積層エッチング工程及び半導体部エッチング工程において、エッチングストップ層のエッチングレートは半導体部のエッチングレートよりも特に小さくなる。その結果、第2半導体積層エッチング工程及び半導体部エッチング工程を一括して行うことが容易となる。
【0019】
さらに、本発明に係るリッジ型半導体レーザの製造方法において、エッチングストップ層の厚さは、100nm以上、150nm以下であることが好ましい。エッチングストップ層の厚さを100nm以上とすることにより、第2半導体積層エッチング工程及び半導体部エッチング工程を一括して行う際、半導体積層のエッチングストップ層より下部の層までエッチングされてしまうことを容易に防ぐことができる。また、エッチングストップ層の厚さを150nm以下とすることにより、半導体積層の高抵抗化を十分に抑制することができる。
【0020】
さらに、本発明に係るリッジ型半導体レーザの製造方法は、半導体回折格子要素形成工程後、かつ、回折格子形成工程の前に、半導体回折格子要素の露出面に絶縁層を形成する絶縁層形成工程をさらに備えることが好ましい。これにより、半導体回折格子要素と樹脂回折格子要素との間には絶縁層が介在することになる。その結果、樹脂回折格子要素が半導体回折格子要素から剥離することを抑制することができる。
【0021】
また、上述の課題を解決するため、本発明に係るリッジ型半導体レーザは、半導体基板の主面上に設けられた活性層と、活性層上に設けられたリッジ導波路部と、を有するリッジ型半導体レーザ部と、リッジ型半導体レーザ部の共振方向の端面と光学的に結合するように半導体基板上に設けられた分布ブラッグ反射器と、を備え、リッジ導波路部は、半導体基板の主面と交差する方向に沿って突出すると共に、共振方向に沿って延び、分布ブラッグ反射器は、共振方向に沿って交互に周期的に設けられた複数の半導体回折格子要素と複数の樹脂回折格子要素とを含む回折格子領域を有し、半導体基板の主面から回折格子領域までの距離は、半導体基板の主面からリッジ導波路部までの距離よりも短く、回折格子領域の複数の半導体回折格子要素のバンドギャップは、活性層のバンドギャップよりも大きいことを特徴とする。
【0022】
本発明に係るリッジ型半導体レーザにおいては、活性層を含むリッジ型半導体レーザ部の共振方向の端面と分布ブラッグ反射器とが、光学的に結合するように構成される。従って、リッジ型半導体レーザ部の活性層で生じた光は、リッジ型半導体レーザ部の共振方向の端面から出射し、この端面と光学的に結合する分布ブラッグ反射器(以下、「DBR反射器」という場合がある)に入射する。DBR反射器の回折格子領域の回折作用により、DBR反射器に入射した光のうち、特定の波長を有する光のみが反射され、活性層内に戻される。このようなDBR反射器の作用により、特定の波長においてレーザ発振が起こる。そして、回折格子領域の複数の半導体回折格子要素のバンドギャップは、活性層のバンドギャップよりも大きいため、活性層で生じて上記端面から出射し、DBR反射器に入射した光が、複数の半導体回折格子要素で吸収されることは抑制される。そのため、半導体回折格子要素での光の吸収に起因したDBR反射器での光の反射率の低下は抑制される。その結果、本発明に係るリッジ型半導体レーザのDBR反射器の反射率は高くなる。
【0023】
さらに、本発明に係るリッジ型半導体レーザは、リッジ型半導体レーザ部の共振方向の端面と分布ブラッグ反射器との間に設けられた介在光導波路部をさらに備え、介在光導波路部のバンドギャップは、活性層のバンドギャップよりも大きいことが好ましい。
【0024】
この場合、介在光導波路部の屈折率は、DBR反射器の一部を構成する樹脂(樹脂回折格子要素)の屈折率と活性層の屈折率との中間の値を有する。つまり、介在光導波路部と活性層との屈折率差は、DBR反射器の一部を構成する樹脂(樹脂回折格子要素)と活性層との屈折率差より小さい。そのため、このような介在光導波路部が設けられておらず、活性層とDBR反射器(またはDBR反射器の一部を構成する樹脂)とが直接接続されている場合と比較して、活性層からDBR反射器へ光が導波する際の、これらの間の領域における光の散乱損失を低下させることができる。さらに、介在光導波路部のバンドギャップは、活性層のバンドギャップよりも大きいため、介在光導波路部は、低損失の光導波路として機能する。その結果、レーザ出力値を増加させ、しきい値電流を低下させることができる。
【0025】
さらに、本発明に係るリッジ型半導体レーザにおいては、上記介在光導波路部の共振方向に沿った長さは、2μm以上、5μm以下であることが好ましい。この長さが2μm以上である場合、上述のような活性層と分布ブラッグ反射器の間の領域における光の散乱損失を低下させる効果が特に有効に発揮される。また、この長さが5μm以下である場合、介在光導波路部自体による光の吸収量を十分に低くすることができる。
【0026】
さらに、本発明に係るリッジ型半導体レーザにおいては、分布ブラッグ反射器の回折格子領域は、2次の回折格子として使用されることが好ましい。これにより、分布ブラッグ反射器の回折格子領域において交互に設けられた複数の半導体回折格子要素と複数の樹脂回折格子要素の周期を大きくすることができる。そのため、分布ブラッグ反射器の製造が容易になる。
【0027】
さらに、本発明に係るリッジ型半導体レーザにおいては、リッジ型半導体レーザ部は、リッジ型半導体レーザ部の共振方向に沿って周期的に屈折率が変化する回折格子を含むことが好ましい。これにより、リッジ型半導体レーザの発振波長は、当該リッジ型半導体レーザ部の回折格子によって決定される。このため回折格子の周期で決まる単一波長(単一モード)のレーザ光を得ることができる。このとき、分布ブラッグ反射器の回折格子領域は、従来の半導体レーザ、とくに分布帰還型(DFB型)半導体レーザにおける高反射膜(HR膜)コート付き端面反射ミラーと同様の機能を有することができる。しかし、当該分布ブラッグ反射器の回折格子領域の反射率は、HR膜の反射率よりも、容易に高くすることができる。さらに、この高い反射率が得られる波長帯域は、HR膜よりも、格段に広いものとすることができる。従って、リッジ型半導体レーザ部に注入される電流の変化や、周囲の温度の変化等によりリッジ型半導体レーザ部LDから出射される光の波長が変化した場合でも、DBR反射器Rの反射率は、ほとんど変化しない。故に、広い電流範囲、または広い温度範囲で、安定して動作することができる。
【0028】
さらに、本発明に係るリッジ型半導体レーザにおいては、半導体回折格子要素の共振方向と直交する方向に沿った幅は、リッジ導波路部の共振方向と直交する方向に沿った幅よりも広く、介在光導波路部の共振方向と直交する方向に沿った幅は、リッジ導波路部の共振方向と直交する方向に沿った幅よりも広いことが好ましい。
【0029】
これにより、活性層から出射する光が、リッジ導波路部の幅よりも広い幅を有した状態で介在光導波路部及び分布ブラッグ反射器に向かって導波しても、当該光の大部分を介在光導波路部及び分布ブラッグ反射器に到達させることができる。その結果、レーザ出力値を増加させ、しきい値電流を低下させることができる。
【発明の効果】
【0030】
本発明によれば、反射率の高いDBR反射器を有するリッジ型半導体レーザ、及び、リッジ型半導体レーザを精度よく簡易的に製造することができる製造方法が提供される。
【図面の簡単な説明】
【0031】
【図1】リッジ型半導体レーザの製造方法を示すフローチャートを示す図である。
【図2】リッジ導波路部形成工程、半導体回折格子要素形成工程、及び、介在光導波路部形成工程で行われる工程を示すフローチャートを示す図である。
【図3】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図4】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図5】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図6】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図7】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図8】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図9】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図10】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図11】リッジ型半導体レーザの製造方法を説明するための断面図である。
【図12】ナノインプリント用のモールドを示す平面図である。
【図13】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図14】リッジ型半導体レーザの製造方法を説明するための断面図である。
【図15】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図16】リッジ型半導体レーザの製造方法を説明するための断面図である。
【図17】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図18】リッジ型半導体レーザの製造方法を説明するための断面図である。
【図19】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図20】リッジ型半導体レーザの製造方法を説明するための断面図である。
【図21】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図22】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図23】リッジ型半導体レーザの製造方法を説明するための斜視図である。
【図24】リッジ型半導体レーザの製造方法を説明するための断面図である。
【発明を実施するための形態】
【0032】
以下、実施の形態に係るリッジ型半導体レーザ及びリッジ型半導体レーザの製造方法について、添付図面を参照しながら詳細に説明する。なお、各図面において、可能な場合には同一要素には同一符号を用いる。また、図面中の構成要素内及び構成要素間の寸法比は、図面の見易さのため、それぞれ任意となっている。
【0033】
図1は、本実施形態に係るリッジ型半導体レーザの製造方法を示すフローチャートを示す図である。図1に示すように、本実施形態のリッジ型半導体レーザの製造方法は、半導体基板の主面における第1面、第2面及び第3面上に半導体積層を形成する半導体積層形成工程S1と、第2面及び第3面上の半導体積層をエッチングする第1半導体積層エッチング工程S3と、第2面及び第3面上に半導体回折格子要素及び介在光導波路部となるべき半導体部を形成する半導体部形成工程S5と、第1面上の半導体積層の一部をエッチングすることにより、リッジ導波路を形成するリッジ導波路部を形成するリッジ導波路部形成工程S7と、第2面上の半導体部の一部をエッチングすることにより、半導体回折格子要素を形成する半導体回折格子要素形成工程S9と、第3面上の半導体部の他の一部をエッチングすることにより、介在光導波路部を形成する介在光導波路部形成工程S11と、半導体回折格子要素の露出面に絶縁層を形成する絶縁層形成工程S13と、半導体回折格子要素間に樹脂回折格子要素を形成することにより、回折格子領域を得る回折格子形成工程S15と、を含む。
【0034】
また、図2は、リッジ導波路部形成工程、半導体回折格子要素形成工程、及び、介在光導波路部形成工程で行われる工程を示すフローチャートを示す図である。図2(A)に示すように、リッジ導波路部形成工程S7は、第1マスク部をパターニングする第1マスク部パターニング工程S7−1と、半導体積層をエッチングすることによりリッジ導波路を得る第2半導体積層エッチング工程S7−3と、を含む。また、図2(B)に示すように、半導体回折格子要素形成工程S9は、第2マスク部をパターニングする第2マスク部パターニング工程S9−1と、半導体部をエッチングすることにより、第2マスク部の下に複数の半導体回折格子要素を形成する第1半導体部エッチング工程S9−3と、を含む。また、図2(C)に示すように、介在光導波路部形成工程S11は、第3マスク部をパターニングする第3マスク部パターニング工程S11―1と、半導体部をエッチングすることにより、第3マスク部の下に介在光導波路部を形成する第2半導体部エッチング工程S11−3と、を含む。
【0035】
以下、これらの各工程について詳細に説明する。図3〜図10、図13、図15、図17、図19、及び、図21〜23は、本実施形態に係るリッジ型半導体レーザの製造方法を説明するための斜視図であり、図11、図14、図16、図18、図20、及び、図24は、本実施形態に係るリッジ型半導体レーザの製造方法を説明するための断面図である。
【0036】
(半導体積層形成工程S1)
初めに、半導体積層形成工程S1が行われる。本工程では、半導体基板の主面における第1面、第2面及び第3面上に半導体積層を形成する。具体的には、まず、図3に示すように、第1導電型(例えば、n型)の半導体基板3を準備する。半導体基板3は、本実施形態では、矩形の板状であり、例えば、InP等のIII−V族化合物半導体からなる。半導体基板3は、略平坦な主面3Sを有する。主面3Sは、第1面3Aと、第2面3Bと、第3面3Cとを含む。第1面3Aと第2面3Bと第3面3Cとは、Y軸方向に隣接して並んでいる。第3面3Cは、第1面3Aと第2面3Bとの間に位置する。第1面3Aは、後の工程において、リッジ型半導体レーザ部LDが形成されるべき領域であり、第2面3B上は、後の工程において、DBR反射器Rが形成されるべき領域であり、第3面3Cは、後の工程において介在光導波路部31Bが形成されるべき領域である(図24参照)。
【0037】
なお、図3においては、直交座標系2が示されており、半導体基板3の主面3Sと平行な方向にX軸とY軸が設定され、半導体基板3の厚さ方向にZ軸を設定している。図4以降の各図においても、図3と対応して直交座標系2が示されている。
【0038】
次に、図4に示すように、半導体基板3の第1面3A、第2面3B及び第3面3C上に、例えば、有機金属気相成長法(OMVPE)等のエピタキシャル成長法によって、第1導電型の下部クラッド層5、及び、第1導電型の回折格子層前駆体層7をこの順に成長させる。下部クラッド層5は、InP等のIII−V族化合物半導体からなる。回折格子層前駆体層7は、後の工程で回折格子となる層である。回折格子層前駆体層7は、例えば、GaInAsP等のIII−V族化合物半導体からなる。
【0039】
続いて、図5に示すように、回折格子層前駆体層7のうちの第1面3A上の領域を、例えば電子ビーム露光及びドライエッチングを含むフォトリソグラフィーやナノインプリント等によって加工し、分布帰還(distributed feedback, DFB)のための回折格子7Dを形成する。回折格子7Dは、Y軸に沿って周期的に屈折率が変化する。回折格子7Dは、Y軸に沿った方向に周期的に並んだラインアンドスペースパターンからなり、ライン部及びスペース部は、それぞれX軸に沿った方向に延びている。回折格子7Dの周期は、例えば200nmであり、回折格子7Dのブラッグ波長は、例えば1300nmである。
【0040】
回折格子層前駆体層7のうちの第2面3B及び第3面3C上の領域は、後の工程で除去されるため(図8参照)、本工程において、回折格子層前駆体層7のうちの第1面3A上の領域と共に、第2面3B及び/又は第3面3C上の領域にも回折格子7Dと同様の回折格子を形成してもよい。
【0041】
続いて、図6に示すように、回折格子7D及び回折格子層前駆体層7上に、例えば、有機金属気相成長法(OMVPE)等のエピタキシャル成長法によって、埋め込み層9、下部光閉じ込め層11、活性層13、上部光閉じ込め層15、エッチングストップ層17、上部クラッド層19、コンタクト層21を、この順に形成する。これにより、第1面3A、第2面3B及び第3面3C上に半導体積層23が形成される。
【0042】
埋め込み層9は、例えば、第1導電型の半導体層であり、例えば、InP等のIII−V族化合物半導体からなる。回折格子7D上の埋め込み層9は、回折格子7Dを埋め込むように形成される。下部光閉じ込め層11は、第1導電型の半導体層であり、例えば、AlGaInAs等のIII−V族化合物半導体からなる。活性層13は、例えば、MQW(多重量子井戸)構造やSQW(単一量子井戸)構造を有し、例えば、ノンドープのAlGaInAs等のIII−V族化合物半導体からなる。活性層13がMQW構造を有する場合、活性層13は、例えば、厚さ6nm、バンドギャップ波長1.30μmの井戸層と、厚さ9nm、バンドギャップ波長1.10μmのバリア層と、からなる。上部光閉じ込め層15は、例えば、ノンドープのAlGaInAs等のIII−V族化合物半導体からなる。
【0043】
エッチングストップ層17は、後の第2半導体積層エッチング工程S7−5(図15及び図16参照)において、エッチングストップ機能を有する半導体材料からなる。エッチングストップ層17は、エッチングストップ層としての機能を有効に発揮する観点から、アルミニウム(Al)含有の半導体材料、例えば、AlInAs、AlInAsP、AlGaInAs等のアルミニウム含有III−V族化合物半導体で構成されることが好ましい。また、本実施形態においては、エッチングストップ層17は、キャリアストップ層としての機能を兼ねている。キャリアストップ層としての機能を有効に発揮する観点から、エッチングストップ層17は、p型の半導体材料で構成されることが好ましい。そのため、エッチングストップ層17は、p型のアルミニウム含有III−V族化合物半導体、例えば、p型のAlInAs、AlInAsP、AlGaInAs等で構成されることが特に好ましい。
【0044】
上部クラッド層19は、第2導電型であり、例えば、InP等のIII−V族化合物半導体からなる。コンタクト層21は、第2導電型であり、例えば、GaInAs等のIII−V族化合物半導体からなる。
【0045】
このようにして、半導体積層形成工程S1では、第1面3A、第2面3B及び第3面3C上に、活性層13と、活性層13上に設けられたエッチングストップ層17とを有する半導体積層23が形成される。半導体積層23は、半導体レーザのための構成を有する積層体である。
【0046】
(第1半導体積層エッチング工程S3)
次に、第1半導体積層エッチング工程S3が行われる。本工程では、第2面3B及び第3面3C上の半導体積層23をエッチングする。具体的には、まず、図7に示すように、半導体積層23のうち、第1面3A上の領域を覆い、第2面3B及び第3面3C上の領域を覆わない突合せ結合(butt-joint)用マスク27を形成する。突合せ結合用マスク27は、例えば、窒化シリコン(SiN)等の窒化物からなる。このような突合せ結合用マスク27を形成するためには、例えば、半導体積層23の上面全体に化学気相成長法(CVD)法等の蒸着法によって突合せ結合用マスク27を形成し、突合せ結合用マスク27の上面全体にレジスト層を形成した後、当該レジスト層をフォトリソグラフィーによって第1面3Aの上方の領域が残存し、第2面3B及び第3面3Cの上方の領域が残存しない形状にパターニングする。その後、当該パターニングされたレジスト層をマスクとして用いて突合せ結合用マスク27をバッファードフッ酸(BHF)等によってウェットエッチングでエッチングすることにより、第1面3A上の領域を覆い、第2面3B及び第3面3C上の領域を覆わない形状の突合せ結合用マスク27を得ることができる。
【0047】
なお、本実施形態においては、第1半導体積層エッチング工程S3における突合せ結合用マスク27の形成は、後のリッジ導波路部形成工程S7の第1マスク部形成工程S7−1を兼ねている(図10参照)。そのため、突合せ結合用マスク27は、本実施形態における第1マスク部となる。
【0048】
続いて、図8に示すように、突合せ結合用マスク27をマスクとして用いて半導体積層23のうちの第2面3B及び第3面3C上の領域を、例えば、HSO、HBr、HCl等を用いたウェットエッチング等によってエッチングする。この際、半導体積層23の第2面3B及び第3面3C上の領域のうち、少なくともエッチングストップ層17と活性層13が除去されるようにする。本実施形態においては、当該エッチングを、半導体積層23の第2面3B及び第3面3C上の領域のうち、下部クラッド層5が残存するように行っているが、半導体積層23の第2面3B及び第3面3C上の領域の全てが除去されるように行ってもよい。
【0049】
(半導体部形成工程S5)
次に、半導体部形成工程S5が行われる。本工程では、図9に示すように、第2面3B及び第3面3C上に半導体部31を形成する。即ち、第1半導体積層エッチング工程S3において半導体積層23がエッチングされた領域に半導体部31を形成する。半導体部31は、後の工程で加工されて半導体回折格子要素31A及び介在光導波路部31Bとなる(図14及び図15参照)。半導体部31のバンドギャップは、活性層13のバンドギャップよりも大きい。また、半導体部31は、エッチングストップ層17とは異なる半導体材料で構成されており、例えば、ノンドープのInP等のIII−V族化合物半導体からなる。このような半導体部31は、例えば、有機金属気相成長法(OMVPE)等のエピタキシャル成長法によって、突合せ結合用マスク27を選択成長マスクとして用いて、第2面3B及び第3面3C上に半導体部31を構成する半導体材料を成長させることにより、形成することができる。
【0050】
(リッジ導波路部形成工程S7、半導体回折格子要素形成工程S9、及び、介在光導波路部形成工程S11)
次に、リッジ導波路部形成工程S7、半導体回折格子要素形成工程S9、及び、介在光導波路部形成工程S11が行われる。リッジ導波路部形成工程S7では、第1面上の半導体積層の一部をエッチングすることにより、リッジ導波路部を形成する。半導体回折格子要素形成工程S9では、第2面上の半導体部の一部をエッチングすることにより、半導体回折格子要素を形成する。介在光導波路部形成工程S11では、第3面上の半導体部の他の一部をエッチングすることにより、介在光導波路部を形成する。
【0051】
また、リッジ導波路部形成工程S7は、第1マスク部パターニング工程S7−1と、第2半導体積層エッチング工程S7−3と、を含む。半導体回折格子要素形成工程S9は、第2マスク部パターニング工程S9−3と、第1半導体部エッチング工程S9−3と、を含む。介在光導波路部形成工程S11は、第3マスク部パターニング工程S11―1と、第2半導体部エッチング工程S11−3と、を含む。
【0052】
(第1マスク部パターニング工程S7−1、第2マスク部パターニング工程S9−1、第3マスク部パターニング工程S11―1)
上述のように、本実施形態においては、第1半導体積層エッチング工程S3における突合せ結合用マスク27の形成は、第1マスク部の形成を兼ねている(図7参照)。そのため、図10及び図10のXI―XI線に沿った断面を示す図11に示すように、突合せ結合用マスク27は、本実施形態における第1マスク部パターニング工程S7−1で初めに形成される第1マスク部27となる。なお、第1半導体積層エッチング工程S3の後に、突合せ結合用マスク27を除去し、新たに半導体積層23上に突合せ結合用マスク27と同様の材料からなる第1マスク部を形成してもよい。
【0053】
第2マスク部パターニング工程S9−1及び第3マスク部パターニング工程S11―1では、初めに図10及び図11に示すように、例えば化学気相成長法(CVD)法等の蒸着法によって、半導体部31上に第2マスク部33及び第3マスク部34を形成する。半導体積層23及び半導体部31の上面において、第1マスク部27、第3マスク部34、及び、第2マスク部33は、Y軸に沿った方向に並び、第1マスク部27と第2マスク部33の間に第3マスク部34が介在している。本実施形態においては、第2マスク部33及び第3マスク部34は一体に形成される。第2マスク部33及び第3マスク部34は、例えば、窒化シリコン(SiN)等の窒化物からなる。第2マスク部33及び第3マスク部34は、半導体部31の上面全体を覆っている。
【0054】
第1マスク部パターニング工程S7−1では、上述のように形成された第1マスク部27をパターニングする。第2マスク部パターニング工程S9−1では、上述のように形成された第2マスク部33をパターニングする。第3マスク部パターニング工程S11―1では、上述のように形成された第3マスク部34をパターニングする。そして、第1マスク部パターニング工程S7−1、第2マスク部パターニング工程S9−1、及び、第3マスク部パターニング工程S11―1は、一つのマスターパターンからのパターン転写によって一括して行われる。
【0055】
具体的には、まず、第1マスク部27、第2マスク部33、及び、第3マスク部34の上面全体に、フォトリソグラフィー用のフォトレジストやナノインプリント用の樹脂等からなる樹脂層を形成する。そして、フォトリソグラフィー法やナノインプリント法等によって、一つのマスターパターンからのパターン転写によって当該樹脂層をパターニングし、図10及び図11に示すように、第1樹脂層41、第2樹脂層42、及び、第3樹脂層43を一括して形成する。
【0056】
上述の樹脂層の形成から第1樹脂層41、第2樹脂層42、及び、第3樹脂層43の一括形成までについて、より具体的に説明する。例えば、ナノインプリント法を用いて第1マスク部パターニング工程S7−1、第2マスク部パターニング工程S9−1、及び、第3マスク部パターニング工程S11―1を行う場合、図12に示すようなナノインプリント用のモールド40を準備する。モールド40は、略平坦なモールド面40Sと、モールド面40Sに対して凹む凹部41M、凹部42M、及び、凹部43Mを有している。凹部41M、凹部42M、及び、凹部43Mの形状は、それぞれ、第1樹脂層41、第2樹脂層42、及び、第3樹脂層43の形状に順に対応している。そして、モールド面40Sと、凹部41Mと、凹部42Mと、凹部43Mとで、一つのマスターパターン40Mを構成する。
【0057】
モールド40の準備後、第1マスク部27、第2マスク部33、及び、第3マスク部34の上面全体に、ナノインプリント用の光硬化樹脂や熱硬化樹脂等からなる樹脂層を形成する。そして、当該樹脂層にマスターパターン40Mを押し付け、その状態で当該樹脂層を硬化させた後、モールド40を樹脂層から離間させる。このようにして、一つのマスターパターン40Mからのパターン転写によって当該樹脂層をパターニングし、第1樹脂層41、第2樹脂層42、及び、第3樹脂層43を一括して形成する。
【0058】
第1樹脂層41は、第1マスク部27上において所定形状にパターニングされた樹脂層である。第1樹脂層41は、後の工程で形成されるリッジ導波路55(図15参照)に対応した形状にパターニングされている。具体的には、図10に示すように、第1樹脂層41は、半導体積層23のうちのリッジ導波路となるべき領域23Pを覆うようにY軸に沿って延びる部分を有すると共に、半導体積層23のうちのリッジ導波路となるべき領域23PのX軸方向の両側面側の領域上に一対の開口41Aを有するような形状にパターニングされている。
【0059】
第2樹脂層42は、第2マスク部33上のY軸正方向側において所定形状にパターニングされた樹脂層である。第2樹脂層42は、後の工程で形成される半導体回折格子要素31A(図15及び図16参照)に対応した形状にパターニングされている。具体的には、図11に示すように、第2樹脂層42は、半導体積層23のうちの半導体回折格子要素となるべき領域31P2を覆うようにX軸に沿って延びると共に、半導体積層23のうちの他の領域を覆わない形状にパターニングされている。
【0060】
第3樹脂層43は、第2マスク部33のY軸負方向側において所定形状にパターニングされた樹脂層である。第3樹脂層43は、後の工程で形成される介在光導波路部31B(図15及び図16参照)に対応した形状にパターニングされている。具体的には、図11に示すように、第3樹脂層43は、半導体部31のうちの介在光導波路部となるべき領域31P3を覆うようにX軸に沿って延びると共に、半導体部31のうちの他の領域を覆わない形状にパターニングされている。
【0061】
上述のように第1樹脂層41、第2樹脂層42、及び、第3樹脂層43を形成した後、これらをマスクとして用いて、例えば四フッ化炭素(CF)をエッチングガスとして用いた反応性イオンエッチング(RIE)法によって、第1マスク部27、第2マスク部33、及び、第3マスク部34をエッチングする。その後、第1樹脂層41、第2樹脂層42、及び、第3樹脂層43を除去する。これにより、第1樹脂層41の形状が第1マスク部27に転写され、第2樹脂層42の形状が第2マスク部33に転写され、第3樹脂層43の形状が第3マスク部34に転写される。その結果、図13及び図13のXI−XI線に沿った断面図である図14に示すように、パターニングされた第1マスク部27P、パターニングされた第2マスク部33P2、及び、パターニングされた第3マスク部34P3が得られる。
【0062】
パターニングされた第1マスク部27Pは、後の工程で形成されるリッジ導波路55(図15参照)に対応した形状にパターニングされている。具体的には、図13に示すように、パターニングされた第1マスク部27Pは、半導体積層23のうちのリッジ導波路となるべき領域23Pを覆うようにY軸に沿って延びる部分を有すると共に、半導体積層23のうちのリッジ導波路となるべき領域23PのX軸方向の両側面側の領域上に一対の開口27PAを有するような形状にパターニングされている。
【0063】
パターニングされた第2マスク部33P2は、後の工程で形成される半導体回折格子要素31A(図15及び図16参照)に対応した形状にパターニングされている。具体的には、図13及び図14に示すように、パターニングされた第2マスク部33P2は、半導体部31のうちの半導体回折格子要素となるべき領域31P2を覆うようにX軸に沿って延びると共に、半導体部31のうちの他の領域を覆わない形状にパターニングされている。
【0064】
パターニングされた第3マスク部34P3は、後の工程で形成される介在光導波路部31B(図15及び図16参照)に対応した形状にパターニングされている。具体的には、図13及び図14に示すように、パターニングされた第3マスク部34P3は、半導体部31のうちの介在光導波路部となるべき領域31P3を覆うようにX軸に沿って延びると共に、半導体部31のうちの他の領域を覆わない形状にパターニングされている。
【0065】
以上のように、第1マスク部27、第2マスク部33、及び、第3マスク部34は、一つのマスターパターンからのパターン転写によって一括してパターニングされる。
【0066】
(第2半導体積層エッチング工程S7−3、第1半導体部エッチング工程S9−3、及び、第2半導体部エッチング工程S11−3)
第2半導体積層エッチング工程S7−3では、半導体積層23をエッチングすることによりリッジ導波路を得る。第1半導体部エッチング工程S9−3では、半導体部31をエッチングすることにより、第2マスク部33の下に複数の半導体回折格子要素を形成する。第2半導体部エッチング工程S11−3では、半導体部31をエッチングすることにより、第2マスク部33の下に介在光導波路部を形成する。
【0067】
具体的には、図15及び図15のXVI−XVI線に沿った断面図である図16に示すように、パターニングされた第1マスク部27Pでマスクされた半導体積層23のエッチングと、パターニングされた第2マスク部33P2でマスクされた半導体部31のエッチングと、パターニングされた第3マスク部34P3でマスクされた半導体部31のエッチングを一括して行う。この際、メタンガスと水素ガスの混合ガスを用いた反応性イオンエッチング法を用いることにより、アルミニウム含有III−V族化合物半導体からなるエッチングストップ層17のエッチングレートが半導体部31のエッチングレートよりも特に小さくなるようにすることができる。この結果、半導体部31をエッチングする際、エッチングストップ層17が、エッチングストップ層として特に有効に機能する。反応性イオンエッチング法としては、例えば、誘導結合型プラズマ反応性イオンエッチング(ICP−RIE)法を用いることができる。
【0068】
エッチングストップ層17のエッチングレートが半導体部31のエッチングレートよりも小さくなるという条件を満たすために、反応性イオンエッチング法の種類、メタンガスと水素ガスの混合比、エッチング圧力、及び、バイアスパワー密度などの条件を調整することができる。反応性イオンエッチング法として、ICP−RIE法を用いた場合、エッチングストップ層17のエッチングレートが半導体部31のエッチングレートよりも小さくなるという条件を満たすために、上記の条件に加えて、ICPパワー密度の条件を調整することができる。
【0069】
一例として、AlInAsで形成されたエッチングストップ層17と、InPで形成された半導体部31を、ICP−RIE法によって、メタンガスと水素ガスの混合比が1:3、エッチング圧力が2Pa、バイアスパワー密度が0.3W/cm、ICPパワー密度が4.4W/cmの条件でエッチングしたところ、エッチングストップ層17のエッチングレートは半導体部31のエッチングレートの約40%となった。
【0070】
上述のようなエッチングを行うと、エッチングストップ層17がエッチングストップ機能を発揮するため、半導体部31は半導体積層23よりも深くエッチングされる。具体的には、半導体積層23はエッチングストップ層17に達する第1の深さE55だけエッチングされるのに対して、半導体部31は、第1の深さE55よりも大きな第2の深さE31だけエッチングされる。
【0071】
これにより、パターニングされた第1マスク部27Pの下には、第1の深さE55と同じ高さを有するリッジ導波路55が形成される。リッジ導波路55は、活性層13よりも上部に設けられている。パターニングされた第2マスク部33P2の下には、第2の深さE31と同じ高さを有する複数の半導体回折格子要素31Aが形成される。パターニングされた第3マスク部34P3の下には、第2の深さE31と同じ高さを有する介在光導波路部31Bが形成される。本実施形態においては、これらのリッジ導波路55、半導体回折格子要素31A、及び、介在光導波路部31Bは、一括して形成される。第1の深さE55は、例えば2.0μmであり、第2の深さE31は、例えば2.3μmである。
【0072】
リッジ導波路55は、半導体基板3の主面3Sと交差する方向(本実施形態においては、主面3Sと直交するZ軸方向)に沿って突出すると共に、Y軸方向に沿って延びる。リッジ導波路55の延び方向が、後に完成するリッジ型半導体レーザ部LDの共振方向となる(図23及び図24参照)。また、リッジ導波路55の両側面側(X軸方向の両側面側)には、Y軸方向に沿って延びる一対のストライプ溝23Tが形成される。
【0073】
複数の半導体回折格子要素31Aは、半導体基板3の主面3Sと交差する方向(本実施形態においては、主面3Sと直交するZ軸方向)に沿って突出すると共に、リッジ型半導体レーザ部LD(図23及び図24参照)の共振方向(Y軸方向)に沿って周期的に設けられている。また、半導体部31のバンドギャップは活性層13のバンドギャップよりも大きいため(図9参照)、複数の半導体回折格子要素31Aの各々のバンドギャップも活性層13のバンドギャップよりも大きい。また、本実施形態においては、半導体回折格子要素31Aは1種類の半導体材料からなるため、各半導体回折格子要素31Aは単層構造を有する。半導体回折格子要素31Aは、活性層13のバンドギャップよりも大きいバンドギャップをそれぞれ有する複数の半導体層からなる多層構造を有してもよい。
【0074】
介在光導波路部31Bは、Y軸方向において、リッジ導波路55と半導体回折格子要素31Aとの間に形成される。また、半導体部31のバンドギャップは活性層13のバンドギャップよりも大きいため(図9参照)、介在光導波路部31Bの各々のバンドギャップも活性層13のバンドギャップよりも大きい。
【0075】
また、本実施形態においては、複数の半導体回折格子要素31A及び介在光導波路部31BのX軸方向に沿った長さW31A、W31Bは、リッジ導波路55のX軸方向に沿った幅W55よりも長い。また、本実施形態においては、複数の半導体回折格子要素31AのX軸方向に沿った長さは、介在光導波路部31BのX軸方向に沿った長さと略等しい。複数の半導体回折格子要素31A及び介在光導波路部31BのX軸方向に沿った長さは、例えば3.5μmであり、リッジ導波路55のX軸方向に沿った幅は、例えば、1.5μmである。
【0076】
上述のようにリッジ導波路55、半導体回折格子要素31A、及び、介在光導波路部31Bを形成後、パターニングされた第1マスク部27P、パターニングされた第2マスク部33P2、パターニングされた第3マスク部34P3を、例えばバッファードフッ酸(BHF)によるウェットエッチング等によって除去することにより、リッジ導波路部形成工程S7、半導体回折格子要素形成工程S9、及び、介在光導波路部形成工程S11が終了する。
【0077】
(絶縁層形成工程S13)
次に、絶縁層形成工程S13が行われる。本工程では、少なくとも半導体回折格子要素31Aの露出面に絶縁層を形成する。
【0078】
本実施形態においては、図17及び図17のXVIII−XVIII線に沿った断面図である図18に示すように、半導体回折格子要素31Aの露出面、半導体積層23のY軸負側端面及びX軸正負側端面を除いた露出面(リッジ導波路55のX軸方向の側面及び上面、及び、ストライプ溝23Tを含む)、及び、介在光導波路部31Bの露出面に、例えばCVD法等の蒸着法によって、例えば酸化シリコン(SiO)等の絶縁層57を形成する。
【0079】
(回折格子形成工程S15)
続いて、回折格子形成工程S15が行われる。回折格子形成工程S15では、複数の半導体回折格子要素31A間に樹脂回折格子要素を形成することにより、回折格子領域を形成する。
【0080】
具体的には、図19及び図19のXX−XX線に沿った断面図である図20に示すように、半導体積層23、複数の半導体回折格子要素31A、及び、介在光導波路部31B上に、これらを埋め込むように樹脂部59を、樹脂の塗布等の方法によって形成する。絶縁層57は、例えば、ベンゾシクロブテン(BCB)樹脂からなる。
【0081】
本実施形態では、絶縁層57は、半導体積層23の上面(リッジ導波路55の上面、ストライプ溝23T内を含む)、介在光導波路部31Bの上面並びに側面、複数の半導体回折格子要素31Aの上面、及び、複数の半導体回折格子要素31Aの間に形成される。また、本実施形態では、絶縁層57と半導体積層23との間、絶縁層57と半導体回折格子要素31Aとの間、及び、絶縁層57と介在光導波路部31Bとの間には、絶縁層57が介在している。
【0082】
絶縁層57のうち、リッジ型半導体レーザ部LD(図23及び図24参照)の共振方向(Y軸方向)に沿った方向に半導体回折格子要素31Aと隣接する複数の部分が、樹脂回折格子要素59Aとなる。そして、半導体回折格子要素31Aと、樹脂回折格子要素59Aと、絶縁層57のうちの半導体回折格子要素31A及び樹脂回折格子要素59Aの間に介在する部分と、で回折格子領域D1を構成する。上述のように半導体回折格子要素31AはY軸に沿って周期的に設けられているため、回折格子領域D1は、Y軸に沿って交互に周期的に設けられた複数の半導体回折格子要素31Aと複数の樹脂回折格子要素59Aとを有する。回折格子領域D1は、半導体回折格子要素31Aの屈折率は樹脂回折格子要素59Aの屈折率と異なるため、回折格子領域D1の屈折率は、Y軸に沿って周期的に変化する。
【0083】
本実施形態においては、回折格子領域D1は、2次の回折格子として使用される。回折格子領域D1のブラッグ波長は、例えば1300nmであり、回折格子領域D1の周期PD1は、例えば609nmである。
【0084】
上述のように回折格子領域D1を形成することにより、半導体基板3の第2面3B上に回折格子領域D1を有するDBR反射器Rが形成され、本工程は終了する。
【0085】
次に、電極形成工程が行われる。本工程では、まず、図21に示すように、樹脂部59に、Y軸方向に沿って延びる開口59H1を形成する。この開口59H1により、絶縁層57のうち、リッジ導波路55上の領域が露出する。このような開口59H1の形成は、例えば、四フッ化炭素(CF)と酸素(O)の混合ガスを用いたRIEを利用したフォトリソグラフィーにより、形成することができる。
【0086】
続いて、図22に示すように、絶縁層57のうち、開口59H1によって露出した部分を、例えば四フッ化炭素(CF)ガスを用いたRIEによってエッチングすることにより、Y軸方向に沿って延びる開口59H2を形成する。開口59H2は、樹脂部59の表面からリッジ導波路55内のコンタクト層21に至る。このようにして、リッジ導波路55内のコンタクト層21を露出させる。
【0087】
次に、図23及び図23のXXIV−XXIV線に沿った断面図である図24に示すように、リッジ導波路55内のコンタクト層21上に、金属からなりコンタクト層21とオーミック接触する上部電極61を形成し、樹脂部59上に上部電極61と電気的に接続された金属からなる電極パッド63を形成する。また、半導体基板3の裏面に、下部電極65を形成する。これにより、リッジ型半導体レーザ部LDが完成する。
【0088】
上述のような工程を経ることにより、本実施形態に係るリッジ型半導体レーザ1が完成する。図23及び図24に示すように、リッジ型半導体レーザ1は、リッジ型半導体レーザ部LD、DBR反射器R、及び、介在光導波路部31Bを備えている。リッジ型半導体レーザ部LDの共振方向は、Y軸方向である。リッジ型半導体レーザ部LDの共振方向の一端面E1は、DBR反射器Rと介在光導波路部31Bを介して対向している。これにより、リッジ型半導体レーザ部LDの共振方向の一端面E1は、DBR反射器Rと光学的に結合している。半導体基板3の第2面3BからDBR反射器Rの回折格子領域D1までの距離TD1は、半導体基板3の第1面3Aからリッジ導波路55までの距離T55よりも短い。
【0089】
上述のような本実施形態に係るリッジ型半導体レーザの製造方法によれば、得られるリッジ型半導体レーザ1において、上部電極61及び下部電極65間に電圧を印加すると、リッジ型半導体レーザ部LDの活性層13で光が生じる。この活性層13で生じた光は、活性層13の近傍に設けられた回折格子7Dと所定の結合効率(結合係数κ)で結合する。この結果、回折格子7Dの作用により、この光の中で回折格子7Dの周期で決定される波長の光のみが選択的に増幅されながらリッジ型半導体レーザ部LDの共振方向に伝搬し、リッジ型半導体レーザ部LDの一端面E1から出射する。一端面E1から出射した光は、この一端面E1と光学的に結合するDBR反射器Rの回折格子領域D1に入射する。さらに、回折格子領域D1の回折作用により、DBR反射器Rに入射した光のうち、特定の波長を有する光のみが反射され、活性層13内に戻される。このような回折格子7D及びDBR反射器Rの作用により、特定の波長においてレーザ発振が起こり、リッジ型半導体レーザ部LDの共振方向の他端面E2から単一波長(singlemode)を有するレーザ光が出射される。
【0090】
本実施形態におけるリッジ型半導体レーザ1においては、半導体レーザの発振波長は、当該リッジ型半導体レーザ部LDに設けられた回折格子7Dによって決定され、この回折格子7Dの周期で決まる単一波長のレーザ光を得ることができる。このとき、分布ブラッグ反射器の回折格子領域は、従来の半導体レーザ、とくに分布帰還型(DFB型)半導体レーザにおける高反射膜(HRコート)付き端面反射ミラーと同様の機能を有することができる。しかし、本実施形態におけるリッジ型半導体レーザ1のDBR反射器Rは、半導体(半導体回折格子要素31A)と樹脂(介在光導波路部31B)から構成され、半導体と樹脂との屈折率差を大きくできる。
【0091】
従って、このDBR反射器Rは、HR膜が形成された端面ミラーの反射率よりも高い反射率を実現することができる。さらに、この高い反射率が得られる波長帯域は、HR膜よりも、格段に広いものとすることができる。つまり、DBR反射器Rは、広い波長範囲にわたって、高い反射率を有する。このため、リッジ型半導体レーザ部に注入される電流や温度変化等によりリッジ型半導体レーザ部LDから出射される光の波長が変化した場合でも、DBR反射器Rの反射率は、ほとんど変化しない。故に、広い電流範囲、または広い温度範囲で、安定して動作することができる。さらに、高い反射率を有するDBR反射器Rと、リッジ型半導体レーザ部LDとDBR反射器Rとの間に介在光導波路部31Bを有する。故に、低い閾値電流と、高い発光効率を有するリッジ型半導体レーザ1を得ることができる。
【0092】
そして、回折格子領域D1の複数の半導体回折格子要素31Aのバンドギャップは、活性層13のバンドギャップよりも大きいため、活性層13で生じて上記一端面E1から出射し、DBR反射器Rに入射した光が、複数の半導体回折格子要素31Aで吸収されることは抑制される。そのため、半導体回折格子要素31Aでの光の吸収に起因したDBR反射器Rでの光の反射率の低下は抑制される。その結果、本実施形態に係るリッジ型半導体レーザの製造方法によれば、反射率の高いDBR反射器Rを有するリッジ型半導体レーザが得られる。
【0093】
さらに、本実施形態に係るリッジ型半導体レーザの製造方法においては、第2半導体積層エッチング工程S7−3で半導体積層23をエッチングする深さ(第1の深さE55)は、第1半導体部エッチング工程S9−3で半導体部31をエッチングする深さ(第2の深さE31)と異なる(図15及び図16参照)。しかし、半導体積層23はエッチングストップ層17を含むのに対して、半導体部31はエッチングストップ層を含まない上に、エッチングストップ層17は、半導体部31とは異なる半導体材料で形成されている。そのため、エッチングストップ層17のエッチングレートが半導体部31のエッチングレートよりも小さくなるようなエッチング法を採用することにより、第2半導体積層エッチング工程S7−3と第1半導体部エッチング工程S9−3とを一括して行うことができる。
【0094】
これにより、第2半導体積層エッチング工程S7−3と第1半導体部エッチング工程S9−3とを別個に行う場合と比較して、工程が簡易化される。また、第2半導体積層エッチング工程S7−3の前に行う第1マスク部パターニング工程S7−1と、第1半導体部エッチング工程S9−3の前に行う第2マスク部パターニング工程S9−1とは、一つのマスターパターン40Mからの転写によって一括して行われるため(図10〜図14参照)、リッジ型半導体レーザ部LDとDBR反射器Rとを精度よく位置合わせすることができる。
【0095】
その結果、本実施形態に係るリッジ型半導体レーザの製造方法によれば、リッジ型半導体レーザ1を精度よく簡易的に製造することができる。
【0096】
さらに、本実施形態に係るリッジ型半導体レーザの製造方法は、半導体基板3の主面3Sにおける第1面3Aと第2面3Bとの間の第3面3C上に、介在光導波路部31Bを形成する介在光導波路部形成工程S11をさらに備え、半導体積層形成工程S1においては、第1面3A及び第2面3B上に加えて、第3面3C上にも半導体積層23を形成し(図6参照)、第1半導体積層エッチング工程S3においては、第2面3B上の半導体積層23に加えて、第3面3C上の半導体積層23を、当該半導体積層23中の少なくともエッチングストップ層17及び活性層13が除去されるようにエッチングし(図8参照)、半導体部形成工程S5においては、第2面3B上に加えて、第3面3C上にも半導体部を形成している(図9参照)。
【0097】
そして、介在光導波路部形成工程S11は、第3面3C上の半導体部31上に形成された第3マスク部34をパターニングする第3マスク部パターニング工程S11―1(図10〜図14参照)と、パターニングされた第3マスク部34P3をマスクとして半導体部31をエッチングすることにより、リッジ型半導体レーザ部LDとDBR反射器Rとの間に介在する介在光導波路部31Bを形成する第2半導体部エッチング工程S11−3(図15及び図16)と、を有し、第1マスク部パターニング工程S7−1と、第2マスク部パターニング工程S9−1と、第3マスク部パターニング工程S11―1とは、一つのマスターパターン40Mからのパターン転写によって一括して行われ(図10〜図12参照)、リッジ導波路部形成工程S7における第2半導体積層エッチング工程S7−3と、半導体回折格子要素形成工程S9における第1半導体部エッチング工程S9−3と、介在光導波路部形成工程S11における第2半導体部エッチング工程S11−3とが、一括して行われ(図15及び図16参照)、介在光導波路部31Bのバンドギャップは、活性層13のバンドギャップよりも大きい。
【0098】
これにより、介在光導波路部31Bの屈折率は、DBR反射器Rの一部を構成する樹脂(樹脂回折格子要素59A)の屈折率と活性層13の屈折率との中間の値を有する。つまり、介在光導波路部31Bと活性層13との屈折率差は、DBR反射器Rの一部を構成する樹脂(樹脂回折格子要素59A)と活性層13との屈折率差より小さい。そのため、このような介在光導波路部31Bが設けられておらず、活性層13とDBR反射器R(またはDBR反射器Rの一部を構成する樹脂)とが直接接続されている場合と比較して、活性層13からDBR反射器Rへ光が導波する際の、これらの間の領域における光の散乱損失を低下させることができる。さらに、介在光導波路部31Bのバンドギャップは、活性層13のバンドギャップよりも大きいため、介在光導波路部31Bは、低損失の光導波路として機能する。その結果、レーザ出力値を増加させ、しきい値電流を低下させることができる。
【0099】
その上、介在光導波路部形成工程S11における第2半導体部エッチング工程S11−3は、リッジ導波路部形成工程S7における第2半導体積層エッチング工程S7−3、及び、半導体回折格子要素形成工程S9における第1半導体部エッチング工程S9−3と一括して行われる(図15及び図16参照)。そのため、介在光導波路部形成工程S11をさらに行っても、リッジ型半導体レーザ1を簡易的に製造することができる。また、介在光導波路部形成工程S11における第3マスク部パターニング工程S11―1は、一つのマスターパターン40Mからのパターン転写によって、第1マスク部パターニング工程S7−1、及び、第2マスク部パターニング工程S9−1と一括して行われる(図10〜図14参照)。そのため、介在光導波路部形成工程S11をさらに行っても、リッジ型半導体レーザ部LD、DBR反射器R、及び、介在光導波路部31Bを精度よく位置合わせすることができるため(図15〜図20参照)、リッジ型半導体レーザ1を精度よく製造することができる。
【0100】
さらに、本実施形態に係るリッジ型半導体レーザの製造方法において、エッチングストップ層17は、アルミニウム含有の半導体材料で構成され、リッジ導波路部形成工程S7における第2半導体積層エッチング工程S7−3と、半導体回折格子要素形成工程S9における第1半導体部エッチング工程S9−3と、介在光導波路部形成工程S11における第2半導体部エッチング工程S11−3は、メタンガスと水素ガスの混合ガスを用いた反応性イオンエッチング法によって行われる(図15及び図16参照)。
【0101】
これにより、第2半導体積層エッチング工程S7−3、第1半導体部エッチング工程S9−3及び第2半導体部エッチング工程S11−3において、エッチングストップ層17のエッチングレートは半導体部31のエッチングレートよりも特に小さくなる。その結果、第2半導体積層エッチング工程S7−3、第1半導体部エッチング工程S9−3及び第2半導体部エッチング工程S11−3を一括して行うことが容易となる(図15及び図16参照)。
【0102】
また、本実施形態に係るリッジ型半導体レーザの製造方法において、エッチングストップ層17の厚さは、100nm以上、150nm以下であることが好ましい。エッチングストップ層17の厚さを100nm以上とすることにより、第2半導体積層エッチング工程S7−3、第1半導体部エッチング工程S9−3及び第2半導体部エッチング工程S11−3を一括して行う際、半導体積層23のエッチングストップ層17より下部の層までエッチングされてしまうことを容易に防ぐことができる。また、エッチングストップ層17の厚さを150nm以下とすることにより、半導体積層23の高抵抗化を十分に抑制することができる。
【0103】
さらに、本実施形態に係るリッジ型半導体レーザの製造方法は、半導体回折格子要素形成工程S9の後、かつ、回折格子形成工程S15の前に、半導体回折格子要素31Aの露出面に絶縁層57を形成する絶縁層形成工程S13をさらに備えている(図17及び図18参照)。これにより、半導体回折格子要素31Aと樹脂回折格子要素59Aとの間には絶縁層57が介在することになる(図20参照)。その結果、樹脂回折格子要素59Aが半導体回折格子要素31Aから剥離することを抑制することができる。
【0104】
また、上述のような本実施形態に係るリッジ型半導体レーザにおいては、リッジ型半導体レーザ部LDの活性層13で生じた光は、リッジ型半導体レーザ部LDの共振方向の一端面E1から出射し、この一端面E1と光学的に結合するDBR反射器Rに入射する。DBR反射器Rの回折格子領域D1の回折作用により、DBR反射器Rに入射した光のうち、特定の波長を有する光のみが反射され、活性層13内に戻される。このようなDBR反射器Rの作用により、特定の波長においてレーザ発振が起こる(図23及び図24参照)。そして、回折格子領域D1の複数の半導体回折格子要素31Aのバンドギャップは、活性層13のバンドギャップよりも大きいため、活性層13で生じて上記一端面E1から出射し、DBR反射器Rに入射した光が、複数の半導体回折格子要素31Aで吸収されることは抑制される。そのため、半導体回折格子要素31Aでの光の吸収に起因したDBR反射器Rでの光の反射率の低下は抑制される。その結果、本実施形態に係るリッジ型半導体レーザ1のDBR反射器Rの反射率は高くなる。
【0105】
さらに、本実施形態に係るリッジ型半導体レーザ1は、リッジ型半導体レーザ部LDの共振方向の一端面E1とDBR反射器Rとの間に設けられた介在光導波路部31Bをさらに備え、介在光導波路部31Bのバンドギャップは、活性層13のバンドギャップよりも大きい(図23及び図24参照)。この場合、介在光導波路部31Bの屈折率は、DBR反射器Rの一部を構成する樹脂(樹脂回折格子要素59A)の屈折率と活性層13の屈折率との中間の値を有する。つまり、介在光導波路部31Bと活性層13との屈折率差は、DBR反射器Rの一部を構成する樹脂(樹脂回折格子要素59A)と活性層13との屈折率差より小さい。
【0106】
そのため、このような介在光導波路部31Bが設けられておらず、活性層13とDBR反射器R(またはDBR反射器Rの一部を構成する樹脂)とが直接接続されている場合と比較して、活性層13からDBR反射器Rへ光が導波する際の、これらの間の領域における光の散乱損失を低下させることができる。さらに、介在光導波路部31Bのバンドギャップは、活性層13のバンドギャップよりも大きいため、介在光導波路部31Bは、低損失の光導波路として機能する。その結果、レーザ出力値を増加させ、しきい値電流を低下させることができる。
【0107】
さらに、本実施形態に係るリッジ型半導体レーザ1においては、上記介在光導波路部31Bの共振方向に沿った長さ(Y軸方向に沿った長さ)は、2μm以上、5μm以下であることが好ましい(図24参照)。この長さが2μm以上である場合、上述のような活性層13とDBR反射器Rの間の領域における光の散乱損失を低下させる効果が特に有効に発揮される。また、この長さが5μm以下である場合、介在光導波路部31B自体による光の吸収量を十分に低くすることができる。
【0108】
さらに、本実施形態に係るリッジ型半導体レーザ1においては、DBR反射器Rの回折格子領域D1は、2次の回折格子として使用される。これにより、DBR反射器Rの回折格子領域D1において交互に設けられた複数の半導体回折格子要素31Aと複数の樹脂回折格子要素59Aの周期を大きくすることができる。そのため、DBR反射器Rの製造が容易になる。
【0109】
さらに、本実施形態に係るリッジ型半導体レーザ1においては、リッジ型半導体レーザ部LDは、リッジ型半導体レーザ部LDの共振方向に沿って周期的に屈折率が変化する回折格子7Dを含む(図23及び図24参照)。これにより、半導体レーザの発振波長は、当該リッジ型半導体レーザ部LDに設けられた回折格子7Dによって決定され、この回折格子の周期によって決まる単一波長のレーザ光を得ることができる。さらに、DBR反射器Rは、広い波長範囲にわたって、高い反射率を有する。このため、リッジ型半導体レーザ部に注入される電流や温度変化等によりリッジ型半導体レーザ部LDから出射される光の波長が変化した場合でも、DBR反射器Rの反射率は、ほとんど変化しない。故に、広い電流範囲、または広い温度範囲で、安定して動作することができる。
【0110】
さらに、本実施形態に係るリッジ型半導体レーザ1においては、半導体回折格子要素31Aの共振方向と直交する方向であるX方向に沿った幅W31Aは、リッジ導波路55の共振方向と直交する方向であるX方向に沿った幅W55よりも広く、介在光導波路部31Bの共振方向と直交する方向であるX方向に沿った幅W31Bは、リッジ導波路55の共振方向と直交する方向であるX方向に沿った幅W55よりも広い(図15参照)。
【0111】
これにより、活性層13から出射する光が、リッジ導波路55の幅よりも広い幅を有した状態で介在光導波路部31B及びDBR反射器Rに向かって導波しても、当該光の大部分を介在光導波路部31B及びDBR反射器Rに到達させることができる。その結果、レーザ出力値を増加させ、しきい値電流を低下させることができる。
【0112】
本発明は上記実施形態に限定されるものではなく、様々な変形態様が可能である。
【0113】
例えば、上述の本実施形態に係るリッジ型半導体レーザの製造方法は、絶縁層形成工程S13を備えているが(図17及び図18参照)、絶縁層形成工程S13を省略してもよい。
【0114】
また、上述の本実施形態に係るリッジ型半導体レーザの製造方法は、介在光導波路部形成工程S11を備えているが(図15及び図16参照)、介在光導波路部形成工程S11を省略してもよい。その場合、半導体積層23の一端面E1とDBR反射器Rとは、直接接していてもよい。
【0115】
また、半導体回折格子要素31Aの共振方向と直交する方向であるX方向に沿った幅W31Aは、リッジ導波路55の共振方向と直交する方向であるX方向に沿った幅W55と同じ、又は、これよりも小さくても、本発明の実施は可能である。
【0116】
また、介在光導波路部31Bの共振方向と直交する方向であるX方向に沿った幅W31Bは、リッジ導波路55の共振方向と直交する方向であるX方向に沿った幅W55と同じ、又は、これよりも小さくても、本発明の実施は可能である。
【0117】
また、上述の本実施形態に係るリッジ型半導体レーザ1は、介在光導波路部31Bを備えているが(図24参照)、リッジ型半導体レーザ1は、介在光導波路部31Bを備えていなくてもよい。その場合、半導体積層23の一端面E1とDBR反射器Rとは、直接接していてもよい。
【0118】
また、上述の実施形態においては、リッジ型半導体レーザ部LDは活性層13より下部に回折格子7Dを有しているが、リッジ型半導体レーザ部LDは活性層13よりも上部に回折格子7Dを有していてもよく、また、回折格子7Dを有していなくてもよい。
【0119】
また、リッジ型半導体レーザ1は、回折格子7Dを有しない、所謂DBR型半導体レーザであってもよい。このとき、活性層13、DBR反射器R及び他端面E2とで、レーザ共振器が構成される。
【符号の説明】
【0120】
1・・・リッジ型半導体レーザ、3・・・半導体基板、3A・・・第1面、3B・・・第2面、3S・・・半導体基板の主面、13・・・活性層、17・・・エッチングストップ層、23・・・半導体積層、31・・・半導体部、31A・・・半導体回折格子要素、31B・・・介在光導波路部、59A・・・樹脂回折格子要素、D1・・・回折格子領域、R・・・DBR反射器(分布ブラッグ反射器)、S1・・・半導体積層形成工程、S3・・・第1半導体積層エッチング工程、S5・・・半導体部形成工程、S7・・・リッジ導波路部形成工程、S7−1・・・第1マスク部パターニング工程、S7−3・・・第2半導体積層エッチング工程、S9・・・半導体回折格子要素形成工程、S9−1・・・第2マスク部パターニング工程、S9−3・・・第1半導体部エッチング工程、S11・・・介在光導波路部形成工程、S11―1・・・第3マスク部パターニング工程、S11−3・・・第2半導体部エッチング工程。

【特許請求の範囲】
【請求項1】
リッジ型半導体レーザ部と当該リッジ型半導体レーザ部と光学的に結合する分布ブラッグ反射器とを備えるリッジ型半導体レーザの製造方法であって、
半導体基板の主面における前記リッジ型半導体レーザ部が形成されるべき第1面と前記分布ブラッグ反射器が形成されるべき第2面上に、活性層と、前記活性層上に設けられたエッチングストップ層と、を含む半導体積層を形成する半導体積層形成工程と、
前記第2面上の前記半導体積層を、当該半導体積層中の少なくとも前記エッチングストップ層及び前記活性層が除去されるようにエッチングする第1半導体積層エッチング工程と、
前記第1半導体積層エッチング工程後に、前記第2面上に、半導体部を形成する半導体部形成工程と、
前記半導体部形成工程後に、前記第1面上の前記半導体積層の一部をエッチングすることにより、当該半導体積層にリッジ導波路部を形成するリッジ導波路部形成工程と、
前記第2面上の前記半導体部の一部をエッチングすることにより、前記第2面上に前記リッジ型半導体レーザ部の共振方向に沿って周期的に設けられた複数の半導体回折格子要素を形成する半導体回折格子要素形成工程と、
前記半導体回折格子要素形成工程後に、前記複数の半導体回折格子要素間に複数の樹脂回折格子要素を形成することにより、前記複数の半導体回折格子要素と前記複数の樹脂回折格子要素とからなる前記分布ブラッグ反射器の回折格子領域を形成する回折格子形成工程と、
を備え、
前記エッチングストップ層は、前記半導体部とは異なる半導体材料で構成され、
前記リッジ導波路部形成工程は、
前記半導体積層上に形成された第1マスク部をパターニングする第1マスク部パターニング工程と、
前記パターニングされた第1マスク部をマスクとして前記半導体積層を前記エッチングストップ層に達するまでエッチングすることにより、前記エッチングストップ層に達する第1の深さだけ前記半導体積層の一部を除去し、前記リッジ導波路を得る第2半導体積層エッチング工程と、
を有し、
前記半導体回折格子要素形成工程は、
前記半導体部上に形成された第2マスク部をパターニングする第2マスク部パターニング工程と、
前記パターニングされた第2マスク部をマスクとして前記半導体部をエッチングすることにより、前記第1の深さよりも深い第2の深さだけ前記半導体部の一部を除去し、前記複数の半導体回折格子要素を形成する第1半導体部エッチング工程と、
を有し、
前記第1マスク部パターニング工程と前記第2マスク部パターニング工程とは、一つのマスターパターンからのパターン転写によって一括して行われ、
前記リッジ導波路部形成工程における前記第2半導体積層エッチング工程と、前記半導体回折格子要素形成工程における前記第1半導体部エッチング工程とが、一括して行われることを特徴とするリッジ型半導体レーザの製造方法。
【請求項2】
前記半導体基板の前記主面における前記第1面と前記第2面との間の第3面上に、介在光導波路部を形成する介在光導波路部形成工程をさらに備え、
前記半導体積層形成工程においては、前記第1面及び前記第2面上に加えて、前記第3面上にも前記半導体積層を形成し、
前記第1半導体積層エッチング工程においては、前記第2面上の前記半導体積層に加えて、前記第3面上の前記半導体積層を、当該半導体積層中の少なくとも前記エッチングストップ層及び前記活性層が除去されるようにエッチングし、
前記半導体部形成工程においては、前記第2面上に加えて、前記第3面上にも前記半導体部を形成し、
前記介在光導波路部形成工程は、
前記第3面上の前記半導体部上に形成された第3マスク部をパターニングする第3マスク部パターニング工程と、
前記パターニングされた第3マスク部をマスクとして前記半導体部をエッチングすることにより、前記リッジ型半導体レーザ部と前記分布ブラッグ反射器との間に介在する前記介在光導波路部を形成する第2半導体部エッチング工程と、
を有し、
前記第1マスク部パターニング工程と、前記第2マスク部パターニング工程と、前記第3マスク部パターニング工程とは、一つのマスターパターンからのパターン転写によって一括して行われ、
前記リッジ導波路部形成工程における前記第2半導体積層エッチング工程と、前記半導体回折格子要素形成工程における前記第1半導体部エッチング工程と、前記介在光導波路部形成工程における前記第2半導体部エッチング工程とが、一括して行われ、
前記介在光導波路部のバンドギャップは、前記活性層のバンドギャップよりも大きいことを特徴とする請求項1に記載のリッジ型半導体レーザの製造方法。
【請求項3】
前記エッチングストップ層は、アルミニウム含有の半導体材料で構成され、
前記リッジ導波路部形成工程における前記第2半導体積層エッチング工程と、前記半導体回折格子要素形成工程における前記第1半導体部エッチング工程は、メタンガスと水素ガスの混合ガスを用いた反応性イオンエッチング法によって行われることを特徴とする請求項1又は2に記載のリッジ型半導体レーザの製造方法。
【請求項4】
前記エッチングストップ層の厚さは、100nm以上、150nm以下であることを特徴とする請求項1〜3のいずれか一項に記載のリッジ型半導体レーザの製造方法。
【請求項5】
前記半導体回折格子要素形成工程の後、かつ、回折格子形成工程の前に、前記半導体回折格子要素の露出面に絶縁層を形成する絶縁層形成工程をさらに備えることを特徴とする請求項1〜4のいずれか一項に記載のリッジ型半導体レーザの製造方法。
【請求項6】
半導体基板の主面上に設けられた活性層と、前記活性層上に設けられたリッジ導波路部と、を有するリッジ型半導体レーザ部と、
前記リッジ型半導体レーザ部の共振方向の端面と光学的に結合するように前記半導体基板上に設けられた分布ブラッグ反射器と、
を備え、
前記リッジ導波路部は、前記半導体基板の前記主面と交差する方向に沿って突出すると共に、前記共振方向に沿って延び、
前記分布ブラッグ反射器は、前記共振方向に沿って交互に周期的に設けられた複数の半導体回折格子要素と複数の樹脂回折格子要素とを含む回折格子領域を有し、
前記半導体基板の前記主面から前記回折格子領域までの距離は、前記半導体基板の前記主面から前記リッジ導波路部までの距離よりも短く、
前記回折格子領域の前記複数の半導体回折格子要素のバンドギャップは、前記活性層のバンドギャップよりも大きいことを特徴とするリッジ型半導体レーザ。
【請求項7】
前記リッジ型半導体レーザ部の共振方向の前記端面と前記分布ブラッグ反射器との間に設けられた介在光導波路部をさらに備え、
前記介在光導波路部のバンドギャップは、前記活性層のバンドギャップよりも大きいことを特徴とする請求項6に記載のリッジ型半導体レーザ。
【請求項8】
前記介在光導波路部の前記共振方向に沿った長さは、2μm以上、5μm以下であることを特徴とする請求項7に記載のリッジ型半導体レーザ。
【請求項9】
前記分布ブラッグ反射器の前記回折格子領域は、2次の回折格子として使用されることを特徴とする請求項6〜8のいずれか一項に記載のリッジ型半導体レーザ。
【請求項10】
前記リッジ型半導体レーザ部は、前記リッジ型半導体レーザ部の共振方向に沿って周期的に屈折率が変化する回折格子を含むことを特徴とする請求項6〜9のいずれか一項に記載のリッジ型半導体レーザ。
【請求項11】
前記半導体回折格子要素の前記共振方向と直交する方向に沿った幅は、前記リッジ導波路部の前記共振方向と直交する方向に沿った幅よりも広く、
前記介在光導波路部の前記共振方向と直交する方向に沿った幅は、前記リッジ導波路部の前記共振方向と直交する方向に沿った幅よりも広いことを特徴とする請求項7〜10のいずれか一項に記載のリッジ型半導体レーザ。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2012−227332(P2012−227332A)
【公開日】平成24年11月15日(2012.11.15)
【国際特許分類】
【出願番号】特願2011−93072(P2011−93072)
【出願日】平成23年4月19日(2011.4.19)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】