説明

交流回転機の制御装置

【課題】速度制御系の機械的応答で制約されていたトルクの応答性を改善できる交流回転機の制御装置を提供する。
【解決手段】交流回転機2へ交流電圧を出力する電力変換手段3と、交流回転機2に流れる電流を検出する電流検出手段4と、検出電流を回転二軸座標上の電流へ変換する電流演算手段5と、回転二軸座標上の電流に基づいて交流回転機2が出力する出力トルクを演算するトルク演算手段8と、トルク指令と出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段9と、周波数指令を補正する周波数補償量をトルク指令に基づいて演算する補償器10と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段6と、補正後の周波数指令と制御座標軸の位相とに基づいて電力変換手段に出力する電圧指令を演算する電圧指令演算手段7を備える。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、交流回転機を駆動する電力変換手段を備えた交流回転機の制御装置に関するものである。
【背景技術】
【0002】
インバータをはじめとする電力変換手段により交流回転機を駆動する際は、一般に機械的応答より電気的応答が速いことから、通常、外部から速度指令を入力し、交流回転機の速度を制御する速度制御系をメジャーループ、交流回転機の相巻線に流れる相電流の電流を制御する電流制御系をマイナーループとするカスケード構成の制御系が用いられる。
しかし、外部から所望のトルクあるいは電力指令を入力してトルクや電力を制御する制御系の場合は、外部からトルク(または電力)指令を与えてフィードバック制御を行うと、急激な速度上昇や交流回転機の機械的な制限速度を超える等の望ましくない事象が発生する。これを改善するため、さらに速度(周波数)を制御するループを追加する制御構成、すなわちトルク(または電力)制御系をメジャーループ、速度(周波数)制御系をマイナーループとするカスケード構成の制御系が提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第4503764号公報(段落[0024]〜[0026]、図5)
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の装置では、メジャーループであるトルク(または電力)制御系の応答が、マイナーループの速度制御系の機械的な応答以下に制限されるため、所望のトルク(または電力)制御系の応答が得られない可能性があり、高加速レートで加速したり、起動直後から高トルク駆動で運転したりすることが困難となる問題点があった。
【0005】
この発明は、上記のような問題点を解決するためになされたものであり、速度制御系の機械的応答で制約されていたトルク(または電力)の応答性を改善できる交流回転機の制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
この発明に係る交流回転機の制御装置は、外部からトルク指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令とトルク演算手段が演算した出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量をトルク指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものである。
【0007】
また、この発明に係る交流回転機の制御装置は、外部からトルク指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令とトルク演算手段が演算する出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量をトルク指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものである。
【0008】
また、この発明に係る交流回転機の制御装置は、外部から電力指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と電力演算手段が演算する出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量を電力指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものである。
【0009】
また、この発明に係る交流回転機の制御装置は、外部から電力指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と電力演算手段が演算する出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を電力指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものである。
【発明の効果】
【0010】
この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令と出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量をトルク指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性を向上することができる。
【0011】
また、この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令と出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量をトルク指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性を向上することができる。
【0012】
また、この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量を電力指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていた電力応答性を向上することができる。
【0013】
また、この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を電力指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていた電力応答性を向上することができる。
【図面の簡単な説明】
【0014】
【図1】この発明の実施の形態1の交流回転機の制御装置に係るシステム構成図である。
【図2】この発明の実施の形態2の交流回転機の制御装置に係るシステム構成図である。
【図3】この発明の実施の形態3の交流回転機の制御装置に係るシステム構成図である。
【図4】この発明の実施の形態4の交流回転機の制御装置に係るシステム構成図である。
【図5】この発明の実施の形態4の交流回転機の制御装置に係る第2補償器の構成図である。
【図6】この発明の実施の形態4の交流回転機の制御装置に係る応用例のシステム構成図である。
【図7】この発明の実施の形態5の交流回転機の制御装置に係るシステム構成図の構造図である。
【図8】この発明の実施の形態6の交流回転機の制御装置に係るシステム構成図である。
【発明を実施するための形態】
【0015】
実施の形態1.
実施の形態1は、トルク制御系に補償器を設けて、短時間で周波数指令を補正することで、トルク応答性を向上させる本発明の交流回転機の制御装置に関するものである。
以下、本願発明の実施の形態1について、交流回転機の制御装置に係るシステム構成図である図1に基づいて説明する。
【0016】
まず、本願発明の実施の形態1に係る交流回転機の制御装置のシステム構成について説明する。
図1は、本発明の実施の形態1に係る交流回転機の制御装置1と交流回転機2を含む交流回転機制御システムの構成を表したものである。
以下、交流回転機2として、主に三相同期機を例に挙げて説明するが、本発明は「三相」「同期機」に限定されるものではなく、その他、他の相数(三相以外の二相回転機等)や同期機とは異なる回転機(例えば誘導機)であっても同様に適用できる。また、本発明の交流回転機は、「交流電動機」「交流発電機」のいずれにも適用できる。
【0017】
図1において、交流回転機の制御装置1は、インバータをはじめとする電力変換手段3と、電流検出手段4と、電流演算手段5と、位相演算手段6と、電圧指令演算手段7と、トルク演算手段8と、周波数指令演算手段9および補償器10から構成されている。
【0018】
次に、本発明の実施の形態1に係る交流回転機の制御装置1の機能および動作について、図1のシステム構成図を用いて説明する。
電力変換手段3は、記載されていない電源から直流電源の供給を受け、後述の電圧指令演算手段7から出力される三相電圧指令Vu*、Vv*、Vw*に基づいて三相電圧Vu、Vv、Vwを出力し、交流回転機2を駆動する。
なお、前記の記載されていない電源から直流電源を供給する手段として、例えば、直接直流電圧を出力する電源あるいは電池等の手段、単相あるいは三相の交流電源を公知のコンバータあるいは公知のダイオード(ブリッジ)とコンデンサとを用いた整流回路によって直流電圧に変換して直流電源を得る手段がある。
電流検出手段4は、交流回転機2の出力電流Iu、Ivを検出し、残りの一相の電流Iwは検出したIu、Ivに基づいて演算する(Iw=−Iu−Iv)。電流検出手段4は、図1に示すように2つの相だけに設けても、三相全てに設けても良い。
電流演算手段5は、電流検出手段4で検出した交流回転機2の出力電流Iu、Iv、Iwと後述の位相演算手段6から出力される回転二軸座標(以下dq軸と称す)上に設定した制御座標軸の位相θに基づいて、dq軸上の電流Id、Iqへ座標変換する。
出力電流Iu、Iv、Iwを、dq軸上の電流Id、Iqへ座標変換する式は(1)式である。
【0019】
【数1】

【0020】
位相演算手段6は、後述の補正された周波数指令ω1*を積分して、回転二軸座標上に設定した制御座標軸の位相θを求める。位相演算手段6は、電流演算手段5と後述の電圧指令演算手段7へ位相θを出力する。このとき電流検出手段4で検出された出力電流Iu、Iv、Iwの値が、電力変換手段3から出力される三相電圧Vu、Vv、Vwに反映されるまでの制御演算遅れ時間を考慮し、電流演算手段5へ出力する位相と電圧指令演算手段7へ出力する位相を異なる値にしても良い。この場合、電流演算手段5へ出力する位相をθx、電圧指令演算手段7へ出力する位相をθyとした時、θx=∫ω1dt(=θ)、θy=θx+θd(θd:制御演算遅れ時間に基づく位相補正量)となる。
電圧指令演算手段7は、後述の補正された周波数指令ω1*とdq軸上の電流Id、Iqおよび位相θとに基づいて三相電圧指令Vu*、Vv*、Vw*を演算する。
三相電圧指令Vu*、Vv*、Vw*を演算する方法として、一旦dq軸上の電圧指令Vd*、Vq*を演算し、Vd*、Vq*を位相θとに基づいて三相電圧指令Vu*、Vv*、Vw*へ座標変換する方法を以下に説明する。
【0021】
電圧指令Vd*、Vq*を演算する方法の例として、例えば、公知のV/F一定制御と同様の周波数指令ω1*に比例係数(K0とする)を掛けた項に、交流回転機の巻線抵抗Rにおける電圧降下分と電機子反作用に起因する電圧降下分を加減した値にする方法がある。これを数式で表すと(2)、(3)式となる。
【0022】
【数2】

【0023】
【数3】

【0024】
ただし、Ld、Lqは、dq軸上のインダクタンス、K1、K2は補正係数を表す。
(2)、(3)式に対して、さらなる安定化のために、(4)、(5)式のように安定化補償電圧Vcd、Vcqを加えても良い。
この安定化補償電圧Vcd、Vcqの例として、交流回転機の形状に起因して発生するような基本波周波数の整数倍の周波数電流の歪みを補償する電圧、あるいは、インバータをはじめとする電力変換手段3のデッドタイム等に起因する電圧誤差を補償する電圧等、制御系をより安定化させるために補償する電圧がある。また、後述する三相電圧指令への座標変換後に補償する方式でも良い。
【0025】
【数4】

【0026】
【数5】

【0027】
さらに、(2)、(3)式において、各式の第1項で振動的となり不安定化の要因となることや、電流検出環境のノイズからの影響を抑制するため、演算に用いるdq軸上の電流Id、Iqは、適切な応答に調整したフィルタに通した値を使用しても良い。
【0028】
(2)、(3)式(あるいは(4)、(5)式)で得られた電圧指令Vd*、Vq*と位相θ(θの代わりに前記θyでも良い)とに基づいて、三相電圧指令Vu*、Vv*、Vw*へ座標変換する。
この座標変換式は(6)式となる。
【0029】
【数6】

【0030】
トルク演算手段8は、dq軸上の電流の内q軸電流Iqを用いて交流回転機出力トルクτを演算する。出力トルク演算式は(7)式となる。
【0031】
【数7】

【0032】
ただし、Ktはq軸電流Iqに対する発生トルクの比を表すトルク定数と呼ばれるパラメータで、回転機夫々に固有の値である。このKtは、交流回転機が界磁磁束を持つ回転機であれば、永久磁石や界磁巻線によって作り出される界磁磁束φと回転機極対数Pmによって決まる値である。
【0033】
また、実施の形態1では、Ktは出力トルク演算にq軸電流Iqのみを用いているが、交流回転機が磁気的突極性を持つ同期機であれば、d軸電流Idの値も使用して(8)式にしたがって出力トルクτを演算しても良い。
【0034】
【数8】

【0035】
周波数指令演算手段9は、交流回転機制御システム外部から入力されるトルク指令τ*とトルク演算手段8で演算された出力トルクτとの偏差に基づいて、周波数指令ω*を出力する。具体的には、トルク指令τ*と出力トルクτとの偏差Δτ(=τ*−τ)を加減算器11で演算し、偏差Δτを入力とする公知の比例積分(PI)制御演算を行い、比例積分演算出力ω0を求め、このω0に所定の周波数設定値ωsetを加えた値を最終的に周波数指令ω*として出力する。
【0036】
具体的には、出力トルクがトルク指令に達していないτ*>τの場合、Δτ>0となり、周波数設定値ωsetに対して出力トルクを上げるように比例積分演算出力ω0を増やす動作となる。また、出力トルクがトルク指令を超えたτ>τ*の場合、Δτ<0となり、周波数設定値ωsetに対して出力トルクを下げるように比例積分演算出力ω0を減らす動作となる。
この演算を数式で表すと(9)式となる。
【0037】
【数9】

【0038】
ただし、Kcpは、比例積分(PI)制御演算の比例ゲイン、Kciは比例積分(PI)制御演算の積分ゲイン、sはラプラス演算子である。なお、Kcp=0、すなわち積分(I)制御演算のみを行うようにしても良い。
【0039】
このように周波数指令ω*を設定すれば、出力トルクτがトルク指令τ*に追従しながら、かつ、所定の周波数設定値ωsetを中心とした周波数補償が行われるため、周波数設定値ωsetから大きく逸脱することなく、交流回転機2を駆動(加減速)することできる。
【0040】
補償器10は、トルク指令τ*に基づいて周波数補償量Δωcを演算する。補償器10は、短時間で周波数指令ω*を調整するように、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。
補償器10で行われる演算を数式で表すと(10)式となる。
【0041】
【数10】

【0042】
ただし、Ktpは比例微分(PD)制御演算の比例ゲイン、Ktdは比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。なお、Ktp、Ktdの何れか0であっても良い。
【0043】
補償器10で演算された周波数補償量Δωcは、加減算器12において周波数指令ω*と加算されて、補正された周波数指令ω1*(=ω*+Δωc)となる。周波数指令ω1*は位相演算手段6と電圧指令演算手段7に入力される。
【0044】
トルク制御系によるフィードバック制御構成では、トルク応答を高くするのは容易ではないが、この補償器10を追加し、周波数補償量Δωcに基づく周波数指令ω*の補正を行うことで、短時間で周波数指令ω*を調整することができるため、トルク応答性が向上する。
【0045】
以上説明したように、実施の形態1に係る交流回転機の制御装置1では、トルク制御系に補償器10を追加したので、短時間で周波数指令ω*を調整することができ、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望のトルク追従性が得られる効果がある。
【0046】
実施の形態2.
実施の形態2は、トルク制御系に補償器を設けて、短時間で制御座標軸の位相θを調整することで、トルク応答性を向上させる本発明の交流回転機の制御装置に関するものである。
【0047】
図2は、本発明の実施の形態2に係る交流回転機の制御装置21と交流回転機2を含む交流回転機制御システムの構成を表したものである。図2において、図1と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態2について、実施の形態1に係る交流回転機の制御装置1と異なる位相補償量Δθcを演算する補償器23と位相補償量Δθcが入力される位相演算手段22の機能、動作を中心に、図2のシステム構成図を用いて説明する。
【0048】
本実施の形態2では、補償器23によりトルク指令τ*に基づいて位相補償量Δθcを演算する点と、周波数指令ω1*を積分することで得られる位相に位相補償量Δθcを加算し、回転二軸座標上に設定した制御座標軸の位相θを補正する点が実施の形態1と異なる。この点以外は、実施の形態1と同一の構成である。
【0049】
補償器23は、トルク指令τ*に基づいて位相補償量Δθcを演算する。本補償器23は、実施の形態1の補償器10と同様に、トルク応答性の向上が目的であり、短時間で回転二軸座標上に設定した制御座標軸の位相θを調整する(主に位相を進ませる)。
具体的には、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。補償器23で行われる演算を数式で表すと(11)式となる。
【0050】
【数11】

【0051】
ただし、Ktp1は比例微分(PD)制御演算の比例ゲイン、Ktd1は比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。なお、Ktp1、Ktd1の何れか0であっても良い。
【0052】
位相演算手段22は、周波数指令ω*を積分して、さらに位相補償量Δθcを加えることにより、回転二軸座標上に設定した制御座標軸の位相θを求める。位相演算手段22は電流演算手段5と後述の電圧指令演算手段7へ補正後の位相θを出力するが、実施の形態1同様に、電流検出手段4で検出された出力電流Iu、Iv、Iwの値が電力変換手段3から出力される三相電圧Vu、Vv、Vwに反映されるまでの制御演算遅れ時間を考慮し、電流演算手段5へ出力する位相と電圧指令演算手段7へ出力する位相を異なる値にしても良い。この場合、電流演算手段5へ出力する位相をθx、電圧指令演算手段7へ出力する位相をθyとした時、θx=∫ω1dt+Δθc(=θ)、θy=θx+θd(θd:制御演算遅れ時間に基づく位相補正量)となる。
【0053】
トルク制御系によるフィードバック制御構成では、トルク応答を高くするのは容易ではないが、この補償器23を追加し、位相補償量Δθcに基づく回転二軸座標上に設定した制御座標軸の位相θの補正を行うことで、短時間で制御座標軸の位相θを調整できるため、トルク応答性が向上する。
【0054】
実施の形態2では、実施の形態1で説明した周波数指令ω*に対して補償する補償器は設けていないが、本実施の形態2の構成に加えて、実施の形態1で説明したような周波数指令ω*に対して周波数補償量Δωc分を補償する補償器を追加する構成とすることもできる。
【0055】
以上説明したように、実施の形態2に係る交流回転機の制御装置21では、トルク制御系に補償器23を追加したので、短時間で制御座標軸の位相θを調整することができ、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望のトルク追従性が得られる効果がある。
【0056】
実施の形態3.
実施の形態3は、実施の形態2の交流回転機の制御装置21に対して、トルク指令と負荷角の関係から制御座標軸の位相θを調整する構成とした交流回転機の制御装置に関するものである。
【0057】
図3は、本発明の実施の形態3に係る交流回転機の制御装置31と交流回転機2を含む交流回転機制御システムの構成を表したものである。図3において、図2と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態3について、実施の形態2に係る交流回転機の制御装置21と異なる電圧指令演算手段32と補償器33の機能、動作を中心に、図3のシステム構成図を用いて説明する。
【0058】
電圧指令演算手段32は、実施の形態2における電圧指令演算手段7と演算内容は同じであるが、補償器33へdq軸上の電圧指令Vd*、Vq*を出力する点が異なる。
【0059】
補償器33は、トルク指令τ*と負荷角δとに基づいて位相補償量Δθcを演算する。負荷角δとは、q軸に対するd軸電圧(Vd)ベクトルとq軸電圧(Vq)ベクトルの合成ベクトルとの成す角であり、(12)式の関係により得られる。
この負荷角δによって、トルクの操作が可能であることが一般的に知られている。
【0060】
【数12】

【0061】
したがって、電圧指令演算手段32において(2)、(3)式(あるいは(4)、(5)式)で演算されるdq軸上の電圧指令Vd*、Vq*に基づいて負荷角δを演算し、予め求めておいたトルク指令τ*と負荷角δとの関係から、適切な位相補償量Δθcを求める。あるいは、負荷角δそのものの値を位相補償量Δθcとしても良い。
【0062】
トルク制御系によるフィードバック制御構成では、トルク応答を高くするのは容易ではないが、この補償器33を追加し、実施の形態2とは異なる演算により得られた位相補償量Δθcに基づく回転二軸座標上に設定した制御座標軸の位相θの補正を行うことで、短時間で前記制御座標軸の位相θを調整することができるため、トルク応答性が向上する。
【0063】
以上説明したように、実施の形態3に係る交流回転機の制御装置31では、トルク制御系に補償器33を追加したので、短時間で制御座標軸の位相θを調整することができ、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望の出力トルク追従性が得られる効果がある。
【0064】
実施の形態4.
実施の形態4は、実施の形態1の交流回転機の制御装置1に対して、さらに第2補償器を設けて、出力トルクや電流の振動を抑制し安定した制御が可能な交流回転機の制御装置に関するものである。
【0065】
図4は、本発明の実施の形態4に係る交流回転機の制御装置41と交流回転機2を含む交流回転機制御システムの構成を表したものである。図5は、交流回転機の制御装置41の構成機器である第2補償器の構成図である。
図4において、図1と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態4について、実施の形態1に係る交流回転機の制御装置1に追加された第2補償器42の機能、動作を中心に、図4のシステム構成図および図5の構成図を用いて説明する。
【0066】
第2補償器42は、電流を所望の値に制御する電流偏差に基づく比例積分(PI)制御系を構成しない場合における負荷変化時や急加速時に発生する振動、脱調現象およびオーバーシュートによる過電流現象を抑制する機能を有する。実施の形態1の補償器10による周波数補償動作に加えて、第2補償器42をさらに追加することで、出力トルクτに影響するq軸電流Iqに基づいて新たな補償を行う。
【0067】
図5において、第2補償器42は、第1フィルタ44と第2フィルタ45の2つのローパスフィルタとから構成される。第2フィルタ45の遮断周波数は、第1フィルタ44の遮断周波数の1/10〜1/100程度に設定される。
第1フィルタ44は、q軸電流Iqの高周波数成分を低減させ、Iqf1を出力する。第2フィルタ45は、Iqf1に対して、さらに低い周波数成分を減衰させたIqf2を出力する。
【0068】
フィルタリングした値Iqf1とIqf2の差分に所定の比例ゲインKfを乗算した値を第2補償器42の出力である第2周波数補償量Δωc2とし、加減算器43において、周波数指令ω*と周波数補償量Δωcとの加算値から第2周波数補償量Δωc2を減算する。
すなわち、q軸電流Iqに含まれる電力変換手段3起因の電流高周波成分のような高い周波数成分と、直流成分および低周波成分とを除去した比較的駆動周波数帯域(周波数指令ω*)に近接した周波数成分のみに基づいて周波数指令ω*に対する周波数補償を行う。
第2補償器42と加減算器43で行われる演算を数式で表すと(13)、(14)式となる。
【0069】
【数13】

【0070】
【数14】

【0071】
実施の形態4の交流回転機の制御装置41は、実施の形態1の交流回転機の制御装置1の構成に第2補償器42を追加したものであるが、実施の形態2(あるいは実施の形態3)の交流回転機の制御装置21(あるいは31)に第2補償器42を追加することもできる。
実施の形態2の交流回転機の制御装置21に第2補償器42を追加した交流回転機の制御装置51のシステム構成を図6に示す。
【0072】
以上説明したように、実施の形態4に係る交流回転機の制御装置41では、実施の形態1に係る交流回転機の制御装置1に、第2補償器42を追加したので、実施の形態1の効果、すなわち、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望のトルク追従性が得られる効果に加えて、さらに出力トルクや電流の振動を抑制し、脱調を防止して安定した制御が実現可能になる効果がある。
【0073】
実施の形態5.
実施の形態5は、電力制御系に補償器を設けて、短時間で周波数指令を補正することで、電力応答性を向上させる本発明の交流回転機の制御装置に関するものである。
図7は、本発明の実施の形態5に係る交流回転機の制御装置61と交流回転機2を含む交流回転機制御システムの構成を表したものである。図7において、図1と同一あるいは相当部分には、同一の符号を付している。
本発明の実施の形態5に係る交流回転機の制御装置61の機能および動作について、図7のシステム構成図を用いて説明する。
【0074】
図7において、交流回転機の制御装置61は、インバータをはじめとする電力変換手段3と、電流検出手段4と、電流演算手段5と、位相演算手段6と、電圧指令演算手段63と、電力演算手段62と、周波数指令演算手段64、補償器65とから構成される。
これらの機能、動作について以下に説明する。
交流回転機の制御装置61は、電力変換手段3と、電流検出手段4と、電流演算手段5と、位相演算手段6に関しては、実施の形態1と同一であるため説明を省略し、電力演算手段62、電圧指令演算手段63、周波数指令演算手段64および補償器65の機能、動作を中心に説明する。
【0075】
電圧指令演算手段63は、実施の形態1における電圧指令演算手段7と演算内容は同じであるが、(2)、(3)式(あるいは(4)、(5)式)で演算されるdq軸上の電圧指令Vd*、Vq*を後述の電力演算手段62へ出力する点と、交流回転機2の演算回転速度ωrを演算し、除算器67へ出力する点が異なる。
【0076】
交流回転機2の演算回転速度ωrは、交流回転機2が同期回転機であれば、電圧指令演算手段63へ入力される補正された周波数指令ω1*と一致し、この周波数ω1*をそのまま、あるいは適切な補正を加えた上で除算器67へ出力される。
交流回転機2が誘導回転機であれば、周波数ω1*に対してすべり周波数相当分の周波数補正を加えた上で除算器67へ出力される。
【0077】
電力演算手段62は、dq軸上の電圧指令Vd*、Vq*とdq軸上の電流Id、Iqとを用いて、交流回転機出力電力Pを演算する。出力電力Pの演算式は(15)式となる。
【0078】
【数15】

【0079】
周波数指令演算手段64は、交流回転機制御システム外部から入力される電力指令P*と電力演算手段62で演算された出力電力Pとの偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する。
具体的には、電力指令P*と出力電力Pの偏差ΔP(=P*−P)を加減算器66で演算し、除算器67で偏差ΔPを演算回転速度ωrで除算する。この値は実施の形態1のΔτに相当し、この入力に対して公知の比例積分(PI)制御演算を行い、比例積分演算出力ω0を求め、このω0に所定の周波数設定値ωsetを加えた値を最終的に周波数指令ω*として出力する。
【0080】
具体的には、出力電力が電力指令に達していないP*>Pの場合、ΔP>0となり、周波数設定値ωsetに対して出力電力を上げるようにω0を増やす動作となる。また、出力電力が電力指令を超えたP>P*の場合、ΔP<0となり、周波数設定値ωsetに対して出力電力を下げるようにω0を減らす動作となる。
この演算を数式で表すと(16)式となる。
【0081】
【数16】

【0082】
ただし、Kcp1は比例積分(PI)制御演算の比例ゲイン、Kci1は比例積分(PI)制御演算の積分ゲイン、sはラプラス演算子である。なお、Kcp1=0、すなわち積分(I)制御演算のみを行うようにしても良い。
【0083】
このように周波数指令ω*を設定すれば、出力電力Pが電力指令P*に追従しながら、かつ、所定の周波数設定値ωsetを中心とした周波数補償が行われるため、周波数設定値ωsetから大きく逸脱することなく、交流回転機2を駆動することできる。
【0084】
補償器65は、電力指令P*に基づいて周波数補償量Δωcを演算する。本補償器65は、短時間で周波数指令ω*を調整するように、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。補償器65で行われる演算を数式で表すと(17)式となる。
【0085】
【数17】

【0086】
ただし、Ktp2は比例微分(PD)制御演算の比例ゲイン、Ktd2は比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。
なお、Ktp2、Ktd2の何れか0であっても良い。
【0087】
補償器65で演算された周波数補償量Δωcは、加減算器12において周波数指令ω*と加算されて、補正された周波数指令ω1*(=ω*+Δωc)となる。周波数指令ω1*は実施の形態1と同様に位相演算手段6と電圧指令演算手段63に入力される。
【0088】
電力制御系によるフィードバック制御構成では、電力応答を高くするのは容易ではないが、この補償器65を追加し、周波数補償量Δωcに基づく周波数指令ω*の補正を行うことで、短時間で周波数指令ω*を調整することができるため、電力応答性が向上する。
【0089】
実施の形態5の交流回転機の制御装置61に、実施の形態4で説明した第2補償器42を追加することもできる。
【0090】
また、実施の形態5の交流回転機の制御装置61では、周波数指令演算手段64は、外部から入力される電力指令P*と電力演算手段62で演算された出力電力Pとの偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としたが、偏差ΔPを直接に周波数指令演算手段に入力し、周波数指令ω*を演算する構成とすることもできる。
【0091】
以上説明したように、実施の形態5に係る交流回転機の制御装置61では、電力制御系に補償器65を追加したので、短時間で周波数指令ω*を調整することができ、従来の構成では速度制御系の機械的応答で制約されていた電力応答の向上性が可能となる効果がある。
また、実施の形態5に係る交流回転機の制御装置61では、偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としているため、出力電力の応答性を回転速度に依らず一定にできる効果もある。
【0092】
実施の形態6.
実施の形態6は、電力制御系に補償器を設けて、短時間で制御座標軸の位相θを調整することで、電力応答性を向上させる本発明の交流回転機の制御装置に関するものである。
図8は、本発明の実施の形態6に係る交流回転機の制御装置71と交流回転機2を含む交流回転機制御システムの構成を表したものである。図8において、図7と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態6について、実施の形態5に係る交流回転機の制御装置61と異なる電力指令P*に基づいて位相補償量Δθcを演算する補償器72の機能、動作を中心に、図8のシステム構成図を用いて説明する。
【0093】
補償器72は、電力指令P*に基づいて位相補償量Δθcを演算する。本補償器72は、実施の形態5の補償器65と同様に、電力応答性の向上が目的であり、短時間で回転二軸座標上に設定した制御座標軸の位相θを調整する(主に位相を進ませる)。
具体的には、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。補償器72で行われる演算を数式で表すと(18)式となる。
【0094】
【数18】

【0095】
ただし、Ktp3は比例微分(PD)制御演算の比例ゲイン、Ktd3は比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。なお、Ktp3、Ktd3の何れか0であっても良い。
【0096】
電力制御系によるフィードバック制御構成では、電力応答を高くするのは容易ではないが、この補償器72を追加することで、位相補償量Δθcに基づく回転二軸座標上に設定した制御座標軸の位相θの補正を行うことで、短時間で制御座標軸の位相θを調整できるため、電力応答性が向上する。
【0097】
実施の形態6の交流回転機の制御装置71において、補償器72は、実施の形態3に示したように負荷角δに基づいて位相補償量Δθcを演算する構成とすることができる。
また、実施の形態6の交流回転機の制御装置71に実施の形態4に示した第2補償器42を追加する構成とすることもできる。
【0098】
また、実施の形態6の交流回転機の制御装置71では、周波数指令演算手段64は、外部から入力される電力指令P*と電力演算手段62で演算された出力電力Pとの偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としたが、偏差ΔPを直接に周波数指令演算手段に入力し、周波数指令ω*を演算する構成とすることもできる。
【0099】
以上説明したように、実施の形態6に係る交流回転機の制御装置71では、電力制御系に補償器72を追加したので、短時間で制御座標軸の位相θを調整することができ、従来の構成では速度制御系の機械的応答で制約されていた電力応答性の向上が可能となる効果がある。
また、実施の形態6に係る交流回転機の制御装置71では、偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としているため、出力電力の応答性を回転速度に依らず一定にできる効果もある。
【符号の説明】
【0100】
1,21,31,41,51,61,71 交流回転機の制御装置、2 交流回転機、3 電力変換手段、4 電流検出手段、5 電流演算手段、6,22 位相演算手段、
7,32,63 電圧指令演算手段、8 トルク演算手段、
9,64 周波数指令演算手段、10,23,33,65,72 補償器、
11,12,43,52,66 加減算器、42 第2補償器、67 除算器。

【特許請求の範囲】
【請求項1】
外部からトルク指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力トルクを演算するトルク演算手段と、
前記トルク指令と前記トルク演算手段が演算した前記出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記周波数指令を補正する周波数補償量を前記トルク指令に基づいて演算する補償器と、
前記補正後の周波数指令に基づいて前記回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、
前記補正後の周波数指令と前記制御座標軸の位相とに基づいて、前記電力変換手段に出力する電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
【請求項2】
外部からトルク指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力トルクを演算するトルク演算手段と、
前記トルク指令と前記トルク演算手段が演算する前記出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を前記トルク指令に基づいて演算する補償器と、
前記周波数指令と前記位相補償量に基づいて前記制御座標軸の位相を演算する位相演算手段と、
前記周波数指令と前記補正後の制御座標軸の位相とに基づいて、前記電力変換手段に出力する電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
【請求項3】
前記補償器は、さらに前記電圧指令演算手段で演算する前記回転二軸座標上の電圧指令に基づいて負荷角を演算し、前記トルク指令と前記負荷角に基づいて位相補償量を演算する請求項2に記載の交流回転機の制御装置。
【請求項4】
外部から電力指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電圧指令と前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力電力を演算する電力演算手段と、
前記電力指令と前記電力演算手段が演算する前記出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記周波数指令を補正する周波数補償量を前記電力指令に基づいて演算する補償器と、
前記補正後の周波数指令に基づいて前記回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、
前記補正後の周波数指令と前記制御座標軸の位相とに基づいて前記電力変換手段に出力する電圧指令および前記電力演算手段に出力する前記回転二軸座標上の前記電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
【請求項5】
外部から電力指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電圧指令と前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力電力を演算する電力演算手段と、
前記電力指令と前記電力演算手段が演算する前記出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を前記電力指令に基づいて演算する補償器と、
前記周波数指令と前記位相補償量に基づいて前記制御座標軸の位相を演算する位相演算手段と、
前記周波数指令と前記補正後の制御座標軸の位相とに基づいて、前記電力変換手段に出力する電圧指令および前記電力演算手段に出力する前記回転二軸座標上の電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
【請求項6】
前記補償器は、さらに前記電圧指令演算手段で演算する前記回転二軸座標上の電圧指令に基づいて負荷角を演算し、前記電力指令と前記負荷角に基づいて位相補償量を演算する請求項5に記載の交流回転機の制御装置。
【請求項7】
前記電圧指令演算手段で交流回転機の演算回転速度を演算し、前記電力指令と前記電力演算手段が演算する前記出力電力との偏差を前記演算回転速度で除算して、トルク偏差を算出する除算器を追加し、前記周波数指令演算手段は前記トルク偏差に基づいて前記周波数指令を演算する構成とした請求項4ないし6のいずれか1項に記載の交流回転機の制御装置。
【請求項8】
前記回転二軸座標上の電流に基づいて、前記周波数指令演算手段が演算した周波数指令に近接した周波数成分からなる第2周波数補償量を演算する第2補償器を追加し、前記第2周波数補償量に基づいて前記周波数指令を補正する請求項1ないし7のいずれか1項に記載の交流回転機の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−205434(P2012−205434A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−69084(P2011−69084)
【出願日】平成23年3月28日(2011.3.28)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】