説明

動力装置

【課題】小型化および製造コストの削減を達成できるとともに、設計の自由度を高めることができる動力装置を提供する。
【解決手段】動力装置1では、第1回転機11が、所定の複数の磁極14aを有する第1ロータ14と、所定の複数の電機子磁極を発生させることにより、回転磁界を発生させるステータ13と、所定の複数の軟磁性体15aを有する第2ロータ15とを有し、電機子磁極の数と磁極の数と軟磁性体の数との比が、1:m:(1+m)/2(m≠1.0)に設定され、両ロータ14,15の一方は熱機関3の出力部3aに、両ロータ14,15の他方および第2回転機21のロータ23は被駆動部DW,DWに、それぞれ機械的に連結されている。また、熱機関3を始動する際、出力部3aへの駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,21の少なくとも一方の動作が制御される(ステップ3、13、15、22)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱機関や回転機などの互いに異なる2つ以上の動力源を備える動力装置に関する。
【背景技術】
【0002】
従来、この種の動力装置として、例えば特許文献1に開示されたものが知られている。この動力装置は、車両の駆動輪を駆動するためのものであり、動力源としての内燃機関、第1回転機および第2回転機を備えている。この第2回転機は、一般的な1ロータタイプのものである。
【0003】
また、上記の第1回転機は、2ロータタイプのものであり、ステータ、第1ロータおよび第2ロータを有している。これらの第1ロータ、第2ロータおよびステータは、径方向に内側からこの順で並んでいる。第1ロータは、周方向に延び、かつ、互いに軸線方向に並んだ第1永久磁石列および第2永久磁石列を有している。また、ステータは、第1回転磁界および第2回転磁界を発生可能に構成されており、これらの第1および第2回転磁界はそれぞれ、第1および第2磁極列との間を周方向に回転する。さらに、第2ロータは、周方向に延び、かつ、互いに軸線方向に並んだ第1軟磁性体列および第2軟磁性体列を有しており、第1および第2軟磁性体列は、第1および第2磁極列にそれぞれ対向している。また、第1および第2軟磁性体列は、軟磁性体から成り、かつ、周方向に並んだ複数の第1および第2コアでそれぞれ構成されており、第1および第2コアの周方向の位置は、互いに電気角π/2、ずれている。
【0004】
以上の構成の第1回転機では、ステータに電力が供給されることにより第1および第2回転磁界が発生すると、第1および第2回転磁界の磁極と第1および第2永久磁石の磁極により、第1および第2コアが磁化されることによって、これらの要素の間に磁力線が発生する。そして、この磁力線の磁力による作用により、ステータに供給された電力が動力に変換され、この動力が第1および第2ロータから出力される。あるいは、第1ロータや第2ロータに入力された動力が、電力に変換され、ステータから出力される。また、第1ロータおよび第2回転機は、駆動輪に連結されており、第2ロータは、内燃機関のクランク軸に連結されている。
【0005】
以上の構成の動力装置では、内燃機関、第1および第2回転機の動作が制御され、それにより、動力が駆動輪に伝達される結果、駆動輪が駆動される。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開第08/018539号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、上述した従来の動力装置では、第1回転機において、ステータに供給した電力を動力に変換して第1および第2ロータから出力すべく、上記の磁力線による磁力を適切に作用させるためには、複数の第1コアから成る第1軟磁性体列だけでなく、複数の第2コアから成る第2軟磁性体列が必要不可欠である。それにより、第1回転機の大型化および製造コストの増大を招くことは避けられず、ひいては、動力装置の大型化および製造コストの増大を招いてしまう。また、第1回転機は、その構成上、第1および第2回転磁界の回転数と第2ロータの回転数との差と、第2ロータの回転数と第1ロータの回転数との差が同じになるような速度関係でしか成立しないので、その設計の自由度が低く、ひいては、動力装置の設計の自由度が低くなってしまう。
【0008】
本発明は、以上のような課題を解決するためになされたものであり、小型化および製造コストの削減を達成できるとともに、設計の自由度を高めることができる動力装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記の目的を達成するために、請求項1に係る発明は、被駆動部(実施形態における(以下、本項において同じ)駆動輪DW,DW)を駆動するための動力装置1、1Aであって、動力を出力するための出力部(クランク軸3a)を有する熱機関(エンジン3)と、第1回転機11と、供給された電力を動力に変換し、ロータ23から出力するとともに、ロータ23に入力された動力を電力に変換可能な第2回転機21と、熱機関、第1および第2回転機11,21の動作を制御するための制御装置(ECU2、第1PDU41、第2PDU42、VCU43)と、を備え、第1回転機11は、周方向に並んだ所定の複数の磁極(永久磁石14a)で構成され、かつ隣り合う各2つの磁極が互いに異なる極性を有するように配置された磁極列を有する、周方向に回転自在の第1ロータ14と、磁極列に対向するように配置されるとともに、所定の複数の電機子磁極を発生させることにより、周方向に回転する回転磁界を磁極列との間に発生させるための電機子列(鉄芯13a、U〜W相コイル13c〜13e)を有する、不動のステータ(第1ステータ13)と、互いに間隔を隔てて周方向に並んだ所定の複数の軟磁性体(コア15a)で構成され、かつ磁極列と電機子列の間に配置された軟磁性体列を有する、周方向に回転自在の第2ロータ15と、を有し、電機子磁極の数と磁極の数と軟磁性体の数との比は、1:m:(1+m)/2(m≠1.0)に設定されており、第1および第2ロータ14,15の一方は、出力部に機械的に連結され、第1および第2ロータ14,15の他方は、被駆動部に機械的に連結されるとともに、ロータ23は、被駆動部に機械的に連結されており、制御装置は、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,21の少なくとも一方の動作を制御する(図18のステップ3、図20のステップ13、図22のステップ15、図25のステップ22)ことを特徴とする。
【0010】
この動力装置の第1回転機によれば、周方向に回転自在の第1ロータの磁極列と、不動のステータの電機子列が互いに対向しており、これらの磁極列と電機子列の間に、周方向に回転自在の第2ロータの軟磁性体列が配置されている。また、これらの磁極列および軟磁性体列をそれぞれ構成する複数の磁極および軟磁性体は、周方向に並んでいる。さらに、ステータの電機子列は、所定の複数の電機子磁極を発生させることによって、周方向に回転する回転磁界を磁極列との間に発生させることが、可能である。また、隣り合う各2つの磁極が互いに異なる極性を有しており、隣り合う各2つの軟磁性体間には、間隔が空いている。上記のように、磁極列と電機子列の間において、複数の電機子磁極による回転磁界が発生するとともに軟磁性体列が配置されていることから、各軟磁性体は、電機子磁極と磁極によって磁化される。このことと、上記のように隣り合う各2つの軟磁性体間に間隔が空いていることによって、磁極と軟磁性体と電機子磁極を結ぶような磁力線が発生する。このため、ステータへの電力の供給により回転磁界を発生させると、この磁力線による磁力の作用によって、ステータに供給された電力は動力に変換され、その動力が、第1ロータや第2ロータから出力される。
【0011】
ここで、ステータに供給された電力および回転磁界の電気角速度ωmfと等価のトルクを「駆動用等価トルクTe」という。以下、この駆動用等価トルクTeと、第1および第2ロータに伝達されるトルク(以下、それぞれ「第1ロータ伝達トルクT1」「第2ロータ伝達トルクT2」という)の関係と、回転磁界、第1および第2ロータの電気角速度の間の関係について説明する。
【0012】
本発明の第1回転機を次の条件(A)および(B)の下に構成した場合には、第1回転機に相当する等価回路は、図44のように示される。
(A)ステータがU相、V相およびW相から成る3相コイルを有する
(B)電機子磁極が2個、磁極が4個、すなわち、電機子磁極のN極およびS極を1組とする極対数が値1、磁極のN極およびS極を1組とする極対数が値2であり、軟磁性体が第1コア、第2コアおよび第3コアから成る3つの軟磁性体で構成されている
なお、このように、本明細書で用いる「極対」は、N極およびS極の1組をいう。
【0013】
この場合、軟磁性体のうちの第1コアを通過する磁極の磁束Ψk1は、次式(1)で表される。
【数1】

ここで、ψfは磁極の磁束の最大値、θ1およびθ2はそれぞれ、U相コイルに対する磁極の回転角度位置および第1コアの回転角度位置である。また、この場合、電機子磁極の極対数に対する磁極の極対数の比が値2.0であるため、磁極の磁束が回転磁界に対して2倍の周期で回転(変化)するので、上記の式(1)では、そのことを表すために、(θ2−θ1)に値2.0が乗算されている。
【0014】
したがって、第1コアを介してU相コイルを通過する磁極の磁束Ψu1は、式(1)にcosθ2を乗算することで得られた次式(2)で表される。
【数2】

【0015】
同様に、軟磁性体のうちの第2コアを通過する磁極の磁束Ψk2は、次式(3)で表される。
【数3】

ステータに対する第2コアの回転角度位置が、第1コアに対して2π/3だけ進んでいるため、上記の式(3)では、そのことを表すために、θ2に2π/3が加算されている。
【0016】
したがって、第2コアを介してU相コイルを通過する磁極の磁束Ψu2は、式(3)にcos(θ2+2π/3)を乗算することで得られた次式(4)で表される。
【数4】

【0017】
同様に、軟磁性体のうちの第3コアを介してU相コイルを通過する磁極の磁束Ψu3は、次式(5)で表される。
【数5】

【0018】
図44に示すような第1回転機では、軟磁性体を介してU相コイルを通過する磁極の磁束Ψuは、上記の式(2)、(4)および(5)で表される磁束Ψu1〜Ψu3を足し合わせたものになるので、次式(6)で表される。
【数6】

【0019】
また、この式(6)を一般化すると、軟磁性体を介してU相コイルを通過する磁極の磁束Ψuは、次式(7)で表される。
【数7】

ここで、a、bおよびcはそれぞれ、磁極の極対数、軟磁性体の数および電機子磁極の極対数である。また、この式(7)を、三角関数の和と積の公式に基づいて変形すると、次式(8)が得られる。
【数8】

【0020】
この式(8)において、b=a+cとするとともに、cos(θ+2π)=cosθに基づいて整理すると、次式(9)が得られる。
【数9】

この式(9)を三角関数の加法定理に基づいて整理すると、次式(10)が得られる。
【数10】

【0021】
この式(10)の右辺の第2項は、a−c≠0を条件として、級数の総和やオイラーの公式に基づいて整理すると、次式(11)から明らかなように値0になる。
【数11】

【0022】
また、上記の式(10)の右辺の第3項も、a−c≠0を条件として、級数の総和やオイラーの公式に基づいて整理すると、次式(12)から明らかなように値0になる。
【数12】

【0023】
以上により、a−c≠0のときには、軟磁性体を介してU相コイルを通過する磁極の磁束Ψuは、次式(13)で表される。
【数13】

また、この式(13)において、a/c=αとすると、次式(14)が得られる。
【数14】

【0024】
さらに、この式(14)において、c・θ2=θe2とするとともに、c・θ1=θe1とすると、次式(15)が得られる。
【数15】

ここで、θe2は、U相コイルに対する第1コアの回転角度位置θ2に電機子磁極の極対数cを乗算していることから明らかなように、U相コイルに対する第1コアの電気角度位置を表す。また、θe1は、U相コイルに対する磁極の回転角度位置θ1に電機子磁極の極対数cを乗算していることから明らかなように、U相コイルに対する磁極の電気角度位置を表す。
【0025】
同様に、軟磁性体を介してV相コイルを通過する磁極の磁束Ψvは、V相コイルの電気角度位置がU相コイルに対して電気角2π/3だけ遅れていることから、次式(16)で表される。また、軟磁性体を介してW相コイルを通過する磁極の磁束Ψwは、W相コイルの電気角度位置がU相コイルに対して電気角2π/3だけ進んでいることから、次式(17)で表される。
【数16】

【数17】

【0026】
また、上記の式(15)〜(17)でそれぞれ表される磁束Ψu〜Ψwを時間微分すると、次式(18)〜(20)がそれぞれ得られる。
【数18】

【数19】

【数20】

ここで、ωe1は、θe1の時間微分値、すなわち、ステータに対する第1ロータの角速度を電気角速度に換算した値(以下「第1ロータ電気角速度」という)であり、ωe2は、θe2の時間微分値、すなわち、ステータに対する第2ロータの角速度を電気角速度に換算した値(以下「第2ロータ電気角速度」という)である。
【0027】
さらに、軟磁性体を介さずにU相〜W相コイルを直接、通過する磁極の磁束は、極めて小さく、その影響は無視できる。このため、軟磁性体を介してU相〜W相コイルをそれぞれ通過する磁極の磁束Ψu〜Ψwの時間微分値dΨu/dt〜dΨw/dt(式(18)〜(20))は、ステータに対して磁極や軟磁性体が回転するのに伴ってU相〜W相コイルに発生する逆起電圧(誘導起電圧)をそれぞれ表す。
【0028】
このことから、U相、V相およびW相コイルにそれぞれ流す電流Iu、IvおよびIwは、次式(21)、(22)および(23)で表される。
【数21】

【数22】

【数23】

ここで、Iは、U相〜W相コイルに流す電流の振幅(最大値)である。
【0029】
また、これらの式(21)〜(23)より、U相コイルに対する回転磁界のベクトルの電気角度位置θmfは、次式(24)で表されるとともに、U相コイルに対する回転磁界の電気角速度(以下「磁界電気角速度」という)ωmfは、次式(25)で表される。
【数24】

【数25】

【0030】
さらに、U相〜W相コイルに電流Iu〜Iwがそれぞれ流れることで第1および第2ロータに出力される機械的出力(動力)Wは、リラクタンス分を除くと、次式(26)で表される。
【数26】

この式(26)に上記の式(18)〜(23)を代入し、整理すると、次式(27)が得られる。
【数27】

【0031】
さらに、この機械的出力Wと、前述した第1および第2ロータ伝達トルクT1,T2と、第1および第2ロータ電気角速度ωe1,ωe2との関係は、次式(28)で表される。
【数28】

これらの式(27)および(28)から明らかなように、第1および第2ロータ伝達トルクT1,T2は、次式(29)および(30)でそれぞれ表される。
【数29】

【数30】

【0032】
また、ステータに供給された電力と機械的出力Wが互いに等しい(ただし、損失は無視)ことと、前記式(25)および(27)から、前述した駆動用等価トルクTeは、次式(31)で表される。
【数31】

さらに、これらの式(29)〜(31)より、次式(32)が得られる。
【数32】

この式(32)で表されるトルクの関係、および式(25)で表される電気角速度の関係は、遊星歯車装置のサンギヤとリングギヤとキャリアにおけるトルクおよび回転速度の関係とまったく同じである。
【0033】
さらに、前述したように、b=a+cおよびa−c≠0を条件として、式(25)の電気角速度の関係および式(32)のトルクの関係が成立する。この条件b=a+cは、磁極の数をp、電機子磁極の数をqとすると、b=(p+q)/2、すなわち、b/q=(1+p/q)/2で表される。ここで、p/q=mとすると、b/q=(1+m)/2が得られることから明らかなように、上記のb=a+cという条件が成立していることは、電機子磁極の数と磁極の数と軟磁性体の数との比が、1:m:(1+m)/2であることを表す。また、上記のa−c≠0という条件が成立していることは、m≠1.0であることを表す。本発明の第1回転機によれば、電機子磁極の数と磁極の数と軟磁性体の数との比が、1:m:(1+m)/2(m≠1.0)に設定されているので、式(25)に示す電気角速度の関係と式(32)に示すトルクの関係が成立し、第1回転機が適正に作動することが分かる。
【0034】
以上のように、第1回転機では、ステータへの電力の供給により回転磁界を発生させると、前述した磁極と軟磁性体と電機子磁極を結ぶような磁力線が発生し、この磁力線による磁力の作用によって、ステータに供給された電力は動力に変換され、その動力が、第1ロータや第2ロータから出力されるとともに、上述したような電気角速度やトルクの関係が成立する。このため、ステータに電力を供給していない状態で、第1および第2ロータの少なくとも一方に動力を入力することにより、この少なくとも一方のロータをステータに対して回転させると、ステータにおいて、発電が行われるとともに、回転磁界が発生し、この場合にも、磁極と軟磁性体と電機子磁極を結ぶような磁力線が発生するとともに、この磁力線による磁力の作用によって、上述した式(25)に示す電気角速度の関係と式(32)に示すトルクの関係が成立する。
【0035】
すなわち、発電した電力および磁界電気角速度ωmfと等価のトルクを「発電用等価トルク」とすると、この発電用等価トルクと、第1および第2ロータ伝達トルクT1,T2の間にも、式(32)に示すような関係が成立する。以上から明らかなように、本発明の第1回転機は、遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有する。
【0036】
また、前述した従来の場合と異なり、単一の軟磁性体列だけで第1回転機を作動させることができるので、第1回転機の小型化および製造コストの削減を図ることができ、ひいては、動力装置の小型化および製造コストの削減を図ることができる。さらに、式(25)および(32)から明らかなように、α=a/c、すなわち、電機子磁極の極対数に対する磁極の極対数の比を設定することによって、磁界電気角速度ωmf、第1および第2ロータ電気角速度ωe1,ωe2の間の関係と、駆動用等価トルクTe(発電用等価トルク)、第1および第2ロータ伝達トルクT1,T2の間の関係を自由に設定でき、したがって、第1回転機の設計の自由度を高めることができ、ひいては、動力装置の設計の自由度を高めることができる。この効果は、ステータのコイルの相数が前述した値3以外の場合にも同様に得られる。
【0037】
また、前述した構成によれば、上記の第1回転機の第1および第2ロータの一方が、熱機関の出力部に、他方が被駆動部に、それぞれ連結されており、第2回転機のロータが被駆動部に連結されている。さらに、熱機関、第1および第2回転機の動作が、制御装置によって制御される。以上により、熱機関や、第1回転機、第2回転機によって被駆動部を駆動したり、第1回転機によって出力部を駆動したりすることができる。
【0038】
また、前述したように、第1回転機では、第1および第2ロータが互いに磁気的に連結された状態にある。このため、熱機関を始動すべく、出力部を駆動するために、駆動力が出力部に伝達されると、それに伴い、上述した各種の構成要素の間の連結関係から、駆動力が被駆動部にも作用し、その結果、被駆動部の速度が変動する場合がある。
【0039】
前述した構成によれば、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の少なくとも一方の動作が制御される。この場合、第1回転機の第1および第2ロータの他方が被駆動部に連結されていることと、上述した第1回転機の機能から明らかなように、熱機関を始動する際、第1回転機の動作を上記のように制御することによって、被駆動部の速度が変動するのを抑制することができ、したがって、商品性を向上させることができる。また、第2回転機は、前述したその構成から明らかなように、ロータから動力または制動力を出力することが可能である。そのような第2回転機のロータが被駆動部に連結されていることから、熱機関を始動する際、第2回転機の動作を上記のように制御することによって、被駆動部の速度変動を抑制でき、商品性を向上させることができる。さらに、第1および第2回転機の双方の動作を上記のように制御することによって、同様の効果を得ることができる。
【0040】
なお、本明細書および特許請求の範囲における「機械的な連結」には、シャフトや、ギヤ、プーリ、チェーンなどを介して各種の要素を連結することに加え、ギヤなどの変速機構を介さずに各要素をシャフトなどで直接的に連結(直結)することも含まれる。
【0041】
請求項2に係る発明は、請求項1に記載の動力装置1、1Aにおいて、熱機関を始動するために出力部を駆動するスタータ31をさらに備え、制御装置は、熱機関を始動する際、スタータ31を作動させる(図20のステップ12、図22のステップ12)とともに、スタータ31から出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,21の少なくとも一方の動作を制御する(図20のステップ13、図22のステップ15)ことを特徴とする。
【0042】
この構成によれば、熱機関を始動する際、スタータを作動させることにより出力部を駆動するので、熱機関の始動のために出力部を適切に駆動でき、ひいては、熱機関を適切に始動することができる。また、この場合、スタータから出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の少なくとも一方の動作が制御される。請求項1の説明で述べたように、熱機関を始動する際、第1および第2回転機の少なくとも一方の動作を上記のように制御することによって、被駆動部の速度変動を抑制することができる。
【0043】
請求項3に係る発明は、請求項1に記載の動力装置1、1Aにおいて、制御装置は、熱機関を始動する際、出力部を駆動するように第1回転機11の動作を制御する(図18のステップ2、図25のステップ21)とともに、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第2回転機21の動作を制御する(図18のステップ3、図25のステップ22)ことを特徴とする。
【0044】
この構成によれば、熱機関を始動する際、第1回転機の動作が、出力部を駆動するように制御される。前述したように第1回転機の第1および第2ロータの一方が出力部に連結されていることと、第1回転機の機能から明らかなように、熱機関を始動する際、第1回転機の動作を上記のように制御することによって、出力部を適切に駆動することができ、ひいては、熱機関を適切に始動することができる。また、この場合、出力部への駆動力の伝達に起因する被駆動部の速度変化が発生しないように、第2回転機の動作が制御されるので、請求項1の説明で述べたように、被駆動部の速度変動を抑制することができる。
【0045】
請求項4に係る発明は、請求項1ないし3のいずれかに記載の動力装置1、1Aにおいて、出力部には、補機(コンプレッサ51)が機械的に連結されており、熱機関を始動する際、出力部を駆動するための駆動力の補機への伝達を制限する動力伝達制限手段(クラッチCL、ECU2、図18のステップ1、図20のステップ11、図22のステップ11)をさらに備えることを特徴とする。
【0046】
この構成によれば、補機が出力部に連結されているため、熱機関を始動するために駆動力が出力部に伝達されると、それに伴い、補機にも駆動力が伝達される。その結果、出力部に実際に伝達される駆動力が小さくなるため、熱機関を始動するには、その分、より大きな駆動力が必要になる。上述した構成によれば、熱機関を始動する際、出力部を駆動するための駆動力の補機への伝達が、動力伝達制限手段によって制限される。したがって、熱機関を始動する際、出力部に実際に伝達される駆動力が上記のように小さくなるのを抑制することができるので、出力部を適切に駆動でき、ひいては、熱機関を適切に始動することができる。
【0047】
前記目的を達成するために、請求項5に係る発明は、被駆動部(実施形態における(以下、本項において同じ)駆動輪DW,DW)を駆動するための動力装置1Bであって、動力を出力するための出力部(クランク軸3a)を有する熱機関(エンジン3)と、第1回転機11と、第2回転機71と、熱機関、第1および第2回転機11,71の動作を制御するための制御装置(ECU2、第1PDU41、第2PDU42、VCU43)と、を備え、第1回転機11は、第1周方向に並んだ所定の複数の第1磁極(永久磁石14a)で構成され、かつ隣り合う各2つの第1磁極が互いに異なる極性を有するように配置された第1磁極列を有する、第1周方向に回転自在の第1ロータ14と、第1磁極列に対向するように配置されるとともに、所定の複数の第1電機子磁極を発生させることにより、第1周方向に回転する第1回転磁界を第1磁極列との間に発生させるための第1電機子列(鉄芯13a、U〜W相コイル13c〜13e)を有する、不動の第1ステータ13と、互いに間隔を隔てて第1周方向に並んだ所定の複数の第1軟磁性体(コア15a)で構成され、かつ第1磁極列と第1電機子列の間に配置された第1軟磁性体列を有する、第1周方向に回転自在の第2ロータ15と、を有し、第1電機子磁極の数と第1磁極の数と第1軟磁性体の数との比は、1:m:(1+m)/2(m≠1.0)に設定されており、第2回転機71は、第2周方向に並んだ所定の複数の第2磁極(永久磁石74a)で構成され、かつ隣り合う各2つの第2磁極が互いに異なる極性を有するように配置された第2磁極列を有する、第2周方向に回転自在の第3ロータ74と、第2磁極列に対向するように配置されるとともに、所定の複数の第2電機子磁極を発生させることにより、第2周方向に回転する第2回転磁界を第2磁極列との間に発生させるための第2電機子列(鉄芯73a、U相〜W相コイル73b)を有する、不動の第2ステータ73と、互いに間隔を隔てて第2周方向に並んだ所定の複数の第2軟磁性体(コア75a)で構成され、かつ第2磁極列と第2電機子列の間に配置された第2軟磁性体列を有する、第2周方向に回転自在の第4ロータ75と、を有し、第2電機子磁極の数と第2磁極の数と第2軟磁性体の数との比は、1:n:(1+n)/2(n≠1.0)に設定されており、第2および第3ロータ15,74は、出力部に機械的に連結されるとともに、第1および第4ロータ14,75は、被駆動部に機械的に連結されており、制御装置は、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,71の少なくとも一方の動作を制御する(図34のステップ31、図36のステップ41)ことを特徴とする。
【0048】
この構成によれば、第1および第2回転機はいずれも、請求項1の第1回転機と同様に構成されているので、請求項1の第1回転機と同じ機能を有している。したがって、請求項1の動力装置と同様、第1および第2回転機の小型化および製造コストの削減を図ることができ、ひいては、動力装置の小型化および製造コストの削減を図ることができる。さらに、第1および第2回転機の設計の自由度を高めることができ、ひいては、動力装置の設計の自由度を高めることができる。
【0049】
また、上述した構成によれば、第1回転機の第2ロータおよび第2回転機の第3ロータが、熱機関の出力部に連結されるとともに、第1回転機の第1ロータおよび第2回転機の第4ロータが、被駆動部に連結されている。以上により、熱機関や、第1回転機、第2回転機によって被駆動部を駆動したり、第1回転機や第2回転機によって出力部を駆動したりすることができる。
【0050】
また、請求項1の第1回転機と同様、第1回転機では、第1および第2ロータは互いに磁気的に連結された状態にあり、第2回転機では、第3および第4ロータは互いに磁気的に連結された状態にある。このため、熱機関を始動するために、駆動力が出力部に伝達されると、それに伴い、上述した各種の構成要素の間の連結関係から、駆動力が被駆動部にも作用し、その結果、被駆動部の速度が変動する場合がある。
【0051】
前述した構成によれば、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の少なくとも一方の動作が制御される。この場合、第1回転機の第1ロータが被駆動部に連結されていることと、第1回転機の機能から明らかなように、熱機関を始動する際、第1回転機の動作を上記のように制御することによって、被駆動部の速度が変動するのを抑制することができ、したがって、商品性を向上させることができる。また、第2回転機の第4ロータが被駆動部に連結されていることと、第2回転機の機能から明らかなように、熱機関を始動する際、第2回転機の動作を上記のように制御することによって、被駆動部の速度が変動するのを抑制することができ、したがって、商品性を向上させることができる。この場合、前述した第2回転機の機能から明らかなように、第2回転磁界、第3および第4ロータは、回転数に関する共線関係を保ちながら回転し、この共線関係を表す共線図において、第2回転磁界および第4ロータの回転数を表す直線が互いに隣り合っているため、上記の第2回転機の動作の制御を適切かつ容易に行うことができる。さらに、第1および第2回転機の双方の動作を上記のように制御することによって、上述した効果を同様に得ることができる。
【0052】
請求項6に係る発明は、請求項5に記載の動力装置1Bにおいて、熱機関を始動するために出力部を駆動するスタータ31をさらに備え、制御装置は、熱機関を始動する際、スタータ31を作動させる(図36のステップ12)とともに、スタータ31から出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,71の少なくとも一方の動作を制御する(図36のステップ41)ことを特徴とする。
【0053】
この構成によれば、熱機関を始動する際、スタータを作動させることにより出力部を駆動するので、熱機関の始動のために出力部を適切に駆動でき、ひいては、熱機関を適切に始動することができる。また、この場合、スタータから出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の少なくとも一方の動作が制御される。請求項5の説明で述べたように、熱機関を始動する際、第1および第2回転機の少なくとも一方の動作を上記のように制御することによって、被駆動部の速度変動を抑制することができる。
【0054】
請求項7に係る発明は、請求項5に記載の動力装置1Bにおいて、制御装置は、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように第1および第2回転機11,71の一方の動作を制御する(図34のステップ31)とともに、出力部を駆動するように第1および第2回転機11,71の他方の動作を制御する(図34のステップ2)ことを特徴とする。
【0055】
この構成によれば、熱機関を始動する際、出力部を駆動するように第1および第2回転機の他方の動作が制御される。前述したように第1回転機の第2ロータが出力部に連結されていることと、第1回転機の機能から明らかなように、熱機関を始動する際、第1回転機の動作を上記のように制御することによって、出力部を適切に駆動することができ、ひいては、熱機関を適切に始動することができる。また、前述したように第2回転機の第3ロータが出力部に連結されていることと、第2回転機の機能から明らかなように、熱機関を始動する際、第2回転機の動作を上記のように制御することによって、出力部を適切に駆動することができ、ひいては、熱機関を適切に始動することができる。さらに、この場合、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の一方の動作が制御されるので、請求項5の説明で述べたように、被駆動部の速度変動を抑制することができる。
【0056】
請求項8に係る発明は、請求項5ないし7のいずれかに記載の動力装置1Bにおいて、出力部には、補機(コンプレッサ51)が機械的に連結されており、熱機関を始動する際、出力部を駆動するための駆動力の補機への伝達を制限する動力伝達制限手段(クラッチCL、ECU2、図34のステップ1、図36のステップ11)をさらに備えることを特徴とする。
【0057】
この構成によれば、請求項4の動力装置と同様、補機が出力部に連結されているため、熱機関を始動するために駆動力が出力部に伝達されると、それに伴い、補機にも駆動力が伝達される。その結果、出力部に実際に伝達される駆動力が小さくなるため、熱機関を始動するには、その分、より大きな駆動力が必要になる。上述した構成によれば、熱機関を始動する際、出力部を駆動するための駆動力の補機への伝達が、動力伝達制限手段によって制限される。したがって、熱機関を始動する際、出力部に実際に伝達される駆動力が上記のように小さくなるのを抑制することができるので、出力部を適切に駆動でき、ひいては、熱機関を適切に始動することができる。
【0058】
前記目的を達成するために、請求項9に係る発明は、被駆動部(実施形態における(以下、本項において同じ)駆動輪DW,DW)を駆動するための動力装置1Cであって、動力を出力するための出力部(クランク軸3a)を有する熱機関(エンジン3)と、第1回転機11と、供給された電力を動力に変換し、ロータ23から出力するとともに、ロータ23に入力された動力を電力に変換可能な第2回転機21と、互いの間で動力を伝達可能で、動力の伝達中、互いの間に回転数に関する共線関係を保ちながら回転するとともに、回転数の関係を示す共線図において、それぞれの回転数を表す直線が順に並ぶように構成された第1要素、第2要素および第3要素を有する動力伝達機構(遊星歯車装置PG)と、熱機関、第1および第2回転機11,21の動作を制御するための制御装置(ECU2、第1PDU41、第2PDU42、VCU43)と、を備え、第1回転機11は、周方向に並んだ所定の複数の磁極(永久磁石14a)で構成され、かつ隣り合う各2つの磁極が互いに異なる極性を有するように配置された磁極列を有する、周方向に回転自在の第1ロータ14と、磁極列に対向するように配置されるとともに、所定の複数の電機子磁極を発生させることにより、周方向に回転する回転磁界を磁極列との間に発生させるための電機子列(鉄芯13a、U〜W相コイル13c〜13e)を有する、不動のステータ(第1ステータ13)と、互いに間隔を隔てて周方向に並んだ所定の複数の軟磁性体(コア15a)で構成され、かつ磁極列と電機子列の間に配置された軟磁性体列を有する、周方向に回転自在の第2ロータ15と、を有し、電機子磁極の数と磁極の数と軟磁性体の数との比は、1:m:(1+m)/2(m≠1.0)に設定されており、第1ロータ14および第2要素ならびに第2ロータ15および第1要素の一方が、出力部に機械的に連結され、第1ロータ14および第2要素ならびに第2ロータ15および第1要素の他方が、被駆動部に機械的に連結されるとともに、第3要素がロータ23に機械的に連結されており、制御装置は、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,21の少なくとも一方の動作を制御する(図40のステップ51、図42のステップ61)ことを特徴とする。
【0059】
この構成によれば、第1回転機は、請求項1の第1回転機と同様に構成されているので、請求項1の第1回転機と同じ機能を有している。したがって、請求項1の動力装置と同様、第1回転機の小型化および製造コストの削減を図ることができ、ひいては、動力装置の小型化および製造コストの削減を図ることができる。さらに、第1回転機の設計の自由度を高めることができ、ひいては、動力装置の設計の自由度を高めることができる。
【0060】
また、上述した構成によれば、動力伝達機構では、第1〜第3要素が、互いの間での動力の伝達中、互いの間に回転数に関する共線関係を保ちながら回転するとともに、回転数の関係を示す共線図において、それぞれの回転数を表す直線が順に並ぶように構成されている。さらに、第1回転機の第1ロータおよび第2要素ならびに第1回転機の第2ロータおよび第1要素の一方が、熱機関の出力部に連結され、第1ロータおよび第2要素ならびに第2ロータおよび第1要素の他方が、被駆動部に連結されるとともに、第3要素が第2回転機のロータに連結されている。また、熱機関、第1および第2回転機の動作が、制御装置によって制御される。以上により、熱機関や、第1回転機、第2回転機によって被駆動部を駆動したり、第1回転機や第2回転機によって出力部を駆動したりすることができる。
【0061】
また、請求項1の第1回転機と同様、第1回転機では、第1および第2ロータは互いに磁気的に連結された状態にあり、第1〜第3要素は互いに動力を伝達可能に構成されている。このため、熱機関を始動するために、駆動力が出力部に伝達されると、それに伴い、上述した各種の構成要素の間の連結関係から、駆動力が被駆動部にも作用し、その結果、被駆動部の速度が変動する場合がある。
【0062】
前述した構成によれば、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の少なくとも一方の動作が制御される。第1回転機の第1および第2ロータの一方が被駆動部に連結されていることと、第1回転機の機能から明らかなように、熱機関を始動する際、第1回転機の動作を上記のように制御することによって、被駆動部の速度が変動するのを抑制することができ、したがって、商品性を向上させることができる。この場合、前述した第1回転機の機能から明らかなように、回転磁界、第1および第2ロータは、回転数に関する共線関係を保ちながら回転し、この共線関係を表す共線図において、回転磁界および第2ロータの回転数を表す直線が互いに隣り合っている。このため、第2ロータが被駆動部に連結されているときには、上記の第1回転機の動作の制御を適切かつ容易に行うことができる。
【0063】
また、第2回転機は、前述した構成から明らかなように、ロータから動力または制動力を出力することが可能である。また、互いに動力を伝達可能な第1〜第3要素のうちの第3要素が第2回転機のロータに連結されるとともに、第1および第2要素の一方が被駆動部に連結されていることから、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように第2回転機の動作を制御することによって、被駆動部の速度が変動するのを抑制することができ、したがって、商品性を向上させることができる。この場合、前述したように第2および第3要素の回転数を表す直線が、それらの回転数の関係を表す共線図において、互いに隣り合っているため、第2要素が被駆動部に連結されているときには、上記の第2回転機の動作の制御を適切かつ容易に行うことができる。さらに、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の双方の動作を制御することによって、上述した効果を同様に得ることができる。
【0064】
請求項10に係る発明は、請求項9に記載の動力装置1Cにおいて、熱機関を始動するために出力部を駆動するスタータ31をさらに備え、制御装置は、熱機関を始動する際、スタータ31を作動させる(図42のステップ12)とともに、スタータ31から出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機11,21の少なくとも一方の動作を制御する(図42のステップ61)ことを特徴とする。
【0065】
この構成によれば、熱機関を始動する際、スタータを作動させることにより出力部を駆動するので、熱機関の始動のために出力部を適切に駆動でき、ひいては、熱機関を適切に始動することができる。また、この場合、スタータから出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように、第1および第2回転機の少なくとも一方の動作が制御される。請求項9の説明で述べたように、熱機関を始動する際、第1および第2回転機の少なくとも一方の動作を上記のように制御することによって、被駆動部の速度変動を抑制することができる。
【0066】
請求項11に係る発明は、請求項9に記載の動力装置1Cにおいて、制御装置は、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように第1および第2回転機11,21の一方の動作を制御する(図40のステップ51)とともに、出力部を駆動するように第1および第2回転機11,21の他方の動作を制御する(図40のステップ2)ことを特徴とする。
【0067】
この構成によれば、熱機関を始動する際、出力部への駆動力の伝達に起因する被駆動部の速度変化を抑制するように第1および第2回転機の一方の動作が制御されるとともに、出力部を駆動するように第1および第2回転機の他方の動作が制御される。この場合、第1回転機の第1および第2ロータの一方が出力部に連結されていることと、前述した第1回転機の機能から明らかなように、第1回転機の動作を上記のように制御することによって、出力部を適切に駆動することができ、ひいては、熱機関を適切に始動することができる。
【0068】
また、互いの間で動力を伝達可能な第1〜第3要素のうちの第1および第2要素の一方が出力部に連結されるとともに、第3要素が第2回転機のロータに連結されているので、第2回転機の動作を上記のように制御することによって、出力部を適切に駆動することができ、ひいては、熱機関を適切に始動することができる。さらに、請求項9の説明で述べたように、熱機関を始動する際、第1および第2回転機の一方の動作を上記のように制御することによって、被駆動部の速度変動を抑制することができる。
【0069】
請求項12に係る発明は、請求項9ないし11のいずれかに記載の動力装置1Cにおいて、出力部には、補機(コンプレッサ51)が機械的に連結されており、熱機関を始動する際、出力部に伝達された駆動力の補機への伝達を制限する動力伝達制限手段(クラッチCL、ECU2、図40のステップ1、図42のステップ11)をさらに備えることを特徴とする。
【0070】
この構成によれば、請求項4の動力装置と同様、補機が出力部に連結されているため、熱機関を始動するために駆動力が出力部に伝達されると、補機にも駆動力が伝達される。その結果、出力部に実際に伝達される駆動力が小さくなるため、熱機関を始動するには、その分、より大きな駆動力が必要になる。上述した構成によれば、熱機関を始動する際、出力部を駆動するための駆動力の補機への伝達が、動力伝達制限手段によって制限される。したがって、熱機関を始動する際、出力部に伝達される駆動力が上記のように小さくなるのを抑制することができ、それにより、出力部を適切に駆動でき、ひいては、熱機関を適切に始動することができる。
【図面の簡単な説明】
【0071】
【図1】本発明の第1実施形態による動力装置を、これを適用した駆動輪とともに概略的に示す図である。
【図2】図1に示す動力装置が備えるECUなどを示すブロック図である。
【図3】図1に示す動力装置が備える第1ステータや、ステータ、メインバッテリなどの接続関係を示すブロック図である。
【図4】図1に示す第1回転機の拡大断面図である。
【図5】図1に示す第1回転機の第1ステータ、第1および第2ロータを周方向に展開し、概略的に示す図である。
【図6】図1に示す第1回転機における第1磁界電気角速度、第1および第2ロータ電気角速度の間の関係の一例を示す速度共線図である。
【図7】図1に示す第1回転機の第1ロータを回転不能に保持した状態で、第1ステータに電力を供給した場合における動作を説明するための図である。
【図8】図7の続きの動作を説明するための図である。
【図9】図8の続きの動作を説明するための図である。
【図10】図7に示す状態から、第1電機子磁極が電気角2πだけ回転したときにおける第1電機子磁極やコアの位置関係を説明するための図である。
【図11】図1に示す第1回転機の第2ロータを回転不能に保持した状態で、第1ステータに電力を供給した場合における動作を説明するための図である。
【図12】図11の続きの動作を説明するための図である。
【図13】図12の続きの動作を説明するための図である。
【図14】図1に示す第1回転機のU相〜W相逆起電圧の推移の一例を、第1電機子磁極、コアおよび第1磁極の数を、16、18および20にそれぞれ設定するとともに、第1ロータを回転不能に保持した場合について示す図である。
【図15】図1に示す第1回転機の第1駆動用等価トルク、第1および第2ロータ伝達トルクの推移の一例を、第1電機子磁極、コアおよび第1磁石磁極の数を、16、18および20にそれぞれ設定するとともに、第1ロータを回転不能に保持した場合について示す図である。
【図16】図1に示す第1回転機のU相〜W相逆起電圧の推移の一例を、第1電機子磁極、コアおよび第1磁石磁極の数を、16、18および20にそれぞれ設定するとともに、第2ロータを回転不能に保持した場合について示す図である。
【図17】図1に示す第1回転機の第1駆動用等価トルク、第1および第2ロータ伝達トルクの推移の一例を、第1電機子磁極、コアおよび第1磁石磁極の数を、16、18および20にそれぞれ設定するとともに、第2ロータを回転不能に保持した場合について示す図である。
【図18】図1に示す動力装置において実行される処理を示すフローチャートである。
【図19】図1に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図18に示す処理の実行中について示す速度共線図である。
【図20】図1に示す動力装置において実行される、図18とは異なる処理を示すフローチャートである。
【図21】図1に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図20に示す処理の実行中について示す速度共線図である。
【図22】図1に示す動力装置において実行される、図18および図20とは異なる処理を示すフローチャートである。
【図23】図1に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図22に示す処理の実行中について示す速度共線図である。
【図24】本発明の第2実施形態による動力装置を、これを適用した駆動輪とともに概略的に示す図である。
【図25】図24に示す動力装置において実行される処理を示すフローチャートである。
【図26】図24に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図25に示す処理の実行中について示す速度共線図である。
【図27】図24に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図25とは異なる処理の実行中について示す速度共線図である。
【図28】図24に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図25および図27とは異なる処理の実行中について示す速度共線図である。
【図29】本発明の第3実施形態による動力装置を、これを適用した駆動輪とともに概略的に示す図である。
【図30】図29に示す動力装置が備えるECUなどを示すブロック図である。
【図31】図29に示す動力装置が備える第1ステータや、第2ステータ、メインバッテリなどの接続関係を示すブロック図である。
【図32】図29に示す第1回転機の拡大断面図である。
【図33】図29に示す第2回転機の拡大断面図である。
【図34】図29に示す動力装置において実行される処理を示すフローチャートである。
【図35】図29に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図34に示す処理の実行中について示す速度共線図である。
【図36】図29に示す動力装置において実行される、図34とは異なる処理を示すフローチャートである。
【図37】図29に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図36に示す処理の実行中について示す速度共線図である。
【図38】本発明の第4実施形態による動力装置を、これを適用した駆動輪とともに概略的に示す図である。
【図39】図38に示す動力装置が備えるECUなどを示すブロック図である。
【図40】図38に示す動力装置において実行される処理を示すフローチャートである。
【図41】図38に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図40に示す処理の実行中について示す速度共線図である。
【図42】図38に示す動力装置において実行される、図40とは異なる処理を示すフローチャートである。
【図43】図38に示す動力装置における各種の回転要素の間の回転数の関係およびトルクの関係の一例を、図42に示す処理の実行中について示す速度共線図である。
【図44】本発明の第1回転機の等価回路を示す図である。
【発明を実施するための形態】
【0072】
以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1および図2に示す本発明の第1実施形態による動力装置1は、車両(図示せず)の駆動輪DW,DWを駆動するためのものであり、動力源としての内燃機関3、第1回転機11および第2回転機21と、動力を伝達するための差動装置DGと、これらの内燃機関3、第1および第2回転機11,21の動作を制御するためのECU2を備えている。なお、図1および後述する他の図面では、断面を示す部分のハッチングを適宜、省略するものとする。また、以下の説明では、ギヤなどの変速機構を介さずに各要素をシャフトなどで直接的に連結することを適宜、「直結」という。
【0073】
内燃機関(以下「エンジン」という)3は、ガソリンエンジンであり、動力を出力するためのクランク軸3aや、燃料噴射弁3b、点火プラグ3cを有している。燃料噴射弁3bの開弁時間および開弁時期と、点火プラグ3cの点火動作は、ECU2によって制御される。
【0074】
また、クランク軸3aには、エンジン3の始動用のスタータ31が、ワンウェイクラッチ(図示せず)を介して機械的に連結されている。このワンウェイクラッチは、クランク軸3aとスタータ31の間を、スタータ31からクランク軸3aに動力が伝達されるようなときには接続する一方、クランク軸3aからスタータ31に動力が伝達されるようなときには遮断する。また、図3に示すように、スタータ31には、リレー32を介して補助バッテリ33が電気的に接続されている。このリレー32は、ECU2に電気的に接続されており、ECU2によるリレー32の制御により、補助バッテリ33からスタータ31への電力の供給が制御されることによって、スタータ31の動作が制御される。さらに、クランク軸3aには、第1回転軸4が、フライホイール(図示せず)を介して同軸状に直結されており、この第1回転軸4は、軸受け(図示せず)に回転自在に支持されている。
【0075】
また、図1および図4に示すように、第1回転機11は、2ロータタイプのものであり、不動の第1ステータ13と、第1ステータ13に対向するように設けられた第1ロータ14と、両者13,14の間に設けられた第2ロータ15を有している。第1ロータ14、第2ロータ15および第1ステータ13は、上記の第1回転軸4と同軸状に配置されており、第1回転軸4の径方向に、内側からこの順で並んでいる。
【0076】
第1ステータ13は、第1回転磁界を発生させるものであり、図4および図5に示すように、鉄芯13aと、この鉄芯13aに設けられたU相、V相およびW相コイル13c,13d,13eを有している。なお、図4では、便宜上、U相コイル13cのみを示している。鉄芯13aは、複数の鋼板を積層した円筒状のものであり、第1回転軸4の軸線方向(以下、単に「軸線方向」という)に延びており、移動不能のケースCAに固定されている。また、鉄芯13aの内周面には、12個のスロット13bが形成されており、これらのスロット13bは、軸線方向に延びるとともに、第1回転軸4の周方向(以下、単に「周方向」という)に等間隔で並んでいる。上記のU相〜W相コイル13c〜13eは、スロット13bに分布巻き(波巻き)で巻回されている。
【0077】
また、図3に示すように、U相〜W相コイル13c〜13eを含む第1ステータ13は、第1パワードライブユニット(以下「第1PDU」という)41とボルテージコントロールユニット(以下「VCU」という)43を介して、充電・放電可能なメインバッテリ44に電気的に接続されている。この第1PDU41は、インバータなどの電気回路で構成されており、メインバッテリ44から供給された直流電力を3相交流電力に変換した状態で、第1ステータ13に出力する。また、上記のVCU43は、DC/DCコンバータなどの電気回路で構成されており、メインバッテリ44からの電力を昇圧した状態で、第1PDU41に出力するとともに、第1PDU41からの電力を降圧した状態で、メインバッテリ44に出力する。さらに、第1PDU41およびVCU43はそれぞれ、ECU2に電気的に接続されている(図2参照)。
【0078】
以上の構成の第1ステータ13では、メインバッテリ44からVCU43および第1PDU41を介して電力が供給されたときに、または、後述するように発電したときに、鉄芯13aの第1ロータ14側の端部に、4個の磁極が周方向に等間隔で発生する(図7参照)とともに、これらの磁極による第1回転磁界が周方向に回転する。以下、鉄芯13aに発生する磁極を「第1電機子磁極」という。また、周方向に隣り合う各2つの第1電機子磁極の極性は、互いに異なっている。なお、図7や後述する他の図面では、第1電機子磁極を、鉄芯13aやU相〜W相コイル13c〜13eの上に、(N)および(S)で表記している。
【0079】
図5に示すように、第1ロータ14は、8個の永久磁石14aから成る第1磁極列を有している。これらの永久磁石14aは、周方向に等間隔で並んでおり、この第1磁極列は、第1ステータ13の鉄芯13aに対向している。各永久磁石14aは、軸線方向に延びており、その軸線方向の長さが、第1ステータ13の鉄芯13aのそれと同じに設定されている。
【0080】
また、永久磁石14aは、リング状の取付部14bの外周面に取り付けられている。この取付部14bは、軟磁性体、例えば鉄または複数の鋼板を積層したもので構成されており、その内周面が、円板状のフランジ14cの外周面に取り付けられている。このフランジ14cは、軸受け(図示せず)に回転自在に支持された第2回転軸5に一体に設けられており、それにより、永久磁石14aを含む第1ロータ14は、第2回転軸5に同軸状に直結されている。また、第2回転軸5は、クランク軸3aおよび第1回転軸4と同軸状に配置されている。さらに、上記のように軟磁性体で構成された取付部14bの外周面に永久磁石14aが取り付けられているので、各永久磁石14aには、第1ステータ13側の端部に、(N)または(S)の1つの磁極が現れる。なお、図5や後述する他の図面では、永久磁石14aの磁極を(N)および(S)で表記している。また、周方向に隣り合う各2つの永久磁石14aの極性は、互いに異なっている。
【0081】
第2ロータ15は、6個のコア15aから成る単一の第1軟磁性体列を有している。これらのコア15aは、周方向に等間隔で並んでおり、この第1軟磁性体列は、第1ステータ13の鉄芯13aと第1ロータ14の磁極列との間に、それぞれ所定の間隔を隔てて配置されている。各コア15aは、軟磁性体、例えば複数の鋼板を積層したものであり、軸線方向に延びている。また、コア15aの軸線方向の長さは、永久磁石14aと同様、第1ステータ13の鉄芯13aのそれと同じに設定されている。さらに、コア15aは、円板状のフランジ15bの外端部に、軸線方向に若干延びる筒状の連結部15cを介して取り付けられており、このフランジ15bは、前述した第1回転軸4に一体に設けられている。以上により、コア15aを含む第2ロータ15は、第1回転軸4およびフライホイールを介して、クランク軸3aに同軸状に直結されている。また、第1回転軸4には、軸受けと第2ロータ15の間に、第1プーリPU1が一体に設けられている。なお、図5や図7では、便宜上、連結部15cおよびフランジ15bを省略している。
【0082】
次に、以上の構成の第1回転機11の動作について説明する。前述したように、第1回転機11では、第1電機子磁極が4個、永久磁石14aの磁極(以下「第1磁石磁極」という)が8個、コア15aが6個である。すなわち、第1電機子磁極の数と第1磁石磁極の数とコア15aの数との比は、1:2.0:(1+2.0)/2に設定されており、第1電機子磁極の極対数に対する第1磁石磁極の極対数の比(以下「第1極対数比α」という)は、値2.0に設定されている。このことと、前述した式(18)〜(20)から明らかなように、第1ステータ13に対して第1ロータ14や第2ロータ15が回転するのに伴ってU相〜W相コイル13c〜13eにそれぞれ発生する逆起電圧(以下、それぞれ「U相逆起電圧Vcu」「V相逆起電圧Vcv」「W相逆起電圧Vcw」という)は、次式(33)、(34)および(35)で表される。
【数33】

【数34】

【数35】

【0083】
ここで、ψFは、第1磁石磁極の磁束の最大値である。また、θER1は、第1ロータ電気角であり、特定のU相コイル13c(以下「基準コイル」という)に対する第1ロータ14の特定の永久磁石14aの回転角度位置を、電気角度位置に換算した値である。すなわち、第1ロータ電気角θER1は、この特定の永久磁石14aの回転角度位置に、第1電機子磁極の極対数、すなわち値2を乗算した値である。さらに、θER2は、第2ロータ電気角であり、上記の基準コイルに対する第2ロータ15の特定のコア15aの回転角度位置を、電気角度位置に換算した値である。すなわち、第2ロータ電気角θER2は、この特定のコア15aの回転角度位置に、第1電機子磁極の極対数(値2)を乗算した値である。
【0084】
また、上記の式(33)〜(35)におけるωER1は、第1ロータ電気角速度であり、第1ロータ電気角θER1の時間微分値、すなわち、第1ステータ13に対する第1ロータ14の角速度を電気角速度に換算した値である。さらに、ωER2は、第2ロータ電気角速度であり、第2ロータ電気角θER2の時間微分値、すなわち、第1ステータ13に対する第2ロータ15の角速度を電気角速度に換算した値である。
【0085】
また、前述した第1極対数比αと前記式(21)〜(23)から明らかなように、U相、V相およびW相コイル13c,13d,13eをそれぞれ流れる電流(以下、それぞれ「U相電流Iu」「V相電流Iv」「W相電流Iw」という)は、次式(36)、(37)および(38)で表される。
【数36】

【数37】

【数38】

【0086】
ここで、Iは、U相〜W相電流Iu〜Iwの振幅(最大値)である。さらに、第1極対数比α(=2.0)と前記式(24)および(25)から明らかなように、基準コイルに対する第1ステータ13の第1回転磁界のベクトルの電気角度位置θMFRは、次式(39)で表され、第1ステータ13に対する第1回転磁界の電気角速度(以下「第1磁界電気角速度ωMFR」という)は、次式(40)で表される。
【数39】

【数40】

【0087】
このため、第1磁界電気角速度ωMFRと第1ロータ電気角速度ωER1と第2ロータ電気角速度ωER2の関係をいわゆる速度共線図で表すと、例えば図6のように示される。図6および後述する他の速度共線図において、値0を示す横線に交わる縦線は、各回転要素の回転数を表すためのものであり、この横線から縦線上の白丸までの距離が、縦線の上下端に表記された回転要素の角速度(回転数)に相当する。
【0088】
また、第1ステータ13に供給された電力および第1磁界電気角速度ωMFRと等価のトルクを第1駆動用等価トルクTSE1とすると、この第1駆動用等価トルクTSE1と、第1ロータ14に伝達されるトルク(以下「第1ロータ伝達トルクTR1」という)と、第2ロータ15に伝達されるトルク(以下「第2ロータ伝達トルクTR2」という)との関係は、第1極対数比α(=2.0)と前記式(32)から明らかなように、次式(41)で表される。
【数41】

【0089】
上記の式(40)および(41)でそれぞれ表される電気角速度およびトルクの関係は、サンギヤおよびリングギヤのギヤ比が1:2である遊星歯車装置のサンギヤ、リングギヤおよびキャリアにおける回転速度およびトルクの関係とまったく同じである。
【0090】
次に、第1ステータ13に供給された電力が、具体的にどのようにして動力に変換され、第1ロータ14や第2ロータ15から出力されるかについて説明する。まず、図7〜図9を参照しながら、第1ロータ14を回転不能に保持した状態で第1ステータ13に電力を供給した場合について説明する。なお、図7〜図9では、便宜上、複数の構成要素の符号を省略している。このことは、後述する他の図面においても同様である。また、理解の容易化のために、図7〜図9に示される同じ1つの第1電機子磁極およびコア15aに、ハッチングを付している。
【0091】
まず、図7(a)に示すように、ある1つのコア15aの中心と、ある1つの永久磁石14aの中心が、周方向に互いに一致するとともに、そのコア15aから3つ目のコア15aの中心と、その永久磁石14aから4つ目の永久磁石14aの中心が、周方向に互いに一致した状態から、第1回転磁界を、同図の左方に回転するように発生させる。その発生の開始時においては、互いに同じ極性を有する1つおきの第1電機子磁極の位置を、中心がコア15aと一致している各永久磁石14aの中心と周方向に一致させるとともに、この第1電機子磁極の極性をこの永久磁石14aの第1磁石磁極の極性と異ならせる。
【0092】
前述したように第1ステータ13による第1回転磁界が第1ロータ14との間に発生することと、コア15aを有する第2ロータ15が第1ステータ13と第1ロータ14の間に配置されていることから、第1電機子磁極および第1磁石磁極により、各コア15aは磁化される。このことと、隣り合う各コア15aの間に間隔が空いていることから、第1電機子磁極とコア15aと第1磁石磁極を結ぶような磁力線MLが発生する。なお、図7〜図9では、便宜上、鉄芯13aや取付部14bにおける磁力線MLを省略している。このことは、後述する他の図面においても同様である。
【0093】
図7(a)に示す状態では、磁力線MLは、周方向の位置が互いに一致している第1電機子磁極、コア15aおよび第1磁石磁極を結び、かつ、これらの第1電機子磁極、コア15aおよび第1磁石磁極のそれぞれの周方向の各両側に隣り合う第1電機子磁極、コア15aおよび第1磁石磁極を結ぶように発生する。また、この状態では、磁力線MLが直線状であることにより、コア15aには、周方向に回転させるような磁力は作用しない。
【0094】
そして、第1回転磁界の回転に伴って第1電機子磁極が図7(a)に示す位置から図7(b)に示す位置に回転すると、磁力線MLが曲がった状態になり、それに伴い、磁力線MLが直線状になるように、コア15aに磁力が作用する。この場合、磁力線MLで互いに結ばれた第1電機子磁極および第1磁石磁極を結ぶ直線に対して、磁力線MLが、このコア15aにおいて第1回転磁界の回転方向(以下「磁界回転方向」という)と逆方向に凸に曲がった状態になるため、上記の磁力は、コア15aを磁界回転方向に駆動するように作用する。このような磁力線MLによる磁力の作用により、コア15aは、磁界回転方向に駆動され、図7(c)に示す位置に回転し、コア15aが設けられた第2ロータ15も、磁界回転方向に回転する。なお、図7(b)および(c)における破線は、磁力線MLの磁束量が極めて小さく、第1電機子磁極とコア15aと第1磁石磁極の間の磁気的なつながりが弱いことを表している。このことは、後述する他の図面においても同様である。
【0095】
また、第1回転磁界がさらに回転するのに伴い、上述した一連の動作、すなわち、「磁力線MLがコア15aにおいて磁界回転方向と逆方向に凸に曲がる→磁力線MLが直線状になるようにコア15aに磁力が作用する→コア15aおよび第2ロータ15が、磁界回転方向に回転する」という動作が、図8(a)〜(d)、図9(a)および(b)に示すように、繰り返し行われる。以上のように、第1ロータ14を回転不能に保持した状態で、第1ステータ13に電力を供給した場合には、上述したような磁力線MLによる磁力の作用によって、第1ステータ13に供給された電力は動力に変換され、その動力が第2ロータ15から出力される。
【0096】
また、図10は、図7(a)の状態から第1電機子磁極が電気角2πだけ回転した状態を示しており、図10と図7(a)の比較から明らかなように、コア15aは、第1電機子磁極に対して1/3の回転角度だけ、同方向に回転していることが分かる。この結果は、前記式(40)において、ωER1=0とすることによって、ωER2=ωMFR/3が得られることと合致する。
【0097】
次に、図11〜図13を参照しながら、第2ロータ15を回転不能に保持した状態で、第1ステータ13に電力を供給した場合の動作について説明する。なお、図11〜図13では、図7〜図9と同様、理解の容易化のために、同じ1つの第1電機子磁極および永久磁石14aに、ハッチングを付している。まず、図11(a)に示すように、前述した図7(a)の場合と同様、ある1つのコア15aの中心と、ある1つの永久磁石14aの中心が、周方向に互いに一致するとともに、そのコア15aから3つ目のコア15aの中心と、その永久磁石14aから4つ目の永久磁石14aの中心が、周方向に互いに一致した状態から、第1回転磁界を、同図の左方に回転するように発生させる。その発生の開始時においては、互いに同じ極性を有する1つおきの第1電機子磁極の位置を、中心がコア15aと一致している各永久磁石14aの中心と周方向に一致させるとともに、この第1電機子磁極の極性をこの永久磁石14aの第1磁石磁極の極性と異ならせる。
【0098】
図11(a)に示す状態では、図7(a)の場合と同様、磁力線MLは、周方向の位置が互いに一致している第1電機子磁極、コア15aおよび第1磁石磁極を結び、かつ、これらの第1電機子磁極、コア15aおよび第1磁石磁極のそれぞれの周方向の各両側に隣り合う第1電機子磁極、コア15aおよび第1磁石磁極を結ぶように発生する。また、この状態では、磁力線MLが直線状であることにより、永久磁石14aには、周方向に回転させるような磁力は作用しない。
【0099】
そして、第1回転磁界の回転に伴って第1電機子磁極が図11(a)に示す位置から図11(b)に示す位置に回転すると、磁力線MLが曲がった状態になり、それに伴い、磁力線MLが直線状になるように、永久磁石14aに磁力が作用する。この場合、この永久磁石14aが、磁力線MLで互いに結ばれた第1電機子磁極およびコア15aの延長線上よりも磁界回転方向に進んだ位置にあるため、上記の磁力は、この延長線上に永久磁石14aを位置させるように、すなわち、永久磁石14aを磁界回転方向と逆方向に駆動するように作用する。このような磁力線MLによる磁力の作用により、永久磁石14aは、磁界回転方向と逆方向に駆動され、図11(c)に示す位置に回転し、永久磁石14aが設けられた第1ロータ14も、磁界回転方向と逆方向に回転する。
【0100】
また、第1回転磁界がさらに回転するのに伴い、上述した一連の動作、すなわち、「磁力線MLが曲がり、磁力線MLで互いに結ばれた第1電機子磁極およびコア15aの延長線上よりも、永久磁石14aが磁界回転方向に進んだ位置に位置する→磁力線MLが直線状になるように永久磁石14aに磁力が作用する→永久磁石14aおよび第1ロータ14が、磁界回転方向と逆方向に回転する」という動作が、図12(a)〜(d)、図13(a)および(b)に示すように、繰り返し行われる。以上のように、第2ロータ15を回転不能に保持した状態で、第1ステータ13に電力を供給した場合には、上述したような磁力線MLによる磁力の作用によって、第1ステータ13に供給された電力は動力に変換され、その動力が第1ロータ14から出力される。
【0101】
また、図13(b)は、図11(a)の状態から第1電機子磁極が電気角2πだけ回転した状態を示しており、図13(b)と図11(a)の比較から明らかなように、永久磁石14aは、第1電機子磁極に対して1/2の回転角度だけ、逆方向に回転していることが分かる。この結果は、前記式(40)において、ωER2=0とすることによって、−ωER1=ωMFR/2が得られることと合致する。
【0102】
また、図14および図15は、第1電機子磁極、コア15aおよび永久磁石14aの数を、値16、値18および値20にそれぞれ設定し、第1ロータ14を回転不能に保持するとともに、第1ステータ13への電力の供給により第2ロータ15から動力を出力した場合におけるシミュレーション結果を示している。図14は、第2ロータ電気角θER2が値0〜2πまで変化する間におけるU相〜W相逆起電圧Vcu〜Vcwの推移の一例を示している。
【0103】
この場合、第1ロータ14が回転不能に保持されていることと、第1電機子磁極および第1磁石磁極の極対数がそれぞれ値8および値10であることと、前記式(25)から、第1磁界電気角速度ωMFR、第1および第2ロータ電気角速度ωER1,ωER2の間の関係は、ωMFR=2.25・ωER2で表される。図14に示すように、第2ロータ電気角θER2が値0〜2πまで変化する間に、U相〜W相逆起電圧Vcu〜Vcwは、ほぼ2.25周期分、発生している。また、図14は、第2ロータ15から見たU相〜W相逆起電圧Vcu〜Vcwの変化状態を示しており、同図に示すように、これらの逆起電圧は、第2ロータ電気角θER2を横軸として、W相逆起電圧Vcw、V相逆起電圧VcvおよびU相逆起電圧Vcuの順に並んでおり、このことは、第2ロータ15が磁界回転方向に回転していることを表す。以上のような図14に示すシミュレーション結果は、上述した式(25)に基づくωMFR=2.25・ωER2の関係と合致する。
【0104】
さらに、図15は、第1駆動用等価トルクTSE1、第1および第2ロータ伝達トルクTR1,TR2の推移の一例を示している。この場合、第1電機子磁極および第1磁石磁極の極対数がそれぞれ値8および値10であることと、前記式(32)から、第1駆動用等価トルクTSE1、第1および第2ロータ伝達トルクTR1,TR2の間の関係は、TSE1=TR1/1.25=−TR2/2.25で表される。図15に示すように、第1駆動用等価トルクTSE1は、ほぼ−TREFに、第1ロータ伝達トルクTR1は、ほぼ1.25・(−TREF)に、第2ロータ伝達トルクTR2は、ほぼ2.25・TREFになっている。このTREFは所定のトルク値(例えば200Nm)である。このような図15に示すシミュレーション結果は、上述した式(32)に基づくTSE1=TR1/1.25=−TR2/2.25の関係と合致する。
【0105】
また、図16および図17は、第1電機子磁極、コア15aおよび永久磁石14aの数を図14および図15の場合と同様に設定し、第1ロータ14に代えて第2ロータ15を回転不能に保持するとともに、第1ステータ13への電力の供給により第1ロータ14から動力を出力した場合におけるシミュレーション結果を示している。図16は、第1ロータ電気角θER1が値0〜2πまで変化する間におけるU相〜W相逆起電圧Vcu〜Vcwの推移の一例を示している。
【0106】
この場合、第2ロータ15が回転不能に保持されていることと、第1電機子磁極および第1磁石磁極の極対数がそれぞれ値8および値10であることと、前記式(25)から、第1磁界電気角速度ωMFR、第1および第2ロータ電気角速度ωER1,ωER2の間の関係は、ωMFR=−1.25・ωER1で表される。図16に示すように、第1ロータ電気角θER1が値0〜2πまで変化する間に、U相〜W相逆起電圧Vcu〜Vcwは、ほぼ1.25周期分、発生している。また、図16は、第1ロータ14から見たU相〜W相逆起電圧Vcu〜Vcwの変化状態を示しており、同図に示すように、これらの逆起電圧は、第1ロータ電気角θER1を横軸として、U相逆起電圧Vcu、V相逆起電圧VcvおよびW相逆起電圧Vcwの順に並んでおり、このことは、第1ロータ14が磁界回転方向と逆方向に回転していることを表す。以上のような図16に示すシミュレーション結果は、上述した式(25)に基づくωMFR=−1.25・ωER1の関係と合致する。
【0107】
さらに、図17は、第1駆動用等価トルクTSE1、第1および第2ロータ伝達トルクTR1,TR2の推移の一例を示している。この場合にも、図15の場合と同様、式(32)から、第1駆動用等価トルクTSE1、第1および第2ロータ伝達トルクTR1,TR2の間の関係は、TSE1=TR1/1.25=−TR2/2.25で表される。図17に示すように、第1駆動用等価トルクTSE1は、ほぼTREFに、第1ロータ伝達トルクTR1は、ほぼ1.25・TREFに、第2ロータ伝達トルクTR2は、ほぼ−2.25・TREFになっている。このような図17に示すシミュレーション結果は、上述した式(32)に基づくTSE1=TR1/1.25=−TR2/2.25の関係と合致する。
【0108】
以上のように、第1回転機11では、第1ステータ13への電力供給により第1回転磁界を発生させると、前述した第1磁石磁極とコア15aと第1電機子磁極を結ぶような磁力線MLが発生し、この磁力線MLによる磁力の作用によって、第1ステータ13に供給された電力は動力に変換され、その動力が、第1ロータ14や第2ロータ15から出力される。この場合、第1磁界電気角速度ωMFR、第1および第2ロータ電気角速度ωER1,ωER2の間に、前記式(40)に示す関係が成立するとともに、第1駆動用等価トルクTSE1、第1および第2ロータ伝達トルクTR1,TR2の間に、前記式(41)に示す関係が成立する。
【0109】
このため、第1ステータ13に電力を供給していない状態で、第1および第2ロータ14,15の少なくとも一方に動力を入力することにより、この少なくとも一方を第1ステータ13に対して回転させると、第1ステータ13において、発電が行われるとともに、第1回転磁界が発生し、この場合にも、第1磁石磁極とコア15aと第1電機子磁極を結ぶような磁力線MLが発生するとともに、この磁力線MLによる磁力の作用によって、式(40)に示す電気角速度の関係と式(41)に示すトルクの関係が成立する。
【0110】
すなわち、発電した電力および第1磁界電気角速度ωMFRと等価のトルクを第1発電用等価トルクTGE1とすると、この第1発電用等価トルクTGE1、第1および第2ロータ伝達トルクTR1,TR2の間にも、式(41)に示す関係が成立する。以上から明らかなように、第1回転機11は、遊星歯車装置と一般的な1ロータタイプの回転機とを組み合わせた装置と同じ機能を有する。
【0111】
また、ECU2は、第1PDU41およびVCU43を制御することによって、第1ステータ13に供給される電流、第1ステータ13で発電される電流、および第1回転磁界の回転数(以下「第1磁界回転数」という)NMF1を制御する。
【0112】
また、図1に示すように、前述した第2回転機21は、一般的なブラシレスDCモータであり、不動のステータ22と、回転自在のロータ23を有している。ステータ22は、3相コイルなどで構成されており、ケースCAに固定されている。また、図3に示すように、ステータ22は、第2パワードライブユニット(以下「第2PDU」という)42および前述したVCU43を介して、メインバッテリ44に電気的に接続されている。さらに、ロータ23は、複数の磁石などで構成されており、ステータ22に対向するように配置されている。
【0113】
上記の第2PDU42は、前述した第1PDU41と同様、インバータなどの電気回路で構成されており、メインバッテリ44から供給された直流電力を3相交流電力に変換した状態で、ステータ22に出力する。また、第2PDU42は、第1PDU41に電気的に接続されており、それにより、第1回転機11の第1ステータ13および第2回転機21のステータ22は、第1および第2PDU41,42を介して、互いに電気的に接続されている。さらに、第2PDU42は、ECU2に電気的に接続されている(図2参照)。また、VCU43は、メインバッテリ44からの電力を昇圧した状態で、第2PDU42に出力するとともに、第2PDU42からの電力を降圧した状態で、メインバッテリ44に出力する。
【0114】
以上の構成の第2回転機21では、メインバッテリ44からVCU43および第2PDU42を介してステータ22に電力が供給されると、供給された電力は動力に変換され、ロータ23から出力される。また、ステータ22への電力の非供給時、ロータ23に動力が入力されることによりロータ23がステータ22に対して回転すると、ロータ23に入力された動力が、ステータ22において電力に変換され(発電)、ステータ22から出力される。ECU2は、第2PDU42およびVCU43を制御することによって、ステータ22に供給される電流、ステータ22で発電される電流、およびロータ23の回転数(以下「第2回転機回転数」という)NM2を制御する。
【0115】
また、ロータ23は、前述した第2回転軸5に一体に設けられており、それにより、ロータ23は、第1回転機11の第1ロータ14に同軸状に直結されている。さらに、第2回転軸5には、ギヤG1が一体に設けられている。
【0116】
また、前述した差動装置DGは、動力を左右の駆動輪DW,DWに分配するためのものであり、歯数が互いに等しい左右のサイドギヤDS,DSと、両ギヤDS,DSに噛み合う複数のピニオンギヤDPと、これらのピニオンギヤDPを回転自在に支持するデフケースDCを有している。左右のサイドギヤDS,DSはそれぞれ、左右の車軸6,6を介して、左右の駆動輪DW,DWに連結されている。
【0117】
以上の構成の差動装置DSでは、デフケースDCに伝達された動力は、ピニオンギヤDPを介して、左右のサイドギヤDS,DSに分配され、さらに、左右の車軸6,6を介して、左右の駆動輪DW,DWに分配される。また、デフケースDCには、ギヤG2が一体に設けられており、このギヤG2は、中間ギヤG3を介して、上述したギヤG1に噛み合っている。
【0118】
また、車両には、エアコンディショナの冷媒を圧縮するためのコンプレッサ51が搭載されている。このコンプレッサ51は、入力軸52を有しており、入力軸52に動力が伝達されることによって、駆動される。また、入力軸52には、クラッチCLを介して、第2プーリPU2が直結されており、この第2プーリPU2と、前述した第1回転軸4に設けられた第1プーリPU1には、ベルトBEが巻き掛けられている。このクラッチCLは、電磁クラッチであり、ECU2の制御により、締結・解放されることによって、入力軸52と第2プーリPU2の間を接続・遮断する。
【0119】
以上のように、動力装置1では、第1回転機11の第2ロータ15が、クランク軸3aに機械的に連結されている。また、コンプレッサ51が、クラッチCLを介して、クランク軸3aに機械的に連結されている。さらに、第1回転機11の第1ロータ14および第2回転機21のロータ23が、互いに機械的に連結されるとともに、ギヤG1、ギヤG3、差動装置DG、および車軸6,6を介して、駆動輪DW,DWに機械的に連結されている。
【0120】
また、図2に示すように、ECU2には、クランク角センサ61および第1回転角センサ62が電気的に接続されている。このクランク角センサ61は、クランク軸3aの回転角度位置を検出するとともに、その検出信号をECU2に出力する。ECU2は、検出されたクランク軸3aの回転角度位置に基づいて、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、ECU2は、前述したように第2ロータ15がクランク軸3aに直結されているため、検出されたクランク軸3aの回転角度位置に基づいて、第1ステータ13に対する第2ロータ15の回転角度位置を算出するとともに、第2ロータ15の回転数(以下「第2ロータ回転数」という)NR2を算出する。
【0121】
また、上記の第1回転角センサ62は、第1ステータ13に対する第1ロータ14の回転角度位置を検出し、その検出信号をECU2に出力する。ECU2は、検出された第1ロータ14の回転角度位置に基づいて、第1ロータ14の回転数(以下「第1ロータ回転数」という)NR1を算出する。また、ECU2は、前述したように第1ロータ14およびロータ23が互いに直結されているため、検出された第1ロータ14の回転角度位置に基づいて、ステータ22に対するロータ23の回転角度位置を算出するとともに、第2回転機回転数NM2(ロータ23の回転数)を算出する。
【0122】
さらに、ECU2には、回転数センサ63から駆動輪DW,DWの回転数(以下「駆動輪回転数」という)NDWを表す検出信号が、電流電圧センサ64から、メインバッテリ44に入出力される電流・電圧値を表す検出信号が、それぞれ出力される。ECU2は、この電流電圧センサ64からの検出信号に基づいて、メインバッテリ44の充電状態を算出する。また、車両には、イグニッション・スイッチ(以下「IG・SW」という)65が設けられており、IG・SW65は、イグニッションキー(図示せず)の操作に応じ、そのON/OFF状態を表す信号をECU2に出力する。
【0123】
ECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータで構成されている。ECU2は、前述した各種のセンサおよびスイッチ61〜65からの検出信号に応じ、上記のROMに記憶された制御プログラムに従って、クラッチCL、エンジン3、スタータ31、第1および第2回転機11,21の動作を制御する。これにより、車両が各種の運転モードによって運転される。
【0124】
これらの運転モードには、停車中ENG始動モードが含まれる。この停車中ENG始動モードは、車両の停止中にエンジン3を始動する運転モードであり、第1始動モードおよび第2始動モードを含む。以下、これらの第1および第2始動モードについて、順に説明する。
【0125】
[第1始動モード]
図18は、第1始動モードによる制御を行うための処理(以下「第1始動モード制御処理」という)を示している。本処理は、車両の停止中、前述したIG・SW65からON信号が出力された場合において、算出されたメインバッテリ44の充電状態が所定の範囲内にあるときに、実行される。この所定の範囲は、第1所定値と第2所定値で規定されており、この第1所定値は、停止状態のクランク軸3aを駆動可能な、最低の充電状態であり、例えば20%に設定されている。また、第2所定値は、エンジン3を用いずに第2回転機21を用いて駆動輪DW,DWを駆動した場合にメインバッテリ44の電力が不足するような、所定の充電状態であり、第1所定値よりも大きな所定値、例えば30%に設定されている。
【0126】
まず、図18のステップ1(「S1」と図示。以下同じ)では、クラッチCLを解放し、それにより、コンプレッサ51の入力軸52と第2プーリPU2の間を遮断する。次いで、第1回転機11の動作を次のように制御する(ステップ2)。すなわち、メインバッテリ44から第1ステータ13に電力を供給し、第1回転磁界を正転させるとともに、第1ステータ13に供給される電流を制御する。
【0127】
具体的には、まず、算出されたエンジン回転数NEが所定の始動時用回転数NESTになるように、所定のフィードバック制御アルゴリズムによって、第2ロータ伝達トルクTR2の目標値TR2OBJを算出する。この始動時用回転数NESTは、エンジン3を始動可能な所定の回転数であり、例えば500〜700rpmの範囲内における所定の回転数に設定されている。次いで、第2ロータ伝達トルクTR2が算出された目標値TR2OBJになるように、第1ステータ13に供給される電流を制御する。以上により、第1駆動用等価トルクTSE1が発生するとともに、発生した第1駆動用等価トルクTSE1は、第2ロータ15およびクランク軸3aを正転させるように作用し、第2ロータ伝達トルクTR2が目標値TR2OBJになるように制御される。
【0128】
また、上記ステップ2に続くステップ3では、第2回転機21の動作を次のように制御する。すなわち、まず、第2回転機21の出力トルクの目標値TM2OBJを、次式(42)によって算出する。次いで、メインバッテリ44からステータ22に電力を供給するとともに、目標値TM2OBJに相当するトルクがロータ23に対して正転方向に作用するように、ステータ22に供給される電流を制御する。
TM2OBJ=α・TR2OBJ/(1+α) ……(42)
【0129】
また、上記ステップ3に続くステップ4では、エンジン3の燃料噴射弁3bおよび点火プラグ3cの点火動作を制御することによって、停止状態のエンジン3を始動し、本処理を終了する。
【0130】
次に、図19を参照しながら、上述した第1始動モード制御処理の動作例について説明する。まず、この図19について説明する。動力装置1における前述した各種の回転要素の間の連結関係から明らかなように、エンジン回転数NEおよび第2ロータ回転数NR2は、互いに等しく、第1ロータ回転数NR1および第2回転機回転数NM2は、互いに等しい。また、ギヤG1や差動装置DGによる変速を無視すれば、第1ロータ回転数NR1および第2回転機回転数NM2は、駆動輪回転数NDWと等しい。さらに、第1磁界回転数NMF1、第1および第2ロータ回転数NR1,NR2は、前記式(40)で表されるような所定の共線関係にある。
【0131】
以上から、第1磁界回転数NMF1、エンジン回転数NE、駆動輪回転数NDWおよび第2回転機回転数NM2の間の関係は、図19に示すような速度共線図で表される。なお、図19および後述する他の速度共線図では、前述した図6の速度共線図と同様、値0を示す横線から縦線上の白丸までの距離が、縦線の上下端に表記された回転要素の回転数に相当し、便宜上、この白丸の付近に、各回転要素の回転数を表す符号を表記している。また、図19において、TEFは、クランク軸3aに作用するエンジン3のフリクション(以下「エンジンフリクション」という)であり、TM2は、ステータ22への電力の供給に伴ってロータ23に作用する第2回転機21の出力トルク(以下「第2力行トルク」という)である。
【0132】
図19から明らかなように、第1駆動用等価トルクTSE1は、第2力行トルクTM2を反力として、第2ロータ15およびクランク軸3aに伝達され、それにより、両者15,3aが駆動され、正転する。この場合、第2ロータ伝達トルクTR2が目標値TR2OBJになるように、第1ステータ13に供給される電流が制御されることによって、エンジン回転数NEが、始動時用回転数NESTになるようにフィードバック制御される。また、その状態で、エンジン3が始動される。
【0133】
また、図19から明らかなように、第1駆動用等価トルクTSE1は、エンジンフリクションTEFを反力として、第1ロータ14、ロータ23および駆動輪DW,DWを逆転させるように作用する。そのように第1ロータ14などを逆転させるように作用するトルク(以下「第1ロータ逆転トルク」という)は、前記式(41)から明らかなように、第2ロータ伝達トルクTR2および第1極対数比αを用いて、−α・TR2/(1+α)で表される。
【0134】
これに対して、前述した第2回転機21の動作の制御によって、目標値TM2OBJに相当するトルクがロータ23に対して正転方向に作用するように、ステータ22に供給される電流が制御されるとともに、この目標値TM2OBJが、前記式(42)、すなわち、TM2OBJ=α・TR2OBJ/(1+α)により算出される。このことと、上記のように第1ロータ逆転トルクが−α・TR2/(1+α)で表されることから明らかなように、第1ロータ逆転トルクが第2力行トルクTM2により相殺され、ひいては、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0135】
[第2始動モード]
図20は、第2始動モードによる制御を行うための処理(以下「第2始動モード制御処理」という)を示している。本処理は、車両の停止中、IG・SW65からON信号が出力された場合において、メインバッテリ44の充電状態が前述した所定の範囲を下回っているときに、実行される。これにより、第2始動モードは、メインバッテリ44から第1回転機11への電力供給によりクランク軸3aを適切に駆動できないときに、選択される。
【0136】
まず、図20のステップ11では、前記ステップ1と同様、クラッチCLを解放し、それにより、コンプレッサ51の入力軸52と第2プーリPU2の間を遮断する。次いで、補助バッテリ33からスタータ31に電力を供給することによって、スタータ31を作動させる(ステップ12)。これにより、クランク軸3aが駆動され、正転する。
【0137】
次に、第2回転機21の動作を次のように制御する(ステップ13)。すなわち、まず、算出された駆動輪回転数NDWが値0になるように、所定のフィードバック制御アルゴリズムによって、第2力行トルクTM2の目標値TM2OBJを算出する。次いで、メインバッテリ44からステータ22に電力を供給するとともに、目標値TM2OBJに相当するトルクがロータ23に作用するように、ステータ22に供給される電流を制御する。なお、この場合、メインバッテリ44からステータ22に供給される電力は、クランク軸3aを駆動するのに必要な電力よりも小さいため、上述したようにメインバッテリ44の充電状態が所定の範囲を下回っていても、上述したステップ13による第2回転機21の動作の制御を支障なく行うことができる。
【0138】
また、上記ステップ13に続くステップ14では、燃料噴射弁3bおよび点火プラグ3cの点火動作を制御することによって、停止状態のエンジン3を始動し、本処理を終了する。なお、本処理では、第1回転機11の動作は制御されない。
【0139】
次に、図21を参照しながら、上述した第2始動モード制御処理の動作例について説明する。同図において、TSTは、スタータ31の出力トルクである。図21に示すように、クランク軸3aが、スタータ31で駆動されることによって正転し、エンジン回転数NEが前述した始動時用回転数NESTを上回る。その状態で、ステップ14が実行されることによって、エンジン3が始動される。
【0140】
この場合、上記のようにクランク軸3aが回転し、それにより第2ロータ15が回転するのに伴い、第1ステータ13において、電力供給および発電が行われていなくても、第1回転磁界が発生する。その結果、この第1回転磁界による回転抵抗を反力として、スタータ31のトルクTSTの一部が、第2および第1ロータ15,14を介して、駆動輪DW,DWを正転させるように作用する。図21において、DMF1は、上記の第1回転磁界による回転抵抗(以下「第1磁界回転抵抗」という)である。
【0141】
これに対して、第2力行トルクTM2は、前述した第2回転機21の動作の制御によって、駆動輪回転数NDWが値0になるように、制御される。これにより、第2力行トルクTM2は、上述した第1磁界回転抵抗DMF1に起因して駆動輪DW,DWに作用するトルクを相殺するように作用し、その結果、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0142】
また、図22は、上述した図20に示す第2始動モード制御処理の変形例を示している。本処理は、図20の処理と比較して、前記ステップ13に代えて、ステップ15を実行する点のみが異なっており、具体的には、第2回転機21に代えて第1回転機11の動作を制御する点のみが異なっている。このため、以下、この相違点を中心として説明し、同じ実行内容のステップについては、同じステップ番号を付し、その説明を省略するものとする。
【0143】
前記ステップ12に続く図22のステップ15では、第1回転機11の動作を次のように制御する。すなわち、メインバッテリ44から第1ステータ13に電力を供給し、第1回転磁界を正転させるとともに、第1ステータ13に供給される電流を、第1駆動用等価トルクTSE1が前述した第1磁界回転抵抗DMF1と等しくなるように、制御する。次いで、ステップ14以降を実行する。なお、この場合、メインバッテリ44から第1ステータ13に供給される電力は、クランク軸3aを駆動するのに必要な電力よりも小さいため、前述したようにメインバッテリ44の充電状態が所定の範囲を下回っていても、上述したステップ15による第1回転機11の動作の制御を支障なく行うことができる。また、本処理では、第2回転機21の動作は制御されない。
【0144】
次に、図23を参照しながら、上述した第2始動モード制御処理の変形例の動作例について説明する。同図に示すように、前述した図21の場合と同様、クランク軸3aは、スタータ31で駆動されることによって正転し、エンジン回転数NEが始動時用回転数NESTを上回る。また、その状態で、エンジン3が始動される。
【0145】
この場合、上述した第1回転機11の動作の制御により、第1駆動用等価トルクTSE1が、前述した第1磁界回転抵抗DMF1と等しくなるように制御され、それにより、第1磁界回転抵抗DMF1が相殺される。これにより、スタータ31のトルクTSTの一部が第1磁界回転抵抗DMF1を反力として駆動輪DW,DWに伝達されることはなく、その結果、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0146】
なお、補助バッテリ33の充電状態は、エンジン3の動力などを用いた発電機(図示せず)による充電によって、比較的大きな値に常に保持されており、それにより、第2始動モード制御処理(変形例を含む)によるスタータ31を用いたエンジン3の始動を確実に行うことができる。
【0147】
また、これまでに述べた第1実施形態は、特許請求の範囲に記載された請求項1〜4に係る発明に対応するものであり、第1実施形態における各種の要素と、請求項1〜4に係る発明(以下、総称する場合「第1発明」という)における各種の要素との対応関係は、次のとおりである。すなわち、第1実施形態における駆動輪DW,DWおよびエンジン3が、第1発明における被駆動部および熱機関にそれぞれ相当するとともに、第1実施形態におけるECU2、VCU43、第1および第2PDU41,42が、第1発明における制御装置に相当する。また、第1実施形態におけるクランク軸3aが、第1発明における出力部に相当するとともに、第1実施形態における永久磁石14aおよびコア15aが、第1発明における磁極および軟磁性体にそれぞれ相当する。さらに、第1実施形態における第1ステータ13が、第1発明におけるステータに相当するとともに、第1実施形態における鉄芯13aおよびU相〜W相コイル13c〜13eが、第1発明における電機子列に相当する。
【0148】
また、第1実施形態におけるコンプレッサ51が、請求項4に係る発明における補機に相当するとともに、第1実施形態におけるクラッチCLおよびECU2が、請求項4に係る発明における動力伝達制限手段に相当する。
【0149】
以上のように、第1実施形態によれば、単一の第1軟磁性体列だけで第1回転機11を作動させることができるので、第1回転機11の小型化および製造コストの削減を図ることができ、ひいては、動力装置1の小型化および製造コストの削減を図ることができる。また、第1極対数比αを設定することによって、第1磁界回転数NMF1、第1および第2ロータ回転数NR1,NR2の間の関係と、第1駆動用等価トルクTSE1(第1発電用等価トルクTGE1)、第1および第2ロータ伝達トルクTR1,TR2の間の関係を自由に設定でき、したがって、第1回転機11の設計の自由度を高めることができ、ひいては、動力装置1の設計の自由度を高めることができる。
【0150】
さらに、エンジン3を始動する際、第1始動モード制御処理によって、第1回転機11の動作を制御することによりクランク軸3aを駆動するので、エンジン3を適切に始動することができる。この場合、第2回転機21の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、クランク軸3aへの駆動力の伝達に起因する駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。
【0151】
また、エンジン3を始動する際、第2始動モード制御処理(変形例を含む)によって、スタータ31を作動させることによりクランク軸3aを駆動するので、エンジン3を適切に始動することができる。この場合、第2始動モード制御処理では、第2回転機21の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。また、第2始動モード制御処理の変形例においても、第1回転機21の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、クランク軸3aへの駆動力の伝達に起因する駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。さらに、エンジン3を始動する際、メインバッテリ44の充電状態が所定の範囲を下回っているときに、上述したようにスタータ31を用いてクランク軸3aが駆動されるとともに、スタータ31の電源である補助バッテリ33の充電状態が、比較的大きな値に常に保持される。以上により、メインバッテリ44から第1回転機11への電力供給によりクランク軸3aを適切に駆動できない場合でも、エンジン3を適切に始動することができる。
【0152】
また、エンジン3を始動する際、クラッチCLを解放することによって、コンプレッサ51の入力軸52とクランク軸3aの間が遮断されるので、コンプレッサ51への駆動力の伝達によりクランク軸3aに実際に伝達される駆動力が小さくなるのを防止することができる。したがって、クランク軸3aを適切に駆動でき、ひいては、エンジン3を適切に始動することができる。同じ理由により、メインバッテリ44および補助バッテリ33の充電状態がそれぞれ比較的小さい場合でも、第1回転機11やスタータ31によりクランク軸3aを適切に駆動することができる。
【0153】
さらに、第2始動モード制御処理の実行中には、前述した図21に示すトルクの関係から明らかなように、スタータ31には、エンジンフリクションTEFに加え、第1磁界回転抵抗DMF1に基づく反力が作用する。このため、その分、エンジン3の始動に必要なスタータ31のトルクTSTが大きくなり、ひいては、スタータ31の大型化を招くおそれがある。これに対して、第2始動モード制御処理の変形例の実行中には、第1回転機11の動作を制御することにより第1磁界回転抵抗DMF1が相殺されるので、スタータ31には、エンジンフリクションTEFのみが作用する。したがって、上述したスタータ31の大型化を回避することができる。
【0154】
なお、第1実施形態では、第2ロータ15をクランク軸3aに直結しているが、ギヤや、プーリ、チェーン、変速装置などを介して機械的に連結してもよい。また、第1実施形態では、第1ロータ14およびロータ23は、互いに直結されているが、駆動輪DW,DWに機械的に連結されていれば、互いに直結されていなくてもよい。さらに、第1実施形態では、第1ロータ14およびロータ23を駆動輪DW,DWに、差動装置DGなどを介して連結しているが、機械的に直結してもよい。
【0155】
また、動力装置1は、前述した連結関係から明らかなように、エンジン3を停止し、エンジン3の出力を発生させない状態で、第2回転機21のみを動力源として、駆動輪DW,DWを駆動し、車両を走行させることができる。以下、このような車両の走行を「EV走行」という。さらに、このEV走行中においても、スタータ31や、第1回転機11、第2回転機21の動作を制御することによって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、クランク軸3aを駆動でき、エンジン3を始動することができる。以下、この場合において、第1回転機11を用いてクランク軸3aを駆動する際の第1および第2回転機11,21の動作の制御について、簡単に説明する。
【0156】
すなわち、メインバッテリ44の電力をステータ22に供給し、ロータ23を正転させることによって、第2力行トルクTM2が駆動輪DW,DWに伝達され、その結果、駆動輪DW,DWが正転し、上記のEV走行が行われる。また、EV走行中、第1回転機11の動作を制御することによりクランク軸3aを駆動するには、ロータ23から第1ロータ14に伝達される動力の一部を用いて、第1ステータ13で発電を行うとともに、発電した電力をステータ22に供給する。これにより、第1ロータ14に伝達された動力の一部が、第2ロータ15を介してクランク軸3aに伝達され、クランク軸3aが正転する。
【0157】
この場合、第2ロータ伝達トルクTR2が前述した目標値TR2OBJになるように、第1ステータ13で発電される電流を制御する。また、第2力行トルクTM2が前述した目標値TM2OBJに要求トルクを加算した値になるように、ステータ22に供給される電流を制御する。この要求トルクは、運転者から駆動輪DW,DWに要求されるトルクであり、車両のアクセルペダル(図示せず)の操作量に応じて算出される。以上により、要求トルクと等しいトルクを駆動輪DW,DWに適切に伝達しながら、クランク軸3aを適切に駆動することができ、したがって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、エンジン3を始動することができる。
【0158】
また、EV走行中におけるエンジン3の始動において、スタータ31を用いてクランク軸3aを駆動する場合に、第2回転機21の動作の制御により駆動輪回転数NDWの変動を抑制するには、第2回転機21の動作は、次のように制御される。すなわち、駆動輪回転数NDWが変化しないように、所定のフィードバック制御アルゴリズムによって、目標値TM2OBJを算出するとともに、第2力行トルクTM2が目標値TM2OBJになるように、ステータ22に供給される電流を制御する。以上により、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、スタータ31によりクランク軸3aを適切に駆動でき、エンジン3を始動することができる。
【0159】
さらに、スタータ31を用いてクランク軸3aを駆動する場合に、第1回転機11の動作の制御により駆動輪回転数NDWの変動を抑制するには、第1回転機11の動作は、前記ステップ15で説明した手法によって制御される。これにより、この場合にも、上記の効果を同様に得ることができる。
【0160】
次に、図24〜図28を参照しながら、本発明の第2実施形態による動力装置1Aについて説明する。この動力装置1Aは、第1実施形態と比較して、エンジン3および駆動輪DW,DWに対する第1および第2ロータ14,15の連結関係が逆になっている点が主に異なっている。図24において、第1実施形態と同じ構成要素については、同じ符号を用いて示している。以下、第1実施形態と異なる点を中心に説明する。
【0161】
図24に示すように、動力装置1Aでは、第1実施形態と異なり、第1ロータ14は、前述した第2回転軸5ではなく、第1回転軸4に一体に設けられている。これにより、第1ロータ14は、クランク軸3aに機械的に直結されている。また、第2ロータ15は、第1実施形態と異なり、第1回転軸4ではなく、第2回転軸5に一体に設けられている。これにより、第2ロータ15は、ロータ23に機械的に直結されるとともに、差動装置DGなどを介して、駆動輪DW,DWに機械的に連結されている。
【0162】
また、前述した第1回転角センサ62は、第1実施形態と異なり、第1ロータ14の回転角度位置ではなく、第2ロータ15の回転角度位置を検出し、その検出信号をECU2に出力する。ECU2は、検出された第2ロータ15の回転角度位置に基づいて、第2ロータ回転数NR2を算出する。また、ECU2は、上述したように第2ロータ15およびロータ23が互いに直結されているので、検出された第2ロータ15の回転角度位置に基づいて、ロータ23の回転角度位置を算出するとともに、第2回転機回転数NM2を算出する。さらに、ECU2は、上述したように第1ロータ14がクランク軸3aに直結されているので、前述したクランク角センサ61により検出されたクランク軸3aの回転角度位置に基づいて、第1ロータ14の回転角度位置を算出するとともに、第1ロータ回転数NR1を算出する。
【0163】
また、ECU2は、前述した各種のセンサおよびスイッチ61〜66からの検出信号に応じ、ROMに記憶された制御プログラムに従って、クラッチCL、エンジン3、スタータ31、第1および第2回転機11,21の動作を制御する。これにより、第1実施形態と同様、車両が、停車中ENG始動モードのうちの第1および第2始動モードを含む各種の運転モードによって運転される。以下、これらの第1および第2始動モードについて、順に説明する。
【0164】
[第1始動モード]
第1始動モード制御処理は、図25に示すフローチャートに従って実行される。なお、本処理の実行条件は、第1実施形態と同様である。また、本処理は、前述した図18に示す第1実施形態の第1始動モード制御処理と比較して、前記ステップ2および3に代えて、ステップ21および22を実行する点のみが異なっており、具体的には、第1および第2回転機11,21の動作の制御のみが異なっている。このため、以下、この相違点を中心として説明し、図18と同じ実行内容のステップについては、同じステップ番号を付し、その説明を省略するものとする。
【0165】
前記ステップ1に続く図25のステップ21では、第1回転機11の動作を次のように制御する。すなわち、メインバッテリ44から第1ステータ13に電力を供給し、第1回転磁界を逆転させるとともに、第1ステータ13に供給される電流を制御する。
【0166】
具体的には、まず、エンジン回転数NEが前述した始動時用回転数NESTになるように、所定のフィードバック制御アルゴリズムによって、第1ロータ伝達トルクTR1の目標値TR1OBJを算出する。次いで、第1ロータ伝達トルクTR1が算出された目標値TR1OBJになるように、第1ステータ13に供給される電流を制御する。以上により、第1駆動用等価トルクTSE1が発生するとともに、発生した第1駆動用等価トルクTSE1は、第1ロータ14およびクランク軸3aを正転させるように作用し、第1ロータ伝達トルクTR1が目標値TR1OBJになるように制御される。
【0167】
また、上記ステップ21に続くステップ22では、第2回転機21の動作を制御し、前記ステップ4以降を実行する。この場合、第2回転機21の動作は、次のように制御される。すなわち、まず、第2回転機21の出力トルクの目標値TM2OBJを、次式(43)によって算出する。次いで、メインバッテリ44からステータ22に電力を供給するとともに、目標値TM2OBJに相当するトルクがロータ23に対して正転方向に作用するように、ステータ22に供給される電流を制御する。
TM2OBJ=(α+1)TR1OBJ/α ……(43)
【0168】
次に、図26を参照しながら、上述した第1始動モード制御処理の動作例について説明する。まず、この図26について説明する。動力装置1Aにおける前述した各種の回転要素の間の連結関係から明らかなように、エンジン回転数NEおよび第1ロータ回転数NR1は、互いに等しく、第2ロータ回転数NR2および第2回転機回転数NM2は、互いに等しい。また、ギヤG1や差動装置DGによる変速を無視すれば、第2ロータ回転数NR2および第2回転機回転数NM2は、駆動輪回転数NDWと等しい。さらに、第1磁界回転数NMF1、第1および第2ロータ回転数NR1,NR2は、前記式(40)で表されるような所定の共線関係にある。以上から、第1磁界回転数NMF1、エンジン回転数NE、駆動輪回転数NDWおよび第2回転機回転数NM2の間の関係は、図26に示すような速度共線図で表される。
【0169】
図26から明らかなように、第1駆動用等価トルクTSE1は、第2力行トルクTM2を反力として、第1ロータ14およびクランク軸3aに伝達され、それにより、両者14,3aが駆動され、正転する。この場合、第1ロータ伝達トルクTR1が目標値TR1OBJになるように、第1ステータ13に供給される電流が制御されることによって、エンジン回転数NEが、始動時用回転数NESTになるようにフィードバック制御される。また、その状態でエンジン3が始動される。
【0170】
また、図26から明らかなように、第1駆動用等価トルクTSE1は、エンジンフリクションTEFを反力として、第2ロータ15、ロータ23および駆動輪DW,DWを逆転させるように作用する。そのように第2ロータ15などを逆転させるように作用するトルク(以下「第2ロータ逆転トルク」という)は、前記式(41)から明らかなように、第1ロータ伝達トルクTR1および第1極対数比αを用いて、−(α+1)TR1/αで表される。
【0171】
これに対して、前述した第2回転機21の動作の制御によって、目標値TM2OBJに相当するトルクがロータ23に対して正転方向に作用するように、ステータ22に供給される電流が制御されるとともに、この目標値TM2OBJが、前記式(43)、すなわち、TM2OBJ=(α+1)TR1OBJ/αにより算出される。このことと、上記のように第2ロータ逆転トルクが−(α+1)TR1/αで表されることから明らかなように、第2ロータ逆転トルクが第2力行トルクTM2によって相殺され、ひいては、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0172】
[第2始動モード]
第2始動モード制御処理は、第1実施形態と同様、図20に示すフローチャートに従って実行される。この場合、前述した第1実施形態との構成の相違から、第2始動モードにおける動作が、第1実施形態と異なっているので、以下、この点について、図27を参照しながら説明する。
【0173】
図27に示すように、第1実施形態と同様、クランク軸3aが、スタータ31で駆動されることによって正転し、エンジン回転数NEが始動時用回転数NESTを上回る。その状態で、エンジン3が始動される。この場合、図27から明らかなように、前述した第1磁界回転抵抗DMF1を反力として、スタータ31のトルクTSTの一部が、第1および第2ロータ14,15を介して、駆動輪DW,DWを正転させるように作用する。
【0174】
これに対して、第1実施形態と同様、第2力行トルクTM2が、駆動輪回転数NDWが値0になるように、制御される。これにより、上述した第1磁界回転抵抗DMF1に起因して駆動輪DW,DWに作用するトルクは、第2力行トルクTM2により相殺され、その結果、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0175】
また、第2始動モード制御処理の変形例は、第1実施形態と同様、図22に示すフローチャートに従って実行される。以下、図28を参照しながら、この処理の動作例について説明する。同図に示すように、前述した図23の場合と同様、クランク軸3aは、スタータ31で駆動されることによって正転し、エンジン回転数NEが始動時用回転数NESTを上回る。また、その状態で、エンジン3が始動される。
【0176】
さらに、第1実施形態と同様、第1回転機11の動作が制御されることによって、第1磁界回転抵抗DMF1が、第1駆動用等価トルクTSE1により相殺される。これにより、スタータ31のトルクTSTの一部が第1磁界回転抵抗DMF1を反力として駆動輪DW,DWに伝達されることはなく、その結果、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0177】
また、これまでに述べた第2実施形態は、特許請求の範囲に記載された請求項1〜4に係る発明に対応するものであり、第2実施形態における各種の要素と、請求項1〜4に係る発明における各種の要素との対応関係は、第1実施形態と同様である。
【0178】
以上のように、第2実施形態によれば、動力装置1Aの小型化および製造コストの削減を図ることができるなど、第1実施形態による前述した効果を同様に得ることができる。
【0179】
なお、第2実施形態では、第1ロータ14をクランク軸3aに直結しているが、ギヤや、プーリ、チェーン、変速装置などを介して機械的に連結してもよい。また、第2実施形態では、第2ロータ15およびロータ23は、互いに直結されているが、駆動輪DW,DWに機械的に連結されていれば、互いに直結されていなくてもよい。さらに、第2実施形態では、第2ロータ15およびロータ23を駆動輪DW,DWに、差動装置DGなどを介して連結しているが、機械的に直結してもよい。
【0180】
また、動力装置1Aは、第1実施形態と同様、車両をEV走行させることができる。さらに、EV走行中においても、第1および第2回転機11,21の動作を制御することによって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、エンジン3を始動することができる。以下、この場合において、第1回転機11を用いてクランク軸3aを駆動する際の第1および第2回転機11,21の動作の制御について、簡単に説明する。
【0181】
すなわち、第1実施形態で述べたように第2回転機21の動作を制御することによって、EV走行が行われる。また、EV走行中、第1回転機11の動作の制御によりクランク軸3aを駆動するには、ロータ23から第2ロータ15に伝達される動力の一部を用いて、第1ステータ13で発電を行うとともに、発電した電力をステータ22に供給する。これにより、第2ロータ15に伝達された動力の一部が、第1ロータ14を介してクランク軸3aに伝達され、クランク軸3aが正転する。この場合、第1ロータ伝達トルクTR1が前述した目標値TR1OBJになるように、第1ステータ13で発電される電流を制御する。また、第2力行トルクTM2が前述した目標値TM2OBJに要求トルクを加算した値になるように、ステータ22に供給される電流を制御する。
【0182】
以上により、要求トルクと等しいトルクを駆動輪DW,DWに適切に伝達しながら、クランク軸3aを適切に駆動することができ、したがって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、エンジン3を始動することができる。
【0183】
また、EV走行中におけるエンジン3の始動において、スタータ31を用いてクランク軸3aを駆動する場合に、第2回転機21の動作の制御により駆動輪回転数NDWの変動を抑制するには、第2回転機21の動作は、次のように制御される。すなわち、駆動輪回転数NDWが変化しないように、所定のフィードバック制御アルゴリズムによって、目標値TM2OBJを算出するとともに、第2力行トルクTM2が目標値TM2OBJになるように、ステータ22に供給される電流を制御する。以上により、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、スタータ31によりクランク軸3aを適切に駆動でき、エンジン3を始動することができる。
【0184】
さらに、スタータ31を用いてクランク軸3aを駆動する場合に、第1回転機11の動作の制御により駆動輪回転数NDWの変動を抑制するには、第1回転機11の動作は、前記ステップ15で説明した手法によって制御される。これにより、この場合にも、上記の効果を同様に得ることができる。
【0185】
また、第1および第2実施形態では、第2始動モード制御処理(変形例を含む)において、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制するように、第1および第2回転機11,21の一方の動作を制御しているが、第1および第2回転機11,21の双方の動作を制御してもよい。
【0186】
次に、図29〜図37を参照しながら、本発明の第3実施形態による動力装置1Bについて説明する。この動力装置1Bは、第1実施形態と比較して、第2回転機21に代えて、第1回転機11と同様に構成された第2回転機71を備える点が主に異なっている。図29〜図32において、第1実施形態と同じ構成要素については、同じ符号を用いて示している。以下、第1実施形態と異なる点を中心に説明する。
【0187】
図29に示すように、クランク軸3aには、第1回転軸7が、フライホイール(図示せず)を介して同軸状に直結されており、この第1回転軸7は、軸受けB1,B2に回転自在に支持されている。また、図32に示すように、前述した第1回転機11の第2ロータ15は、そのフランジ15bが第1回転軸7に一体に設けられており、それにより、クランク軸3aに同軸状に直結されている。また、第1回転機11の第1ロータ14の取付部14bは、ドーナツ板状のフランジ14dを介して、中空の第2回転軸8に一体に設けられている。この第2回転軸8は、軸受けB3に回転自在に支持されるとともに、第1回転軸7と同軸状に配置されており、その内側には、第1回転軸7が回転自在に嵌合している。
【0188】
上記の第2回転機71は、第1回転機11と同様に構成されているので、その構成および動作について簡単に説明する。図29および図33に示すように、第2回転機71は、エンジン3と第1回転機11の間に配置されており、第2ステータ73と、第2ステータ73に対向するように設けられた第3ロータ74と、両者73,74の間に設けられた第4ロータ75を有している。これらの第3ロータ74、第4ロータ75および第2ステータ73は、上述した第1回転軸7と同軸状に配置されており、第1回転軸7の径方向に、内側からこの順で並んでいる。
【0189】
上記の第2ステータ73は、第2回転磁界を発生させるものであり、鉄芯73aと、この鉄芯73aに設けられたU相、V相およびW相コイル73bを有している。鉄芯73aは、複数の鋼板を積層した円筒状のものであり、第1回転軸7の軸線方向に延びており、ケースCAに固定されている。また、鉄芯73aの内周面には、12個のスロット(図示せず)が形成されており、これらのスロットは、第1回転軸7の軸線方向に延びるとともに、第1回転軸7の周方向に等間隔で並んでいる。上記のU相〜W相コイル73bは、スロットに分布巻き(波巻き)で巻回されている。図31に示すように、U相〜W相コイル73bを含む第2ステータ73は、前述した第2PDU42およびVCU43を介して、メインバッテリ44に電気的に接続されている。すなわち、第1および第2ステータ13,73は、第1および第2PDU41,42を介して、互いに電気的に接続されている。
【0190】
以上の構成の第2ステータ73では、メインバッテリ44からVCU43および第2PDU42を介してU相〜W相コイル73bに電力が供給されたときに、または、後述するように発電が行われたときに、鉄芯73aの第3ロータ74側の端部に、4個の磁極が第1回転軸7の周方向に等間隔で発生するとともに、これらの磁極による第2回転磁界が周方向に回転する。以下、鉄芯73aに発生する磁極を「第2電機子磁極」という。また、周方向に隣り合う各2つの第2電機子磁極の極性は、互いに異なっている。
【0191】
第3ロータ74は、8個の永久磁石74a(2つのみ図示)から成る第2磁極列を有している。これらの永久磁石74aは、第1回転軸7の周方向に等間隔で並んでおり、この第2磁極列は、第2ステータ73の鉄芯73aに対向している。各永久磁石74aは、第1回転軸7の軸線方向に延びており、その軸線方向の長さが、第2ステータ73の鉄芯73aのそれと同じに設定されている。
【0192】
また、永久磁石74aは、リング状の取付部74bの外周面に取り付けられている。この取付部74bは、軟磁性体、例えば鉄または複数の鋼板を積層したもので構成されており、その内周面が、円板状のフランジ74cの外周面に取り付けられている。このフランジ74cは、前述した第1回転軸7に一体に設けられている。以上により、永久磁石74aを含む第3ロータ74は、第2ロータ15およびクランク軸3aに同軸状に直結されている。
【0193】
さらに、上記のように軟磁性体で構成された取付部74bの外周面に永久磁石74aが取り付けられているので、各永久磁石74aには、第2ステータ73側の端部に、(N)または(S)の1つの磁極が現れる。また、第1回転軸7の周方向に隣り合う各2つの永久磁石74aの極性は、互いに異なっている。
【0194】
第4ロータ75は、6個のコア75a(2つのみ図示)から成る第2軟磁性体列を有している。これらのコア75aは、第1回転軸7の周方向に等間隔で並んでおり、この第2軟磁性体列は、第2ステータ73の鉄芯73aと第3ロータ74の第1磁極列との間に、それぞれ所定の間隔を隔てて配置されている。各コア75aは、軟磁性体、例えば複数の鋼板を積層したものであり、第1回転軸7の軸線方向に延びている。また、コア75aの軸線方向の長さは、永久磁石74aと同様、第2ステータ73の鉄芯73aのそれと同じに設定されている。
【0195】
さらに、コア75aの第1回転機11側の端部は、ドーナツ板状のフランジ75bの外端部に、第1回転軸7の軸線方向に若干延びる筒状の連結部75cを介して取り付けられている。このフランジ75bは、前述した第2回転軸8に一体に設けられている。以上により、コア75aを含む第4ロータ75は、第1ロータ14に同軸状に直結されている。また、コア75aのエンジン3側の端部は、ドーナツ板状のフランジ75dの外端部に、第1回転軸7の軸線方向に若干延びる筒状の連結部75eを介して取り付けられている。このフランジ75dには、中空の第1スプロケットSP1が同軸状に一体に設けられている。
【0196】
以上のように、第2回転機71では、第2電機子磁極が4個、永久磁石74aの磁極(以下「第2磁石磁極」という)が8個、コア75aが6個である。すなわち、第2電機子磁極の数と第2磁石磁極の数とコア75aの数との比は、第1回転機11の第1電機子磁極の数と第1磁石磁極の数とコア15aの数との比と同様、1:2.0:(1+2.0)/2に設定されている。また、第2電機子磁極の極対数に対する第2磁石磁極の極対数の比βは、第1回転機11の第1極対数比αと同様、値2.0に設定されている。以上のように、第2回転機71は、第1回転機11と同様に構成されているので、第1回転機11と同じ機能を有している。
【0197】
すなわち、第2ステータ73に供給された電力を動力に変換し、第3ロータ74や第4ロータ75から出力するとともに、第3ロータ74や第4ロータ75に入力された動力を電力に変換し、第2ステータ73から出力する。また、そのような電力および動力の入出力中、第2回転磁界、第3および第4ロータ74,75が、前述した第1回転機11に関する式(40)に示すような回転数に関する共線関係を保ちながら回転する。すなわち、この場合、第2回転磁界の回転数(以下「第2磁界回転数NMF2」という)、第3および第4ロータ74,75の回転数(以下、それぞれ「第3ロータ回転数NR3」「第4ロータ回転数NR4」という)の間には、次式(44)が成立する。
NMF2=(β+1)NR4−β・NR3
=3・NR4−2・NR3 ……(44)
【0198】
また、第2ステータ73に供給された電力および第2磁界回転数NMF2と等価のトルクを第2駆動用等価トルクTSE2とすると、第2駆動用等価トルクTSE2、第3および第4ロータ74,75に伝達されるトルク(以下、それぞれ「第3ロータ伝達トルクTR3」「第4ロータ伝達トルクTR4」という)の間には、次式(45)が成立する。
TSE2=TR3/β=−TR4/(β+1)
=TR3/2=−TR4/3 ……(45)
【0199】
さらに、第2ステータ73で発電した電力および第2磁界回転数NMF2と等価のトルクを第2発電用等価トルクTGE2とすると、第2発電用等価トルクTGE2、第3および第4ロータ伝達トルクTR3,TR4の間には、次式(46)が成立する。以上のように、第2回転機71は、第1回転機11と同様、遊星歯車装置と一般的な1ロータタイプの回転機とを組み合わせた装置と同じ機能を有する。
TGE2=TR3/β=−TR4/(1+β)
=TR3/2=−TR4/3 ……(46)
【0200】
また、ECU2は、第2PDU42およびVCU43を制御することによって、第2ステータ73に供給される電流、第2ステータ73で発電される電流、および第2回転磁界の第2磁界回転数NMF2を制御する。
【0201】
さらに、前述した差動装置DGのデフケースDCには、遊星歯車装置PGSが設けられている。この遊星歯車装置PGSは、一般的なシングルピニオンタイプのものであり、サンギヤPSと、サンギヤPSの外周に設けられたリングギヤPRと、両ギヤPS,PRに噛み合う複数のプラネタリギヤPPと、これらのプラネタリギヤPPを回転自在に支持するキャリアPCを有している。このキャリアPCは、デフケースDCに一体に設けられており、リングギヤPRは、ケースCAに固定されている。また、サンギヤPSは、中空の第3回転軸9に一体に設けられており、この第3回転軸9の内側には、右側の車軸7が回転自在に嵌合している。さらに、第3回転軸9には、第2スプロケットSP2が一体に設けられており、第2スプロケットSP2と、前述した第1スプロケットSP1には、チェーンCHが巻き掛けられている。以上の構成により、第2スプロケットSP2に伝達された動力は、遊星歯車装置PGSによって減速された状態で、差動装置DGに伝達される。
【0202】
以上のように、動力装置1Bでは、第1回転機11の第2ロータ15および第2回転機71の第3ロータ74が、クランク軸3aに機械的に連結されている。また、第1回転機11の第1ロータ14および第2回転機71の第4ロータ75が、第1スプロケットSP1、チェーンCH、第2スプロケットSP2、遊星歯車装置PGS、差動装置DG、および車軸6,6を介して、駆動輪DW,DWに機械的に連結されている。さらに、コンプレッサ51が、クラッチCLを介して、クランク軸3aに機械的に連結されている。
【0203】
また、図30に示すように、ECU2には、第2回転角センサ66が電気的に接続されており、第2回転角センサ66は、第1ステータ13に対する第2ロータ15の回転角度位置を検出するとともに、その検出信号をECU2に出力する。ECU2は、検出された第2ロータ15の回転角度位置に基づき、第2ロータ回転数NR2を算出する。また、ECU2は、第3ロータ74が第2ロータ15に直結されているため、検出された第2ロータ15の回転角度位置に基づいて、第2ステータ73に対する第3ロータ74の回転角度位置を算出するとともに、第3ロータ回転数NR3を算出する。さらに、ECU2は、第1および第4ロータ14,75が互いに直結されているため、前述した第1回転角センサ62により検出された第1ロータ14の回転角度位置に基づいて、第2ステータ73に対する第4ロータ75の回転角度位置を算出するとともに、第4ロータ回転数NR4を算出する。
【0204】
さらに、ECU2は、各種のセンサおよびスイッチ61〜66からの検出信号に応じ、ROMに記憶された制御プログラムに従って、クラッチCL、エンジン3、スタータ31、第1および第2回転機11,71の動作を制御する。これにより、第1実施形態と同様、車両が、停車中ENG始動モードのうちの第1および第2始動モードを含む各種の運転モードによって運転される。この場合、第1実施形態との上述した構成の相違から、これらの運転モードにおける動作が第1実施形態と異なっているので、以下、この点について説明する。
【0205】
[第1始動モード]
第1始動モード制御処理は、図34に示すフローチャートに従って実行される。なお、本処理の実行条件は、第1実施形態と同様である。また、動力装置1Bは、第1実施形態と比較して、第2回転機21に代えて、第2回転機71が設けられている点のみが異なっていることから、本処理は、前述した図18に示す第1実施形態の第1始動モード制御処理と比較して、第2回転機71の動作の制御のみが異なっており、前記ステップ3に代えて、ステップ31を実行する点のみが異なっている。このため、以下、この相違点を中心として説明し、図34において、図18と同じ実行内容のステップについては、同じステップ番号を付し、その説明を省略するものとする。
【0206】
前記ステップ2に続く図34のステップ31では、第2回転機71の動作を次のように制御し、前記ステップ4以降を実行する。すなわち、まず、第4ロータ伝達トルクTR4の目標値TR4OBJを、次式(47)によって算出する。次いで、第2ステータ73で発電を行うとともに、目標値TR4OBJに相当するトルクが第4ロータ75に対して正転方向に作用するように、第2ステータ73で発電される電流を制御する。
TR4OBJ=α・TR2OBJ/(1+α) ……(47)
【0207】
次に、図35を参照しながら、上述した第1始動モード制御処理の動作例について説明する。まず、この図35について説明する。動力装置1Bにおける前述した各種の回転要素の間の連結関係から明らかなように、エンジン回転数NE、第2および第3ロータ回転数NR2,NR3は、互いに等しく、第1および第4ロータ回転数NR1,NR4は、互いに等しい。また、遊星歯車装置PGSなどによる変速を無視すれば、第1および第4ロータ回転数NR1,NR4は、駆動輪回転数NDWと等しい。さらに、第1磁界回転数NMF1、第1および第2ロータ回転数NR1,NR2は、前記式(40)で表されるような所定の共線関係にあり、第2磁界回転数NMF2、第3および第4ロータ回転数NR3,NR4は、前記式(44)で表される所定の共線関係にある。以上から、第1磁界回転数NMF1、エンジン回転数NE、駆動輪回転数NDWおよび第2磁界回転数NMF2の間の関係は、図35に示すような速度共線図で表される。
【0208】
図35から明らかなように、第1駆動用等価トルクTSE1は、第2発電用等価トルクTGE2を反力として、第2ロータ15を介してクランク軸3aに伝達され、それにより、両者15,3aが駆動され、正転する。この場合、第1実施形態と同様、第2ロータ伝達トルクTR2が目標値TR2OBJになるように、第1ステータ13に供給される電流が制御されることによって、エンジン回転数NEが、始動時用回転数NESTになるようにフィードバック制御される。また、その状態で、エンジン3が始動される。
【0209】
また、図35から明らかなように、第1駆動用等価トルクTSE1は、エンジンフリクションTEFを反力として、第1ロータ14、第4ロータ75および駆動輪DW,DWを逆転させるように作用する。そのように第1ロータ14などを逆転させるように作用するトルク(第1ロータ逆転トルク)は、前記式(41)から明らかなように、第2ロータ伝達トルクTR2および第1極対数比αを用いて、−α・TR2/(1+α)で表される。
【0210】
これに対して、前述した第2回転機71の動作の制御によって、目標値TR4OBJに相当するトルクが第4ロータ75に対して正転方向に作用するように、第2ステータ73で発電される電流が制御されるとともに、この目標値TR4OBJが、前記式(47)、すなわち、TR4OBJ=α・TR2OBJ/(1+α)により算出される。このことと、上記のように第1ロータ逆転トルクが−α・TR2/(1+α)で表されることから明らかなように、第2発電用等価トルクTGE2により第4ロータ75に作用するトルクによって、第1ロータ逆転トルクが相殺され、ひいては、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0211】
[第2始動モード]
第2始動モード制御処理は、図36に示すフローチャートに従って実行される。なお、本処理の実行条件は、第1実施形態と同様である。また、本処理は、上述した第1始動モード制御処理と同様、前述した図20に示す第1実施形態の第2始動モード制御処理と比較して、第2回転機71の動作の制御のみが異なっており、前記ステップ13に代えて、ステップ41を実行する点のみが異なっている。このため、以下、この相違点を中心として説明し、図36において、図20と同じ実行内容のステップについては、同じステップ番号を付し、その説明を省略するものとする。
【0212】
前記ステップ12に続く図36のステップ41では、第2回転機71の動作を次のように制御し、前記ステップ14以降を実行する。すなわち、まず、駆動輪回転数NDWが値0になるように、所定のフィードバック制御アルゴリズムによって、第4ロータ伝達トルクTR4の目標値TR4OBJを算出する。次いで、メインバッテリ44から第2ステータ73に電力を供給するとともに、目標値TR4OBJに相当するトルクが第4ロータ75に作用するように、第2ステータ73に供給される電流を制御する。
【0213】
次に、図37を参照しながら、上述した第2始動モード制御処理の動作例について説明する。図37に示すように、第1実施形態と同様、クランク軸3aが、スタータ31で駆動されることによって正転し、エンジン回転数NEが始動時用回転数NESTを上回る。また、その状態で、エンジン3が始動される。この場合、図37から明らかなように、前述した第1磁界回転抵抗DMF1を反力として、スタータ31のトルクTSTが、第2および第1ロータ15,14を介して、駆動輪DW,DWを正転させるように作用する。
【0214】
これに対して、前述した第2回転機71の動作の制御によって、第4ロータ伝達トルクTR4が、駆動輪回転数NDWが値0になるように、制御される。これにより、上述した第1磁界回転抵抗DMF1に起因して駆動輪DW,DWに作用するトルクは、第2駆動用等価トルクTSE2により第4ロータ75に作用するトルクによって相殺され、その結果、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0215】
また、これまでに述べた第3実施形態は、特許請求の範囲に記載された請求項5〜8に係る発明に対応するものであり、第3実施形態における各種の要素と、請求項5〜8に係る発明(以下、総称する場合「第2発明」という)における各種の要素との対応関係は、次のとおりである。すなわち、第3実施形態における駆動輪DW,DWおよびエンジン3が、第2発明における被駆動部および熱機関にそれぞれ相当し、第3実施形態におけるECU2、VCU43、第1および第2PDU41,42が、第2発明における制御装置に相当するとともに、第3実施形態におけるクランク軸3aが、第2発明における出力部に相当する。
【0216】
また、第3実施形態における永久磁石14a、コア15a、永久磁石74aおよびコア75aが、第2発明における第1磁極、第1軟磁性体、第2磁極および第2軟磁性体にそれぞれ相当する。さらに、第3実施形態における鉄芯13aおよびU相〜W相コイル13c〜13eが、第2発明における第1電機子列に相当するとともに、第3実施形態における鉄芯73aおよびU相〜W相コイル73bが、第2発明における第2電機子列に相当する。
【0217】
また、第3実施形態におけるコンプレッサ51が、請求項8に係る発明における補機に相当するとともに、第3実施形態におけるクラッチCLおよびECU2が、請求項8に係る発明における動力伝達制限手段に相当する。
【0218】
以上のように、第3実施形態によれば、第1および第2回転機11,71が用いられるので、第1実施形態と同様、動力装置1Bの小型化および製造コストの削減を図ることができるとともに、動力装置1Bの設計の自由度を高めることができる。また、第1実施形態と同様、エンジン3を始動する際、第1始動モード制御処理によって、第1回転機11の動作を制御することによりクランク軸3aを駆動するので、エンジン3を適切に始動することができる。この場合、第2回転機71の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。この場合、第4ロータ75が駆動輪DW,DWに連結されていることと、第2磁界回転数NMF2および第4ロータ回転数NR4をそれぞれ表す直線が、速度共線図において互いに隣り合っていることから、上記の第2回転機71の動作の制御を適切かつ容易に行うことができる。
【0219】
また、第1実施形態と同様、エンジン3を始動する際、第2始動モード制御処理によって、スタータ31を作動させることによりクランク軸3aを駆動するので、エンジン3を適切に始動することができる。この場合、第2回転機71の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。さらに、第1実施形態と同様、エンジン3を始動する際、メインバッテリ44の充電状態が所定の範囲を下回っていて、メインバッテリ44から第1回転機11への電力供給によりクランク軸3aを適切に駆動できない場合でも、スタータ31を用いてエンジン3を適切に始動することができる。
【0220】
また、第1実施形態と同様、エンジン3を始動する際、クラッチCLによりコンプレッサ51の入力軸52とクランク軸3aの間が遮断されるので、コンプレッサ51への駆動力の伝達によりクランク軸3aに実際に伝達される駆動力が小さくなるのを防止することができる。したがって、クランク軸3aを適切に駆動でき、ひいては、エンジン3を適切に始動することができる。同じ理由により、メインバッテリ44および補助バッテリ33の充電状態がそれぞれ比較的小さい場合でも、第1回転機11やスタータ31によりクランク軸3aを適切に駆動することができる。
【0221】
なお、第3実施形態では、第2および第3ロータ15,74は、互いに直結されているが、クランク軸3aに機械的に連結されていれば、互いに直結されていなくてもよく、また、第1および第4ロータ14,75は、互いに直結されているが、駆動輪DW,DWに機械的に連結されていれば、互いに直結されていなくてもよい。また、第3実施形態では、第2および第3ロータ15,74をクランク軸3aに直結しているが、ギヤや、プーリ、チェーン、変速装置などを介して機械的に連結してもよい。さらに、第3実施形態では、第1および第4ロータ14,75を駆動輪DW,DWに、チェーンCHや差動装置DGを介して連結しているが、機械的に直結してもよい。また、第3実施形態では、第1および第2回転機11,71を、互いに同軸状に配置しているが、これに代えて、それらの軸線が互いに直交するように、あるいは、平行になるように、配置してもよい。
【0222】
さらに、動力装置1Bは、エンジン3を停止し、エンジン3の出力を発生させない状態で、第2回転機71を動力源として、車両をEV走行させることができる。さらに、このEV走行中においても、スタータ31や、第1回転機11、第2回転機71の動作を制御することによって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、クランク軸3aを駆動でき、エンジン3を始動することができる。以下、この場合において、第1回転機11を用いてクランク軸3aを駆動する際の第1および第2回転機11,71の動作の制御について、簡単に説明する。
【0223】
すなわち、メインバッテリ44から第2ステータ73に電力を供給し、第2回転磁界を正転させるとともに、駆動輪回転数NDWおよびエンジン回転数NEによって定まる第1回転磁界の回転方向が逆転方向の場合には、第1ステータ13で発電を行う。これにより、前述した図35に示すトルクの関係から明らかなように、第2駆動用等価トルクTSE2が、第1発電用等価トルクTGE1を反力として、駆動輪DW,DWに伝達され、その結果、駆動輪DW,DWが正転し、上記のEV走行が行われる。この場合、第2駆動用等価トルクTSE2は、駆動輪DW,DWだけでなく、クランク軸3aにも伝達され、また、第1ステータ13で発電される電流を制御することによって、そのようにクランク軸3aに伝達される動力を制御することができる。
【0224】
より具体的には、第1ステータ13で発電される電流を、第2ロータ伝達トルクTR2が前述した目標値TR2OBJになるように制御する。また、前述した目標値TR4OBJに要求トルクを加算した値に相当するトルクが第4ロータ75に対して作用するように、第2ステータ73に供給される電流を制御する。以上により、要求トルクと等しいトルクを駆動輪DW,DWに適切に伝達しながら、クランク軸3aを駆動することができ、したがって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、エンジン3を始動することができる。
【0225】
また、EV走行中におけるエンジン3の始動において、スタータ31を用いてクランク軸3aを駆動する場合に、第2回転機71の動作の制御により駆動輪回転数NDWの変動を抑制するには、第2回転機71の動作は、次のように制御される。すなわち、駆動輪回転数NDWが変化しないように、所定のフィードバック制御アルゴリズムによって、目標値TR4OBJを算出するとともに、目標値TR4OBJに相当するトルクが第4ロータ75に作用するように、第2ステータ73に供給される電流を制御する。以上により、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、スタータ31によりクランク軸3aを適切に駆動でき、エンジン3を始動することができる。
【0226】
さらに、前述した図35などに示すように、エンジン回転数NE、駆動輪回転数NDW、第1および第2磁界回転数NMF1,NMF2が互いに共線関係にあることから明らかなように、第1駆動用等価トルクTSE1および第1発電用等価トルクTGE1はいずれも、クランク軸3aだけでなく、駆動輪DW,DWにも作用し、第2駆動用等価トルクTSE2および第2発電用等価トルクTGE2はいずれも、駆動輪DW,DWだけでなく、クランク軸3aにも作用する。また、第3実施形態では、第1回転機11の動作の制御によりクランク軸3aを駆動するとともに、第2回転機71の動作の制御により駆動輪回転数NDWの変動を抑制するという手法を採用しているが、第1および第2駆動用等価トルクTSE1,TSE2ならびに第1および第2発電用等価トルクTGE1,TGE2が上記のように作用することから、上記の手法とは逆に、第2回転機71の動作の制御によりクランク軸3aを駆動するとともに、第1回転機11の動作の制御により駆動輪回転数NDWの変動を抑制することが可能である。この場合、車両の走行中には、第3実施形態で述べた第1回転機11の動作の制御が第2回転機71に対して、第3実施形態で述べた第2回転機71の動作の制御が第1回転機11に対して、それぞれ行われる。また、スタータ31を用いてクランク軸3aを駆動するような場合に、第1および第2回転機11,71の双方の動作の制御により駆動輪回転数NDWの変動を抑制することが可能である。
【0227】
次に、図38〜図43を参照しながら、本発明の第4実施形態による動力装置1Cについて説明する。この動力装置1Cは、上述した第3実施形態と比較して、第2回転機71に代えて、前述した第2回転機21と遊星歯車装置PGを備える点が主に異なっている。図38および図39において、第1および第3実施形態と同じ構成要素については、同じ符号を用いて示している。以下、第1および第3実施形態と異なる点を中心に説明する。
【0228】
図38に示すように、遊星歯車装置PGは、前述した遊星歯車装置PGSと同様、一般的なシングルピニオンタイプのものであり、サンギヤSと、リングギヤRと、両ギヤS,Rに噛み合う複数のプラネタリギヤPと、これらのプラネタリギヤPを回転自在に支持するキャリアCを有している。周知のように、これらのサンギヤS、キャリアCおよびリングギヤRは、互いの間で動力を伝達可能で、動力の伝達中、回転数に関する共線関係を保ちながら回転するとともに、それらの回転数の関係を示す共線図において、それぞれの回転数を表す直線が順に並ぶように、構成されている。また、サンギヤS、キャリアCおよびリングギヤRは、前述した第1回転軸7と同軸状に配置されている。
【0229】
さらに、サンギヤSは、第1回転軸7に一体に設けられている。また、キャリアCは、前述した第2回転軸8に一体に設けられており、キャリアCには、第1スプロケットSP1が取り付けられている。また、リングギヤRには、第2回転機21のロータ23が同軸状に取り付けられている。
【0230】
以上のように、動力装置1Cでは、第2ロータ15およびサンギヤSは、互いに機械的に直結されるとともに、クランク軸3aに機械的に直結されている。また、第1ロータ14およびキャリアCは、互いに機械的に直結されるとともに、第1スプロケットSP1や、チェーンCH、第2スプロケットSP2、遊星歯車装置PGS、差動装置DGなどを介して、駆動輪DW,DWに機械的に連結されている。さらに、リングギヤRは、ロータ23に機械的に直結されている。
【0231】
また、図39に示すように、ECU2には、第3回転角センサ67が電気的に接続されており、この第3回転角センサ67は、ステータ22に対するロータ23の回転角度位置を検出するとともに、その検出信号をECU2に出力する。ECU2は、検出されたロータ23の回転角度位置に基づいて、第2回転機回転数NM2を算出する。
【0232】
さらに、ECU2は、各種のセンサおよびスイッチ61〜67からの検出信号に応じ、ROMに記憶された制御プログラムに従って、クラッチCL、エンジン3、スタータ31、第1および第2回転機11,21の動作を制御する。これにより、第3実施形態と同様、車両が、停車中ENG始動モードのうちの第1および第2始動モードを含む各種の運転モードによって運転される。以下、第1および第2始動モードについて、順に説明する。
【0233】
[第1始動モード]
第1始動モード制御処理は、図40に示すフローチャートに従って実行される。なお、本処理の実行条件は、第1実施形態と同様である。また、動力装置1Cは、第3実施形態と比較して、第2回転機71に代えて、第2回転機21および遊星歯車装置PGが設けられている点のみが異なっていることから、本処理は、前述した図34に示す第3実施形態の第1始動モード制御処理と比較して、第2回転機21の動作の制御のみが異なっており、前記ステップ31に代えて、ステップ51を実行する点のみが異なっている。このため、以下、この相違点を中心として説明し、図40において、図34と同じ実行内容のステップについては、同じステップ番号を付し、その説明を省略するものとする。
【0234】
前記ステップ2に続く図40のステップ51では、第2回転機21の動作を次のように制御し、前記ステップ4以降を実行する。すなわち、まず、キャリアCに作用させるトルクの目標値TCOBJを、次式(48)によって算出する。次いで、ステータ22で発電を行うとともに、目標値TCOBJに相当するトルクがキャリアCに対して正転方向に作用するように、ステータ22で発電される電流を制御する。
TCOBJ=α・TR2OBJ/(1+α) ……(48)
【0235】
次に、図41を参照しながら、上述した第1始動モード制御処理の動作例について説明する。まず、この図41について説明する。動力装置1Cにおける前述した各種の回転要素の間の連結関係から明らかなように、エンジン回転数NE、第2ロータ回転数NR2およびサンギヤSの回転数は、互いに等しく、第2回転機回転数NM2およびリングギヤRの回転数は、互いに等しい。また、第1ロータ回転数NR1およびキャリアCの回転数は、互いに等しく、遊星歯車装置PGSなどによる変速を無視すれば、駆動輪回転数NDWと等しい。さらに、第1磁界回転数NMF1、第1および第2ロータ回転数NR1,NR2は、前記式(40)で表されるような所定の共線関係にあり、サンギヤS、キャリアCおよびリングギヤRの回転数は、サンギヤSの歯数およびリングギヤRの歯数で定まる所定の共線関係にある。
【0236】
以上から、第1磁界回転数NMF1、エンジン回転数NE、駆動輪回転数NDWおよび第2回転機回転数NM2の間の関係は、図41に示すような速度共線図で表される。なお、同図において、TG2は、ステータ22での発電に伴ってロータ23に作用する第2回転機21の制動トルク(以下「第2発電トルク」という)である。また、Xは、リングギヤRの歯数に対するサンギヤSの歯数の比である。さらに、サンギヤS、キャリアCおよびリングギヤRを、遊星歯車装置PGSのサンギヤPS、キャリアPCおよびリングギヤPRとそれぞれ識別するために、三者S,C,Rの符号をカッコ書きで表記している。
【0237】
図41から明らかなように、第1駆動用等価トルクTSE1は、第2発電トルクTG2を反力として、第2ロータ15を介してクランク軸3aに伝達され、それにより、両者15,3aが駆動され、正転する。この場合、第3実施形態と同様、第2ロータ伝達トルクTR2が目標値TR2OBJになるように、第1ステータ13に供給される電流が制御されることによって、エンジン回転数NEが、始動時用回転数NESTになるようにフィードバック制御される。また、その状態で、エンジン3が始動される。
【0238】
また、図41から明らかなように、第1駆動用等価トルクTSE1は、エンジンフリクションTEFを反力として、第1ロータ14、キャリアCおよび駆動輪DW,DWを逆転させるように作用する。そのように第1ロータ14などを逆転させるように作用するトルク(第1ロータ逆転トルク)は、前記式(41)から明らかなように、第2ロータ伝達トルクTR2および第1極対数比αを用いて、−α・TR2/(1+α)で表される。
【0239】
これに対して、前述した第2回転機21の動作の制御によって、目標値TCOBJに相当するトルクがキャリアCに対して正転方向に作用するように、ステータ22で発電される電流が制御されるとともに、この目標値TCOBJが、前記式(48)、すなわち、TCOBJ=α・TR2OBJ/(1+α)により算出される。このことと、上記のように第1ロータ逆転トルクが−α・TR2/(1+α)で表されることから明らかなように、第2発電トルクTG2によりキャリアCに作用するトルクによって、第1ロータ逆転トルクが相殺され、ひいては、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0240】
[第2始動モード]
第2始動モード制御処理は、図42に示すフローチャートに従って実行される。なお、本処理の実行条件は、第1実施形態と同様である。また、本処理は、上述した第1始動モード制御処理と同様、前述した図36に示す第3実施形態の第2始動モード制御処理と比較して、第2回転機21の動作の制御のみが異なっており、前記ステップ41に代えて、ステップ61を実行する点のみが異なっている。このため、以下、この相違点を中心として説明し、図42において、図36と同じ実行内容のステップについては、同じステップ番号を付し、その説明を省略するものとする。
【0241】
前記ステップ12に続く図42のステップ61では、第2回転機21の動作を次のように制御し、前記ステップ14以降を実行する。すなわち、まず、駆動輪回転数NDWが値0になるように、所定のフィードバック制御アルゴリズムによって、目標値TCOBJを算出する。次いで、メインバッテリ44からステータ22に電力を供給するとともに、目標値TCOBJに相当するトルクがキャリアCに作用するように、ステータ22に供給される電流を制御する。
【0242】
次に、図43を参照しながら、上述した第2始動モード制御処理の動作例について説明する。図43に示すように、第1実施形態と同様、クランク軸3aが、スタータ31で駆動されることによって正転し、エンジン回転数NEが始動時用回転数NESTを上回る。また、その状態で、エンジン3が始動される。この場合、図43から明らかなように、前述した第1磁界回転抵抗DMF1を反力として、スタータ31のトルクTSTが、第2および第1ロータ15,14を介して、駆動輪DW,DWを正転させるように作用する。
【0243】
これに対して、前述した第2回転機21の動作の制御によって、キャリアCに作用するトルクが、駆動輪回転数NDWが値0になるように、制御される。これにより、上述した第1磁界回転抵抗DMF1に起因して駆動輪DW,DWに作用するトルクは、第2力行トルクTM2によりキャリアCに作用するトルクによって相殺され、その結果、駆動輪DW,DWが静止状態(NDW=0)に保持される。
【0244】
また、これまでに述べた第4実施形態は、特許請求の範囲に記載された請求項9〜12に係る発明に対応するものであり、第4実施形態における各種の要素と、請求項9〜12に係る発明(以下、総称する場合「第3発明」という)における各種の要素との対応関係は、次のとおりである。すなわち、第4実施形態における駆動輪DW,DW、エンジン3および遊星歯車装置PGが、第3発明における被駆動部、熱機関および動力伝達機構にそれぞれ相当するとともに、第4実施形態におけるECU2、VCU43、第1および第2PDU41,42が、第3発明における制御装置に相当する。また、第4実施形態におけるクランク軸3aが、第3発明における出力部に相当し、第4実施形態におけるサンギヤS、キャリアCおよびリングギヤRが、第3発明における第1要素、第2要素および第3要素にそれぞれ相当するとともに、第4実施形態における永久磁石14aおよびコア15aが、第3発明における磁極および軟磁性体にそれぞれ相当する。さらに、第4実施形態における第1ステータ13が、第3発明におけるステータに相当するとともに、第4実施形態における鉄芯13aおよびU相〜W相コイル13c〜13eが、第3発明における電機子列に相当する。
【0245】
また、第4実施形態におけるコンプレッサ51が、請求項12に係る発明における補機に相当するとともに、第4実施形態におけるクラッチCLおよびECU2が、請求項12に係る発明における動力伝達制限手段に相当する。
【0246】
以上のように、第4実施形態によれば、第1回転機11が用いられるので、第1実施形態と同様、動力装置1Cの小型化および製造コストの削減を図ることができるとともに、動力装置1Cの設計の自由度を高めることができる。また、第1実施形態と同様、エンジン3を始動する際、第1始動モード制御処理によって、第1回転機11の動作を制御することによりクランク軸3aを駆動するので、エンジン3を適切に始動することができる。この場合、第2回転機21の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。この場合、前述したようにキャリアCおよびリングギヤRの回転数を表す直線が、それらの回転数の関係を表す共線図において、互いに隣り合っているため、上記の第2回転機21の動作の制御を適切かつ容易に行うことができる。
【0247】
また、第1実施形態と同様、エンジン3を始動する際、第2始動モード制御処理によって、スタータ31を作動させることによりクランク軸3aを駆動するので、エンジン3を適切に始動することができる。この場合、第2回転機21の動作を制御することにより駆動輪DW,DWが静止状態に保持されるので、駆動輪DW,DWの速度変動を防止でき、商品性を向上させることができる。さらに、第1実施形態と同様、エンジン3を始動する際、メインバッテリ44の充電状態が所定の範囲を下回っていて、メインバッテリ44から第1回転機11への電力供給によりクランク軸3aを適切に駆動できない場合でも、スタータ31を用いてエンジン3を適切に始動することができる。
【0248】
また、第1実施形態と同様、エンジン3を始動する際、クラッチCLによりコンプレッサ51の入力軸52とクランク軸3aの間が遮断されるので、コンプレッサ51への駆動力の伝達によりクランク軸3aに実際に伝達される駆動力が小さくなるのを防止することができる。したがって、クランク軸3aを適切に駆動でき、ひいては、エンジン3を適切に始動することができる。同じ理由により、メインバッテリ44および補助バッテリ33の充電状態がそれぞれ比較的小さい場合でも、第1回転機11やスタータ31によりクランク軸3aを適切に駆動することができる。
【0249】
なお、第4実施形態では、第3発明における動力伝達機構として、シングルピニオンタイプの遊星歯車装置PGを用いているが、互いの間で回転数に関する共線関係を保ちながら動力を伝達可能な第1〜第3要素を有する機構であれば、他の機構、例えばダブルピニオンタイプの遊星歯車装置、または差動装置DGを用いてもよい。あるいは、遊星歯車装置のギヤに代えて、表面間の摩擦によって動力を伝達する複数のローラを有し、遊星歯車装置と同等の機能を有するような機構を用いてもよい。また、詳細な説明は省略するが、特開2008−39045に開示されるような複数の磁石や軟磁性体の組み合わせで構成された機構を用いてもよい。
【0250】
また、第4実施形態では、第2ロータ15およびサンギヤSは、互いに直結されているが、クランク軸3aに機械的に連結されていれば、互いに直結されていなくてもよく、また、第1ロータ14およびキャリアCは、互いに直結されているが、駆動輪DW,DWに機械的に連結されていれば、互いに直結されていなくてもよい。さらに、第4実施形態では、第2ロータ15およびサンギヤSをクランク軸3aに直結しているが、ギヤや、プーリ、チェーン、変速装置などを介して機械的に連結してもよい。
【0251】
また、第4実施形態では、第1ロータ14およびキャリアCを駆動輪DW,DWに、チェーンCHや差動装置DGを介して連結しているが、機械的に直結してもよい。さらに、第4実施形態では、リングギヤRをロータ23に直結しているが、ギヤや、プーリ、チェーン、変速装置などを介して機械的に連結してもよい。
【0252】
また、第4実施形態では、リングギヤRをロータ23に、サンギヤSをクランク軸3aに、それぞれ連結しているが、これらの連結関係を逆に、すなわち、リングギヤRをクランク軸3aに、サンギヤSをロータ23に、それぞれ機械的に連結してもよい。この場合において、当然のことながら、リングギヤRとクランク軸3aの間、および、サンギヤSとロータ23の間をそれぞれ、機械的に直結してもよく、あるいは、ギヤや、プーリ、チェーン、変速装置などを用いて機械的に連結してもよい。
【0253】
さらに、動力装置1Cは、エンジン3を停止し、エンジン3の出力を発生させない状態で、第2回転機21を動力源として、車両をEV走行させることができる。さらに、このEV走行中においても、スタータ31や、第1回転機11、第2回転機21の動作を制御することによって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、クランク軸3aを駆動でき、エンジン3を始動することができる。以下、この場合において、第1回転機11を用いてクランク軸3aを駆動する際の第1および第2回転機11,21の動作の制御について、簡単に説明する。
【0254】
すなわち、メインバッテリ44からステータ22に電力を供給し、ロータ23を正転させるとともに、駆動輪回転数NDWおよびエンジン回転数NEによって定まる第1回転磁界の回転方向が逆転方向の場合には、第1ステータ13で発電を行う。これにより、前述した図41に示す速度共線図から明らかなように、第2力行トルクTM2が、第1発電用等価トルクTGE1を反力として、駆動輪DW,DWに伝達され、その結果、駆動輪DW,DWが正転し、上記のEV走行が行われる。この場合、第2力行トルクTM2は、駆動輪DW,DWだけでなく、クランク軸3aにも伝達され、また、第1ステータ13で発電される電流を制御することによって、そのようにクランク軸3aに伝達される動力を制御することができる。
【0255】
より具体的には、第3実施形態と同様、第1ステータ13で発電される電流を、第2ロータ伝達トルクTR2が前述した目標値TR2OBJになるように制御する。また、前述した目標値TCOBJに要求トルクを加算した値に相当するトルクがキャリアCに対して作用するように、ステータ22に供給される電流を制御する。以上により、要求トルクと等しいトルクを駆動輪DW,DWに適切に伝達しながら、クランク軸3aを駆動することができ、したがって、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、エンジン3を始動することができる。
【0256】
また、EV走行中におけるエンジン3の始動において、スタータ31を用いてクランク軸3aを駆動する場合に、第2回転機21の動作の制御により駆動輪回転数NDWの変動を抑制するには、第2回転機21の動作は、次のように制御される。すなわち、駆動輪回転数NDWが変化しないように、所定のフィードバック制御アルゴリズムによって、目標値TCOBJを算出するとともに、目標値TCOBJに相当するトルクがキャリアCに作用するように、ステータ22に供給される電流を制御する。以上により、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制した状態で、スタータ31によりクランク軸3aを適切に駆動でき、エンジン3を始動することができる。
【0257】
さらに、前述した図41などに示すように、エンジン回転数NE、駆動輪回転数NDW、第1磁界回転数NMF1および第2回転機回転数NM2が互いに共線関係にあることから明らかなように、第1駆動用等価トルクTSE1および第1発電用等価トルクTGE1はいずれも、クランク軸3aだけでなく、駆動輪DW,DWにも作用し、第2力行トルクTM2および第2発電トルクTG2はいずれも、駆動輪DW,DWだけでなく、クランク軸3aにも作用する。また、第4実施形態では、第1回転機11の動作の制御によりクランク軸3aを駆動するとともに、第2回転機21の動作の制御により駆動輪回転数NDWの変動を抑制するという手法を採用しているが、第1駆動用等価トルクTSE1、第1発電用等価トルクTGE1、第2力行トルクTM2および第2発電トルクTG2が上記のように作用することから、上記の手法とは逆に、第2回転機21の動作の制御によりクランク軸3aを駆動するとともに、第1回転機11の動作の制御により駆動輪回転数NDWの変動を抑制することが可能である。この場合、車両の走行中には、第4実施形態で述べた第1回転機11の動作の制御が第2回転機21に対して、第4実施形態で述べた第2回転機21の動作の制御が第1回転機11に対して、それぞれ行われる。また、スタータ31を用いてクランク軸3aを駆動するような場合に、第1および第2回転機11,21の双方の動作の制御により駆動輪回転数NDWの変動を抑制することが可能である。
【0258】
また、第4実施形態において、第1回転機11に代えて、第2回転機21および遊星歯車装置PGを設けるとともに、第2回転機21および遊星歯車装置PGに代えて、第2回転機71を設けてもよい。この場合、キャリアCおよび第1ロータ14がクランク軸3aに、サンギヤS(またはリングギヤR)および第2ロータ15が駆動輪DW,DWに、それぞれ機械的に連結される。また、そのように構成された動力装置は、請求項11〜15に係る発明に対応する。さらに、この場合、第1始動モード制御処理において、クランク軸3aを駆動するように第2回転機21の動作が制御されるとともに、第1および第2始動モード制御処理において、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制するように、第2回転機71の動作が制御される。この場合にも、当然のことながら、第4実施形態による効果を同様に得ることができる。なお、上述したように各種の回転要素を連結した場合において、クランク軸3aを駆動するように第2回転機71の動作を制御するとともに、クランク軸3aへの駆動力の伝達に起因する駆動輪回転数NDWの変動を抑制するように、第2回転機21の動作を制御することが可能である。それに加え、スタータ31を用いてクランク軸3aを駆動するような場合に、駆動輪回転数NDWの変動を抑制するように第2回転機71および第2回転機21の動作を制御することが可能である。
【0259】
さらに、第1、第2および第4実施形態では、第2回転機21は、同期型のブラシレスDCモータであるが、供給された電力を動力に変換し、出力するとともに、入力された動力を電力に変換可能な装置であれば、他の装置、例えば、同期型または誘導機型のACモータなどでもよい。
【0260】
また、第1〜第4実施形態(以下、総称して「実施形態」という)は、第1回転機11における第1電機子磁極が4個、第1磁石磁極が8個、コア15aが6個であり、すなわち、第1電機子磁極の数と第1磁石磁極の数とコア15aの数との比が、1:2:1.5の例であるが、これらの数の比が1:m:(1+m)/2(m≠1.0)を満たすものであれば、第1電機子磁極、第1磁石磁極およびコア15aの数として、任意の数を採用可能である。さらに、実施形態では、コア15aを鋼板で構成しているが、他の軟磁性体で構成してもよい。また、実施形態では、第1ステータ13および第1ロータ14を、径方向の外側および内側にそれぞれ配置しているが、これとは逆に、径方向の内側および外側にそれぞれ配置してもよい。
【0261】
さらに、実施形態では、第1ステータ13、第1および第2ロータ14,15を径方向に並ぶように配置し、いわゆるラジアルタイプとして第1回転機11を構成しているが、第1ステータ13、第1および第2ロータ14,15を軸線方向に並ぶように配置し、いわゆるアキシャルタイプとして第1回転機11を構成してもよい。また、実施形態では、1つの第1磁石磁極を、単一の永久磁石14aの磁極で構成しているが、複数の永久磁石の磁極で構成してもよい。例えば、2つの永久磁石の磁極が第1ステータ13側で近づき合うように、これらの2つの永久磁石を逆V字状に並べることにより、1つの第1磁石磁極を構成することによって、前述した磁力線MLの指向性を高めることができる。さらに、実施形態において、永久磁石14aに代えて、電磁石を用いてもよい。
【0262】
また、実施形態では、コイル13c〜13eを、U相〜W相の3相コイルで構成しているが、第1回転磁界を発生できれば、このコイルの相数はこれに限らず、任意である。さらに、実施形態において、スロット13bの数として、実施形態で示した以外の任意の数を採用してもよいことはもちろんである。また、実施形態では、U相〜W相コイル13c〜13eをスロット13bに分布巻きで巻回しているが、これに限らず、集中巻きでもよい。さらに、実施形態では、スロット13bや、永久磁石14a、コア15aを、等間隔に配置しているが、不等間隔に配置してもよい。以上の第1回転機11に関する変形例は、第3実施形態における第2回転機71についても、同様に当てはまる。
【0263】
また、実施形態では、エンジン3、第1および第2回転機11,21,71の動作を制御するための制御装置を、ECU2、VCU43、第1および第2PDU41,42で構成しているが、マイクロコンピュータと電気回路の組み合わせで構成してもよい。さらに、実施形態では、第1および第2回転機11,21,71用の電源として、メインバッテリ44を用いているが、充電・放電可能な蓄電装置であれば、他の装置、例えばキャパシタでもよい。
【0264】
また、実施形態では、本発明における補機は、コンプレッサ31であるが、他の任意の補機、例えば、車両に搭載された各種の機構に潤滑油や作動油を供給するためのオイルポンプなどでもよい。さらに、実施形態では、本発明における動力伝達制限手段による補機への駆動力の伝達の制限を、クランク軸3aとコンプレッサ51の間の動力伝達経路をクラッチCLで遮断することにより行っているが、コンプレッサ51を停止させることにより行ってもよい。また、上述したようにオイルポンプなどのポンプ類を補機として用いた場合には、当該ポンプの吐出口を閉じることにより、ポンプで消費されるエネルギを抑制することによって、動力伝達制限手段による制限を行ってもよい。さらに、クラッチCLとして、電磁クラッチではなく、摩擦クラッチを用いてもよい。
【0265】
また、実施形態では、本発明の熱機関としてのエンジン3は、ガソリンエンジンであるが、動力を出力可能な出力部を有する任意の熱機関でもよい。例えば、ディーゼルエンジンや、クランク軸が鉛直方向に配置された船外機などのような船舶推進機用エンジンを含む様々な産業用の内燃機関でもよく、あるいは、外燃機関、例えばスターリングエンジンでもよい。さらに、実施形態における各種の回転要素の間を連結する手段は、本発明における条件を満たす限り、任意に採用でき、例えば実施形態で述べたギヤに代えて、プーリなどを用いてもよい。また、実施形態は、本発明による動力装置を車両に適用した例あるが、例えば船舶や航空機に適用してもよい。その他、本発明の趣旨の範囲内で、細部の構成や制御手法を適宜、変更することが可能である。
【符号の説明】
【0266】
1 動力装置
1A 動力装置
1B 動力装置
1C 動力装置
DW,DW 駆動輪(被駆動部)
2 ECU(制御装置、動力伝達制限手段)
3 エンジン(熱機関)
3a クランク軸(出力部)
11 第1回転機
13 第1ステータ(ステータ)
13a 鉄芯(電機子列、第1電機子列)
13c U相コイル(電機子列、第1電機子列)
13d V相コイル(電機子列、第1電機子列)
13e W相コイル(電機子列、第1電機子列)
14 第1ロータ
14a 永久磁石(磁極、第1磁極)
15 第2ロータ
15a コア(軟磁性体、第1軟磁性体)
21 第2回転機
23 ロータ
31 スタータ
41 第1PDU(制御装置)
42 第2PDU(制御装置)
43 VCU(制御装置)
51 コンプレッサ(補機)
CL クラッチ(動力伝達制限手段)
71 第2回転機
73 第2ステータ
73a 鉄芯(第2電機子列)
73b U相、V相およびW相コイル(第2電機子列)
74 第3ロータ
74a 永久磁石(第2磁極)
75 第4ロータ
75a コア(第2軟磁性体)
PG 遊星歯車装置(動力伝達機構)
S サンギヤ(第1要素)
C キャリア(第2要素)
R リングギヤ(第3要素)

【特許請求の範囲】
【請求項1】
被駆動部を駆動するための動力装置であって、
動力を出力するための出力部を有する熱機関と、
第1回転機と、
供給された電力を動力に変換し、ロータから出力するとともに、当該ロータに入力された動力を電力に変換可能な第2回転機と、
前記熱機関、前記第1および第2回転機の動作を制御するための制御装置と、を備え、
前記第1回転機は、周方向に並んだ所定の複数の磁極で構成され、かつ隣り合う各2つの前記磁極が互いに異なる極性を有するように配置された磁極列を有する、前記周方向に回転自在の第1ロータと、前記磁極列に対向するように配置されるとともに、所定の複数の電機子磁極を発生させることにより、前記周方向に回転する回転磁界を前記磁極列との間に発生させるための電機子列を有する、不動のステータと、互いに間隔を隔てて前記周方向に並んだ所定の複数の軟磁性体で構成され、かつ前記磁極列と前記電機子列の間に配置された軟磁性体列を有する、前記周方向に回転自在の第2ロータと、を有し、
前記電機子磁極の数と前記磁極の数と前記軟磁性体の数との比は、1:m:(1+m)/2(m≠1.0)に設定されており、
前記第1および第2ロータの一方は、前記出力部に機械的に連結され、前記第1および第2ロータの他方は、前記被駆動部に機械的に連結されるとともに、前記ロータは、前記被駆動部に機械的に連結されており、
前記制御装置は、前記熱機関を始動する際、前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第1および第2回転機の少なくとも一方の動作を制御することを特徴とする動力装置。
【請求項2】
前記熱機関を始動するために前記出力部を駆動するスタータをさらに備え、
前記制御装置は、前記熱機関を始動する際、前記スタータを作動させるとともに、当該スタータから前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第1および第2回転機の前記少なくとも一方の動作を制御することを特徴とする、請求項1に記載の動力装置。
【請求項3】
前記制御装置は、前記熱機関を始動する際、前記出力部を駆動するように前記第1回転機の動作を制御するとともに、前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第2回転機の動作を制御することを特徴とする、請求項1に記載の動力装置。
【請求項4】
前記出力部には、補機が機械的に連結されており、
前記熱機関を始動する際、前記出力部を駆動するための駆動力の前記補機への伝達を制限する動力伝達制限手段をさらに備えることを特徴とする、請求項1ないし3のいずれかに記載の動力装置。
【請求項5】
被駆動部を駆動するための動力装置であって、
動力を出力するための出力部を有する熱機関と、
第1回転機と、
第2回転機と、
前記熱機関、前記第1および第2回転機の動作を制御するための制御装置と、を備え、
前記第1回転機は、第1周方向に並んだ所定の複数の第1磁極で構成され、かつ隣り合う各2つの前記第1磁極が互いに異なる極性を有するように配置された第1磁極列を有する、前記第1周方向に回転自在の第1ロータと、前記第1磁極列に対向するように配置されるとともに、所定の複数の第1電機子磁極を発生させることにより、前記第1周方向に回転する第1回転磁界を前記第1磁極列との間に発生させるための第1電機子列を有する、不動の第1ステータと、互いに間隔を隔てて前記第1周方向に並んだ所定の複数の第1軟磁性体で構成され、かつ前記第1磁極列と前記第1電機子列の間に配置された第1軟磁性体列を有する、前記第1周方向に回転自在の第2ロータと、を有し、
前記第1電機子磁極の数と前記第1磁極の数と前記第1軟磁性体の数との比は、1:m:(1+m)/2(m≠1.0)に設定されており、
前記第2回転機は、第2周方向に並んだ所定の複数の第2磁極で構成され、かつ隣り合う各2つの前記第2磁極が互いに異なる極性を有するように配置された第2磁極列を有する、前記第2周方向に回転自在の第3ロータと、前記第2磁極列に対向するように配置されるとともに、所定の複数の第2電機子磁極を発生させることにより、前記第2周方向に回転する第2回転磁界を前記第2磁極列との間に発生させるための第2電機子列を有する、不動の第2ステータと、互いに間隔を隔てて前記第2周方向に並んだ所定の複数の第2軟磁性体で構成され、かつ前記第2磁極列と前記第2電機子列の間に配置された第2軟磁性体列を有する、前記第2周方向に回転自在の第4ロータと、を有し、
前記第2電機子磁極の数と前記第2磁極の数と前記第2軟磁性体の数との比は、1:n:(1+n)/2(n≠1.0)に設定されており、
前記第2および第3ロータは、前記出力部に機械的に連結されるとともに、前記第1および第4ロータは、前記被駆動部に機械的に連結されており、
前記制御装置は、前記熱機関を始動する際、前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第1および第2回転機の少なくとも一方の動作を制御することを特徴とする動力装置。
【請求項6】
前記熱機関を始動するために前記出力部を駆動するスタータをさらに備え、
前記制御装置は、前記熱機関を始動する際、前記スタータを作動させるとともに、当該スタータから前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第1および第2回転機の前記少なくとも一方の動作を制御することを特徴とする、請求項5に記載の動力装置。
【請求項7】
前記制御装置は、前記熱機関を始動する際、前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように前記第1および第2回転機の一方の動作を制御するとともに、前記出力部を駆動するように前記第1および第2回転機の他方の動作を制御することを特徴とする、請求項5に記載の動力装置。
【請求項8】
前記出力部には、補機が機械的に連結されており、
前記熱機関を始動する際、前記出力部を駆動するための駆動力の前記補機への伝達を制限する動力伝達制限手段をさらに備えることを特徴とする、請求項5ないし7のいずれかに記載の動力装置。
【請求項9】
被駆動部を駆動するための動力装置であって、
動力を出力するための出力部を有する熱機関と、
第1回転機と、
供給された電力を動力に変換し、ロータから出力するとともに、当該ロータに入力された動力を電力に変換可能な第2回転機と、
互いの間で動力を伝達可能で、当該動力の伝達中、互いの間に回転数に関する共線関係を保ちながら回転するとともに、当該回転数の関係を示す共線図において、それぞれの回転数を表す直線が順に並ぶように構成された第1要素、第2要素および第3要素を有する動力伝達機構と、
前記熱機関、前記第1および第2回転機の動作を制御するための制御装置と、を備え、
前記第1回転機は、周方向に並んだ所定の複数の磁極で構成され、かつ隣り合う各2つの前記磁極が互いに異なる極性を有するように配置された磁極列を有する、前記周方向に回転自在の第1ロータと、前記磁極列に対向するように配置されるとともに、所定の複数の電機子磁極を発生させることにより、前記周方向に回転する回転磁界を前記磁極列との間に発生させるための電機子列を有する、不動のステータと、互いに間隔を隔てて前記周方向に並んだ所定の複数の軟磁性体で構成され、かつ前記磁極列と前記電機子列の間に配置された軟磁性体列を有する、前記周方向に回転自在の第2ロータと、を有し、
前記電機子磁極の数と前記磁極の数と前記軟磁性体の数との比は、1:m:(1+m)/2(m≠1.0)に設定されており、
前記第1ロータおよび前記第2要素ならびに前記第2ロータおよび前記第1要素の一方が、前記出力部に機械的に連結され、前記第1ロータおよび前記第2要素ならびに前記第2ロータおよび前記第1要素の他方が、前記被駆動部に機械的に連結されるとともに、前記第3要素が前記ロータに機械的に連結されており、
前記制御装置は、前記熱機関を始動する際、前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第1および第2回転機の少なくとも一方の動作を制御することを特徴とする動力装置。
【請求項10】
前記熱機関を始動するために前記出力部を駆動するスタータをさらに備え、
前記制御装置は、前記熱機関を始動する際、前記スタータを作動させるとともに、当該スタータから前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように、前記第1および第2回転機の前記少なくとも一方の動作を制御することを特徴とする、請求項9に記載の動力装置。
【請求項11】
前記制御装置は、前記熱機関を始動する際、前記出力部への駆動力の伝達に起因する前記被駆動部の速度変化を抑制するように前記第1および第2回転機の一方の動作を制御するとともに、前記出力部を駆動するように前記第1および第2回転機の他方の動作を制御することを特徴とする、請求項9に記載の動力装置。
【請求項12】
前記出力部には、補機が機械的に連結されており、
前記熱機関を始動する際、前記出力部に伝達された駆動力の前記補機への伝達を制限する動力伝達制限手段をさらに備えることを特徴とする、請求項9ないし11のいずれかに記載の動力装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate


【公開番号】特開2011−84113(P2011−84113A)
【公開日】平成23年4月28日(2011.4.28)
【国際特許分類】
【出願番号】特願2009−236700(P2009−236700)
【出願日】平成21年10月13日(2009.10.13)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】