説明

半導体装置

【課題】バイアスに依存した抵抗値の変化をさらに低減できるようにした半導体装置を提供する。
【解決手段】N型シリコン層3と、N型シリコン層3上に形成されたP型拡散抵抗7と、P型拡散抵抗7上に形成されたシリコン酸化膜11と、シリコン酸化膜11を貫いてP型拡散抵抗7の一方の端部7aに接続され、一方の端部7aに高電位を印加するための高電位用電極15と、シリコン酸化膜11を貫いてP型拡散抵抗7の他方の端部7bに接続され、他方の端部7bに低電位を印加するための低電位用電極17と、を備える。高電位用電極15及び低電位用電極17はそれぞれシリコン酸化膜11上に延設されると共に、シリコン酸化膜11上において高電位用電極15と低電位用電極17との間にはスリット21が設けられている。このスリット21は、P型拡散抵抗7の一方の端部7aと他方の端部7bとの間の中間位置23よりも一方の端部7aに近い側に位置する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、不純物拡散層が抵抗体として用いられる半導体装置に関する。
【背景技術】
【0002】
従来から、半導体基板に形成された不純物拡散層を抵抗体として用いることが知られている(例えば、特許文献1参照。)
図7(a)及び(b)は、従来例に係る半導体装置300の構成例を示す概念図である。図7(a)は半導体装置300を立体的に示す図であり、図7(b)は図7(a)をY−Y´線で切断した断面図である。なお、図7(a)では図面の複雑化を回避するために、電極及びこれを覆う層間絶縁膜等の図示を省略している。
【0003】
図7(a)に示すように、この半導体装置300では、N型エピタキシャル層(N−層)303には例えば複数のP型不純物拡散層307が形成されており、その各々が抵抗体として用いられる。図7(b)に示すように、抵抗体として用いられるP型不純物拡散層(以下、P型拡散抵抗)307上には例えばシリコン酸化膜311が設けられている。また、P型拡散抵抗307の一方の端部307aと他方の端部307bの各々の上方にはそれぞれ開口部が設けられており、この開口部を埋め込むように電極315、317が形成されている。また、これらの電極315、317を覆うようにシリコン窒化膜319が形成されている。
【0004】
P型拡散抵抗307の一方の端部307には電極315を介して高電位V(例えば、電源電位Vcc)が印加され、他方の端部307bには電極317を介して低電位Vが印加される。これにより、P型拡散抵抗307の高電位側から低電位側へ電流が流れ、P型拡散抵抗は抵抗体として機能する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−195944号公報
【非特許文献】
【0006】
【非特許文献1】Alan Hasting著“The Art of ANALOG LAYOUT”2001年発行 PP 292−294
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、本発明者は、図7(a)及び(b)に示した半導体装置300にBT(Bias Temperature)試験を行うと、P型拡散抵抗307の抵抗値が変化する現象を確認した。この現象は、下記の理由で生じるものと考えられる。
即ち、図7(a)及び(b)に示した半導体装置300にBT試験を行う。すると、P型拡散抵抗307の高電位側(電極を含む)の電位に誘起されて、高電位側のシリコン窒化膜319の表面と、高電位側のシリコン窒化膜319とシリコン酸化膜311との界面にそれぞれマイナス電荷がチャージ(蓄積)される。また、これら絶縁膜の表面や界面にチャージされたマイナス電荷に誘起されて、P型拡散抵抗307の表面にプラス電荷(空孔)がチャージされる。その結果、P型拡散抵抗307の抵抗値が低下する。
【0008】
このような抵抗値の変化を低減する手段として、例えば図8に示すように、P型拡散抵抗307の高電位側から低電位側に向けて、シリコン酸化膜311とシリコン窒化膜319との間に高電位側の電極315を延設することが考えられる。図8に示す構造では、シリコン酸化膜311とシリコン窒化膜319との間が電極315でシールドされる。このため、シリコン酸化膜311とシリコン窒化膜319との間で、マイナス電荷はチャージされない。
【0009】
その一方で、図8に示す構造では、電極315の電位によるバイアス依存の課題が新たに生じる。つまり、電極315の高電位によりP型拡散抵抗307の表面がN型に反転して、P型拡散抵抗307の抵抗値が高くなるという課題が生じる。
このようなバイアス依存の課題を解決する手段として、電極によるシールドを高電位側と低電位側とで半分ずつに分ける方法が知られている(例えば、非特許文献1参照。)。具体的には、図9に示すように、拡散抵抗407の高電位側を高電位の電極415で覆い、拡散抵抗407の低電位側を低電位の電極417で覆い、両電極415、417を隔てるスリット421を拡散抵抗407の高電位側と低電位側の中間位置に配置する方法が知られている。しかしながら、本発明者の知見によれば、図9の構造では、バイアスに依存した抵抗値の変化を十分に低減することができなかった。
【0010】
そこで、この発明はこのような事情に鑑みてなされたものであって、バイアスに依存した抵抗値の変化をさらに低減できるようにした半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本発明の一態様に係る半導体装置は、N型の第1半導体層と、前記第1半導体層に形成されたP型の不純物拡散層と、前記不純物拡散層上に形成された絶縁膜と、前記絶縁膜を貫いて前記不純物拡散層の長さ方向の一方の部位に接続され、前記一方の部位に高電位を印加するための高電位用電極と、前記絶縁膜を貫いて前記不純物拡散層の長さ方向の他方の部位に接続され、前記他方の部位に低電位を印加するための低電位用電極と、を備え、前記高電位用電極及び前記低電位用電極はそれぞれ前記絶縁膜上に延設されると共に、前記絶縁膜上において前記高電位用電極と前記低電位用電極との間には間隙部が設けられており、前記間隙部は、前記不純物拡散層の前記一方の部位と前記他方の部位との間の中間位置よりも前記一方の部位に近い側に位置することを特徴とする。
【0012】
このような構成であれば、高電位用電極は絶縁膜を介してP型の不純物拡散層に高電位を印加して、その表面を空乏化、反転させる。これにより、P型の不純物拡散層ではバイアスに依存した抵抗値の上昇が生じる。一方、低電位用電極は絶縁膜を介してP型の不純物拡散層に低電位を印加する。この低電位用電極による低電位の印加は、高電位用電極による高電位の印加と比較して、P型の不純物拡散層の表面に正孔を蓄積する方向に作用する。これにより、P型の不純物拡散層のキャリア濃度が増えるため、抵抗値の低下を促すことができる。
【0013】
ここで、高電位用電極と低電位用電極との境目である間隙部は、上記の中間位置よりもP型の不純物拡散層の一方の部位の側(即ち、高電位側)に位置する。このため、P型の不純物拡散層において、空乏化、反転する領域が減少し、正孔を蓄積する領域が増える。これにより、バイアスに依存した抵抗値の変動を低減することが可能となる。
なお、「N型の第1半導体層」としては、例えば、後述のN型シリコン層3が該当する。「P型の不純物拡散層」としては、例えば、後述するP型拡散抵抗7が該当する。「絶縁膜」としては、例えば、後述するシリコン酸化膜11が該当する。「一方の部位」としては、例えば、後述する一方の端部7aが該当する。「他方の部位」としては、例えば、後述する他方の端部7bが該当する。「間隙部」としては、例えば、後述するスリット21が該当する。
【0014】
また、上記の半導体装置において、前記一方の部位と前記他方の部位との間の長さをLとし、前記一方の部位と前記間隙部との間の長さをL1としたとき、前記L1は前記Lの10%以上、40%以下の長さであることを特徴としてもよい。このような構成であれば、バイアスに依存した抵抗値の変動を十分に低減することが可能となる。
即ち、本発明者が行ったシミュレーションの結果によれば、本発明の「絶縁膜」の種類がシリコン酸化膜、シリコン窒化膜の何れの場合であっても、上記のL1がLの10%以上、40%以下の長さあれば、図9に示した従来の技術と比べて、バイアスに依存した抵抗値の変動を十分に低減することができることを確認した(例えば、図3参照。)。
【0015】
また、本発明者が行ったシミュレーションの結果によれば、本発明の「P型の不純物拡散層」の長さが30μm以上、120μm以下の何れの長さの場合であっても、上記のL1がLの10%以上、40%以下の長さあれば、図9に示した従来の技術と比べて、バイアスに依存した抵抗値の変動を十分に低減することができることを確認した(例えば、図4参照。)。
【0016】
さらに、本発明者が行ったシミュレーションの結果によれば、本発明の「P型の不純物拡散層」を形成する際の不純物のイオン注入条件が3.0E12cm−2以上、1.0E13cm−2以下の何れのドーズ量の場合であっても、上記のL1がLの10%以上、40%以下の長さあれば、図9に示した従来の技術と比べて、バイアスに依存した抵抗値の変動を十分に低減することができることを確認した(例えば、図5参照。)。
【0017】
本発明の別の態様に係る半導体装置は、P型の第1半導体層と、前記第1半導体層に形成されたN型の不純物拡散層と、前記不純物拡散層上に形成された絶縁膜と、前記絶縁膜を貫いて前記不純物拡散層の長さ方向の一方の部位に接続され、前記一方の部位に高電位を印加するための高電位用電極と、前記絶縁膜を貫いて前記不純物拡散層の長さ方向の他方の部位に接続され、前記他方の部位に低電位を印加するための低電位用電極と、を備え、前記高電位用電極及び前記低電位用電極はそれぞれ前記絶縁膜上に延設されると共に、前記絶縁膜上において前記高電位用電極と前記低電位用電極との間には間隙部が設けられており、前記間隙部は、前記不純物拡散層の前記一方の部位と前記他方の部位との間の中間位置よりも前記他方の部位に近い側に位置することを特徴とする。
【0018】
このような構成であれば、高電位用電極は絶縁膜を介してN型の不純物拡散層に高電位を印加する。この高電位用電極による高電位の印加は、低電位用電極による低電位の印加と比較して、N型の不純物拡散層の表面に電子を蓄積する方向に作用する。一方、低電位用電極は絶縁膜を介してN型の不純物拡散層に低電位を印加して、その表面を空乏化、反転させる。これにより、N型の不純物拡散層ではバイアスに依存した抵抗値の上昇が生じる。
【0019】
ここで、高電位用電極と低電位用電極との境目である間隙部は、上記の中間位置よりもN型の不純物拡散層の他方の部位の側(即ち、低電位側)に位置する。このため、N型の不純物拡散層において、空乏化、反転する領域が減少し、電子を蓄積する領域が増える。これにより、バイアスに依存した抵抗値の変動を低減することが可能となる。なお、「P型の第1半導体層」としては、例えば、後述するP型シリコン層3´が該当する。「N型の不純物拡散層」としては、例えば、後述するN型拡散抵抗7´が該当する。
【発明の効果】
【0020】
本発明によれば、高電位用電極と低電位用電極との境目である間隙部の位置が、不純物拡散層の導電型に応じて調整される。これにより、P型の不純物拡散層において、空乏化、反転する領域が減少し、正孔を蓄積する領域が増える。又は、N型の不純物拡散層において、空乏化、反転する領域が減少し、電子を蓄積する領域が増える。これにより、バイアスに依存した抵抗値の変動を低減することが可能となる。
【図面の簡単な説明】
【0021】
【図1】本発明の第1実施形態に係る半導体装置100の構成例を示す図。
【図2】半導体装置100の要部における電荷の蓄積状態を示す図。
【図3】スリット位置と抵抗率との関係をシミュレーションした結果(その1)を示す図。
【図4】スリット位置と抵抗率との関係をシミュレーションした結果(その2)を示す図。
【図5】スリット位置と抵抗率との関係をシミュレーションした結果(その3)を示す図。
【図6】本発明の第2実施形態に係る半導体装置200の構成例を示す図。
【図7】従来例に係る半導体装置300の構成例を示す図。
【図8】従来例に係る半導体装置300´の構成例を示す図。
【図9】従来例に係る電極の配置例を示す図。
【発明を実施するための形態】
【0022】
以下、本発明による実施形態を、図面を用いて説明する。なお、以下に説明する各図において、同一の構成を有する部分には同一の符号を付し、その繰り返しの説明は省略する場合もある。
(第1実施形態)
図1は、本発明の第1実施形態に係る半導体装置100の構成例を示す断面図である。図2は、図1に示す半導体装置100の要部における電荷の蓄積状態を模式的に示す断面図である。
【0023】
図1に示すように、この半導体装置100は、例えば、P型シリコン基板(Psub)1と、このP型シリコン基板1上にエピタキシャル成長により形成されたN型シリコン層(N−)3と、P型シリコン基板1とN型シリコン層3との間に埋め込まれたN型不純物拡散層(NBL)5と、N型シリコン層3の表面及びその近傍であってN型不純物拡散層5の真上の位置に形成されたP型不純物拡散層(P)7と、N型シリコン層3に形成され、N型シリコン層3を他の領域から電気的に分離するP型アイソレーション層(P型Iso)9と、を備える。
【0024】
また、この半導体装置100は、P型不純物拡散層7と、N型シリコン層3及びP型アイソレーション層9の各表面を覆うように形成されたシリコン酸化膜(SiO)11と、このシリコン酸化膜11に設けられた複数の開口部13と、これらの開口部13を埋め込むようにシリコン酸化膜11上に形成された電極15、17と、これらの電極15、17を覆うようにP型シリコン基板1の上方全体に形成されたシリコン窒化膜(SiN)19と、を備える。
【0025】
これらの中で、P型不純物拡散層7は拡散抵抗として用いられるものである。このP型不純物拡散層(以下、P型拡散抵抗)7の長さ方向の一方の端部7aには電極15が接続されており、長さ方向の他方の端部7bには電極17が接続されている。また、電極15はN型シリコン層3とも接続している。
電極15、17は、例えばアルミニウム(Al)又は、アルミニウム(Al)に銅(Cu)、シリコン(Si)等の元素を少量含む材料で構成されている。即ち、電極15、17は、例えばAl又は、Al−Cu、Al−Si、若しくは、Al−Cu−Si等の材料で構成されている。また、一方の電極15には高電位V(例えば、電源電位Vcc)の配線が接続されている。他方の電極には低電位Vの配線が接続されている。このため、電極(以下、高電位用電極)15はP型拡散抵抗7の一方の端部7aに高電位を印加し、電極(以下、低電位用電極)17はP型拡散抵抗7の他方の端部7bに低電位を印加する。これにより、P型拡散抵抗7の一方の端部7aと他方の端部7bとの間で電圧が生じて、一方の端部7aから他方の端部7bに電流が流れる。その結果、P型拡散抵抗7は、予め設定された(即ち、所定の)抵抗値を有する抵抗体として機能する。
【0026】
また、図1に示すように、高電位用電極15はP型拡散抵抗7の一方の端部7a上から開口部13を通ってP型拡散抵抗7上のシリコン酸化膜11上に延設されている。低電位用電極17はP型拡散抵抗7の他方の端部7b上から開口部13を通ってP型拡散抵抗7上のシリコン酸化膜11上に延設されている。そして、P型拡散抵抗7上のシリコン酸化膜11上において、高電位用電極15と低電位用電極17との間にはスリット21が設けられている。このスリット21は、P型拡散抵抗7の一方の端部7aと他方の端部7bとの間の中間位置23よりも一方の端部7aに近い側に位置する。
【0027】
この半導体装置100では、P型拡散抵抗7の上方において、シリコン酸化膜11とシリコン窒化膜19との間の界面が、スリット21の位置を除いて、接触していない。即ち、P型拡散抵抗7の上方において、シリコン酸化膜11とシリコン窒化膜19との間は高電位用電極15又は低電位用電極17で遮られている。このため、信頼性試験の一種であるBT試験(即ち、高温環境下で高電圧を印加して、半導体装置の劣化を加速させながら動作させる試験)において、シリコン酸化膜11とシリコン窒化膜19との界面にマイナス電荷がチャージされることを防ぐことができる。
【0028】
また、図2に示すように、この半導体装置100にバイアス印加を行うと、高電位用電極15の電位に誘起されて、高電位側のシリコン窒化膜19表面にマイナス電荷がチャージされる。また、この高電位用電極15は、シリコン酸化膜11を介して、高電位用電極15近傍のP型拡散抵抗7に高電位を印加して、その表面を空乏化、反転させる。これにより、P型不純物拡散層ではバイアスに依存した抵抗値の上昇が生じる。
【0029】
一方、低電位用電極17は、シリコン酸化膜11を介して、低電位用電極17近傍のP型不純物拡散層に低電位を印加する。この低電位用電極17による低電位の印加は、高電位用電極15による高電位の印加と比較して、P型拡散抵抗7の表面にプラス電荷(正孔)がチャージされる方向に作用する。これにより、P型拡散抵抗7のキャリア濃度が増えるため、抵抗値の低下を促すことができる。
【0030】
ここで、本発明の第1実施形態に係る半導体装置100では、高電位用電極15と低電位用電極17との境目であるスリット21が、上記の中間位置23(図1参照。)よりもP型拡散抵抗7の一方の端部7a側(即ち、高電位側)に位置する。このため、P型拡散抵抗7において空乏化、反転する領域が減少し、プラス電荷がチャージされる領域が増える。これにより、バイアスに依存した抵抗値の変動を低減することが可能となる。次に、スリット21の位置と、P型拡散抵抗7の抵抗値の変動率との関係について、本発明者が行ったシミュレーション結果を説明する。
【0031】
(シミュレーション結果)
図3は、スリット位置と抵抗率との関係をシミュレーションした結果(その1)を示す図である。図3において、横軸(X軸)はスリットの位置を示し、縦軸(Y軸)はP型拡散抵抗の抵抗値の変動率を示す。なお、スリットの位置は、P型拡散抵抗の上方において、高電位電極及び低電位電極の各長さを足し合わせた値に対する、高電位電極の長さの比(%)で表されている。換言すると、P型拡散抵抗の長さ(即ち、一方の端部と他方の端部との間の長さ)をLとし、P型拡散抵抗の一方の端部からスリットまでの長さをL1としたとき、スリットの位置はX=L1/L×100%で表されている。
【0032】
例えば、X=50%の場合は、スリットの位置は上記の中間位置と重なることを意味する。0%<X<50%の場合は、スリットの位置は中間位置よりも高電位側に位置することを意味する(本発明の範囲である。)。50%<X<100%の場合は、スリットの位置は中間位置よりも低電位側に位置することを意味する。
なお、長さLは、例えば図1に示した半導体装置100において、P型拡散抵抗7の一方の端部7aの位置25と、他方の端部7bの位置27との間の距離に相当する。また、長さL1は、例えば図1に示した半導体装置100において、P型拡散抵抗7の一方の端部7aの位置25と、スリット21の位置との間の距離に相当する。
【0033】
図3のデータは、P型拡散抵抗の長さLが120μmであり、高電位用電極に18Vを印加した時の抵抗値の変動率を示している。また、P型拡散抵抗と電極との間の絶縁膜が図1、2に示したようにシリコン酸化膜(SiO)であるとき、及び、上記の絶縁膜がシリコン窒化膜(SiN)であるときのデータをそれぞれ示している。つまり、上記の抵抗値の変動率について、電極直下の絶縁膜、即ち、下地(フィールド)膜の膜種との関係も示している。
【0034】
図3に示すように、電極直下の絶縁膜がシリコン酸化膜の場合も、シリコン窒化膜の場合も、上記のスリットが中間位置から高電位側に位置するときに、抵抗値の変動率が低くなることが確認された。図3では、スリットの位置が少なくともX=10〜40%の範囲内であれば、X=50%のときと比べて、バイアス依存での抵抗値の変動を低減することができることがわかった。また、フィールド膜は、シリコン酸化膜よりも(誘電率が高い)シリコン窒化膜であるときの方が抵抗値の変動率の傾きが大きく、スリット位置の変動による影響を受けやすいということがわかった。
【0035】
図4は、スリット位置と抵抗率との関係をシミュレーションした結果(その2)を示す図である。図4において、横軸(X軸)と縦軸(Y軸)は図3に示した図と同じである。即ち、横軸はスリットの位置を示し、縦軸は抵抗値の変動率を示す。
図4のデータは、フィールド膜の膜種がシリコン酸化膜であり、高電位用電極に18Vを印加した時の抵抗値の変動率を示している。また、P型拡散抵抗の長さLが30μm、60μm、120μmであるときのデータをそれぞれ示している。つまり、上記の抵抗値の変動率について、P型拡散抵抗の長さLとの関係も示している。
【0036】
図4に示すように、P型拡散抵抗の長さLが長い場合及び短い場合の何れにおいても、上記のスリットが中間位置から高電位側に位置するときに、抵抗値の変動率が低くなることが確認された。図4では、スリットの位置が少なくともX=10〜40%の範囲内であれば、X=50%のときと比べて、バイアス依存での抵抗値の変動を低減することができることがわかった。
【0037】
また、P型拡散抵抗は、その長さが短いときの方が抵抗値の変動率が大きいということが確認された。さらに、抵抗値の変動率の傾きはP型拡散抵抗の長さに依存しないということがわかった。
図5は、スリット位置と抵抗率との関係をシミュレーションした結果(その3)を示す図である。図5において、横軸(X軸)と縦軸(Y軸)は図3に示した図と同じである。即ち、横軸はスリットの位置を示し、縦軸は抵抗値の変動率を示す。
【0038】
図5のデータは、フィールド膜の膜種がシリコン酸化膜であり、高電位用電極に18Vを印加した時の抵抗値の変動率を示している。また、P型拡散抵抗を形成する際のP型不純物のドーズ量が3.0E12cm−2、6.7E12cm−2、1.0E13cm−2であるときのデータをそれぞれ示している。つまり、P型拡散抵抗の抵抗値の変動率について、抵抗値の大小との関係も示している。
【0039】
図5に示すように、P型拡散抵抗の抵抗値が大きい場合及び小さい場合の何れにおいても、上記のスリットが中間位置から高電位側に位置するときに、抵抗値の変動率が低くなることが確認された。図5では、スリットの位置が少なくともX=10〜40%の範囲内であれば、X=50%のときと比べて、バイアス依存での抵抗値の変動を低減することができることがわかった。
また、P型拡散抵抗は、その抵抗値が大きいときの方が抵抗値の変動率が大きく、スリット位置の変動による影響を受けやすいということがわかった。
【0040】
(第2実施形態)
ところで、本発明では、第1実施形態において、N型をP型に、P型をN型にそれぞれ入れ替えてもよい。但し、この場合は、高電位用電極と低電位用電極との間の間隙部を、高電位側ではなく、低電位側に設ける。本発明の第2実施形態では、この導電型を入れ替えた形態について説明する。
図6は、本発明の第2実施形態に係る半導体装置200の構成例を示す断面図である。図6に示すように、この半導体装置200は、図示しないN型シリコン基板(Nsub)と、このN型シリコン基板上にエピタキシャル成長により形成されたP型シリコン層(P−)3´と、P型シリコン層3´の表面及びその近傍に形成されたN型拡散抵抗(N)7´と、を備える。また、この半導体装置200は、P型シリコン層3´とN型拡散抵抗7´とを覆うシリコン酸化膜11と、このシリコン酸化膜11に設けられた複数の開口部13と、これらの開口部13を埋め込むようにシリコン酸化膜11上に形成された高電位用電極15及び低電位用電極17と、高電位用電極15及び低電位用電極17を覆うようにN型シリコン基板の上方全体に形成されたシリコン窒化膜19と、を備える。
【0041】
この半導体装置200において、高電位用電極15及び低電位用電極17はそれぞれシリコン酸化膜11上に延設されている。また、このシリコン酸化膜11上において高電位用電極15と低電位用電極17との間には間隙部21が設けられている。そして、この半導体装置200では、上記の間隙部21が、N型拡散抵抗7´の長さ方向の一方の端部7aと長さ方向の他方の端部7bとの間の中間位置よりも、他方の端部7bに近い側に位置する。このような構成であっても、上記の第1実施形態と同様の効果を奏する。
【0042】
即ち、図6に示す半導体装置200において、高電位用電極15による高電位の印加は、低電位用電極17による低電位の印加と比較して、N型拡散抵抗7´の表面に電子を蓄積する方向に作用する。一方、低電位用電極17はシリコン酸化膜11を介してN型拡散抵抗7´に低電位を印加して、その表面を空乏化、反転させる。これにより、N型拡散抵抗7´ではバイアスに依存した抵抗値の上昇が生じる。
【0043】
ここで、半導体装置200の間隙部21は、両端部7a、7bの中間位置より低電位側の端部7bに近い側に位置する。このため、N型拡散抵抗7´において、空乏化、反転する領域が減少し、電子を蓄積する領域が増える。これにより、バイアスに依存した抵抗値の変動を低減することが可能となる。
【符号の説明】
【0044】
1 P型シリコン基板
3 N型シリコン層
3´ P型シリコン層
5 N型不純物拡散層(NBL)
7a 一方の端部
7b 他方の端部
7 P型不純物拡散層(P型拡散抵抗)
7´ N型拡散抵抗
9 P型アイソレーション層
11 シリコン酸化膜
13 開口部
15 高電位用電極
17 低電位用電極
19 シリコン窒化膜
21 スリット
23 中間位置
25 一方の端部7aの位置
27 他方の端部7bの位置
100、200 半導体装置

【特許請求の範囲】
【請求項1】
N型の第1半導体層と、
前記第1半導体層に形成されたP型の不純物拡散層と、
前記不純物拡散層上に形成された絶縁膜と、
前記絶縁膜を貫いて前記不純物拡散層の長さ方向の一方の部位に接続され、前記一方の部位に高電位を印加するための高電位用電極と、
前記絶縁膜を貫いて前記不純物拡散層の長さ方向の他方の部位に接続され、前記他方の部位に低電位を印加するための低電位用電極と、を備え、
前記高電位用電極及び前記低電位用電極はそれぞれ前記絶縁膜上に延設されると共に、前記絶縁膜上において前記高電位用電極と前記低電位用電極との間には間隙部が設けられており、
前記間隙部は、前記不純物拡散層の前記一方の部位と前記他方の部位との間の中間位置よりも前記一方の部位に近い側に位置することを特徴とする半導体装置。
【請求項2】
前記一方の部位と前記他方の部位との間の長さをLとし、
前記一方の部位と前記間隙部との間の長さをL1としたとき、
前記L1は前記Lの10%以上、40%以下の長さであることを特徴とする請求項1に記載の半導体装置。
【請求項3】
P型の第1半導体層と、
前記第1半導体層に形成されたN型の不純物拡散層と、
前記不純物拡散層上に形成された絶縁膜と、
前記絶縁膜を貫いて前記不純物拡散層の長さ方向の一方の部位に接続され、前記一方の部位に高電位を印加するための高電位用電極と、
前記絶縁膜を貫いて前記不純物拡散層の長さ方向の他方の部位に接続され、前記他方の部位に低電位を印加するための低電位用電極と、を備え、
前記高電位用電極及び前記低電位用電極はそれぞれ前記絶縁膜上に延設されると共に、前記絶縁膜上において前記高電位用電極と前記低電位用電極との間には間隙部が設けられており、
前記間隙部は、前記不純物拡散層の前記一方の部位と前記他方の部位との間の中間位置よりも前記他方の部位に近い側に位置することを特徴とする半導体装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−77733(P2013−77733A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2011−217359(P2011−217359)
【出願日】平成23年9月30日(2011.9.30)
【出願人】(303046277)旭化成エレクトロニクス株式会社 (840)
【Fターム(参考)】