説明

太陽電池ユニットとその製造方法

【課題】太陽電池の新たな用途展開の一環として、用途にあわせて太陽電池の意匠性、特に表面色のコントロール性に優れた太陽電池ユニットとその製造方法を提供する。
【解決手段】基板上に設けられた透明電極と対極の間にp型有機半導体材料とn型有機半導体材料とを含有する光電変換層を有する有機光電変換素子からなる太陽電池ユニットであって、光入射側の基材の透明電極とは反対側の面に少なくとも複数の異なる屈折率を有する材料から構成される可視光反射層を有すことを特徴とする太陽電池ユニット。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池ユニットとその製造方法に関する。更に詳しくは、特定波長領域の可視光を反射することにより、太陽電池表面の意匠性、特に色制御に優れた太陽電池ユニットとその製造方法に関する。
【背景技術】
【0002】
石化燃料代替エネルギーの普及や地球温暖化対策に向けて、再生可能エネルギーである太陽電池の発展が近年注目されている。しかしながら、太陽光発電の更なる普及には、製造コストの低減、助成金などの普及に向けた国策や、太陽電池の新たな用途展開の拡大が重要となっている。
【0003】
太陽電池の用途展開としては、建築物の屋根の上への設置(例えば特許文献1参照)、建築物の屋根の棟部への設置(例えば特許文献2参照)、プレキャストコンクリートパネルにPVモジュール埋め込み(例えば特許文献3参照)や交通建築物を活用した太陽電池の設置(例えば特許文献4参照)など、これまでに多数の提案がなされている。
【0004】
近年、更なる太陽電池の用途拡大として、屋根の上を中心とした屋外用途以外の設置方法として、ベランダやバルコニーの壁や柵の外側に設置(例えば特許文献5参照)、色素増感太陽電池を用いたブラインド用途への展開(例えば特許文献6参照)など、新たな提案がなされている。
【0005】
一方、太陽電池モジュールの受光面側には表面保護シート、裏面側にはバックシートが使用されていることが多く、表面保護フィルムとしては耐候性部材や光学部材が用いられることが一般的である。
【0006】
太陽電池表面保護シートとしては、紫外線吸収層、水蒸気遮断層、熱線遮断層などの機能層を有するフィルム構成がこれまでに数多くの提案がなされている。紫外線吸収能を有する金属酸化物からなる耐光層と有機系紫外線吸収剤を含む耐光層の複層構成(例えば特許文献7参照)や、環状イミノエステル系紫外線吸収剤やベンゾトリアゾール骨格を側鎖に有するアクリル樹脂を含有する紫外線吸収層と、金属酸化物で形成された水蒸気遮断層と特定の架橋剤を含有する易接着層からなるポリエステルフィルムを基材とする表面保護フィルム(例えば特許文献8参照)、さらに、熱線遮断層を有す積層フィルムからなる表面保護フィルムなどが開示されている(例えば特許文献9参照)。
【0007】
しかしながら、上記の種々の用途展開に加えて、更なる太陽電池の新たな用途展開が要望されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平6−85304号公報
【特許文献2】特開平7−180313号公報
【特許文献3】特開平8−120827号公報
【特許文献4】特開2002−10494号公報
【特許文献5】特開2002−134776号公報
【特許文献6】特開2007−113365号公報
【特許文献7】特開2006−326971号公報
【特許文献8】特開2006−261287号公報
【特許文献9】特開2006−261288号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上記状況に鑑みてなされたものであり、その解決課題は、太陽電池の新たな用途展開の一環として、用途にあわせて太陽電池の意匠性、特に表面色のコントロール性に優れた太陽電池ユニットとその製造方法を提供することである。
【課題を解決するための手段】
【0010】
本発明者は、上記課題を解決すべく、可視光線の反射と構成素材の屈折率との関係等の観点から鋭意検討を行った結果、本発明に至った。すなわち、本発明に係る上記課題は、以下の手段により解決される。
【0011】
1.太陽電池ユニットであって、光入射側の基板の少なくとも一方の面に、複数の異なる屈折率を有する材料で構成される可視光反射層を有すことを特徴とする太陽電池ユニット。
【0012】
2.基板上に設けられた透明電極と対極の間にp型有機半導体材料とn型有機半導体材料とを含有する光電変換層を有する有機光電変換素子からなる太陽電池ユニットであって、光入射側の基材の少なくとも一方の面に、複数の異なる屈折率を有する材料から構成される可視光反射層を有すことを特徴とする前記1に記載の太陽電池ユニット。
【0013】
3.前記可視光反射層が、その構成層として、屈折率が1.3〜1.6であり、厚さが5〜1000nmである低屈折率層と、屈折率が1.8〜2.5であり、厚さが5〜400nmである高屈折率層とを、交互に三層以上積層してなることを特徴とする前記1又は前記2に記載の太陽電池ユニット。
【0014】
4.前記可視光反射層が、その構成層として、光入射側から前記高屈折率層と前記低屈折率層とをこの順に、交互に三層以上積層してなることを特徴とする前記1から前記3のいずれか一項に記載の太陽電池ユニット。
【0015】
5.前記低屈折率層が、その構成層として、珪素若しくはアルミニウムを含む酸化物又は窒酸化物を主成分とする層を少なくとも一層有していることを特徴とする前記1から前記4のいずれか一項に記載の太陽電池ユニット。
【0016】
6.前記高屈折率層が、その構成層として、亜鉛、チタン、錫、インジウム、ニオブ、珪素若しくはアルミニウムを含む酸化物、窒酸化物、又は窒化物を主成分とする層を少なくとも一層有していることを特徴とする前記1から前記5のいずれか一項に記載の太陽電池ユニット。
【0017】
7.前記1から前記6のいずれか一項に記載の太陽電池ユニットを製造する太陽電池ユニットを製造方法であって、可視光反射層を形成する工程として、大気圧若しくはその近傍の圧力下、放電空間に薄膜形成ガス及び放電ガスを含有するガスを供給し、当該放電空間に高周波電界を印加することにより当該ガスを励起し、基材を当該励起したガスに晒すことにより、当該基材上に可視光反射層を薄膜として形成する工程を有することを特徴とする太陽電池ユニットの製造方法。
【0018】
8.前記放電ガスが窒素ガスであり、前記放電空間に印加される高周波電界が第1の高周波電界及び第2の高周波電界を重畳したものであり、当該第1の高周波電界の周波数ω1より当該第2の高周波電界の周波数ω2が高く、当該第1の高周波電界の強さ(V1)、当該第2の高周波電界の強さ(V2)及び放電開始電界の強さ(IV)との関係が、下記関係式(1)又は(2)で表され、かつ、当該第2の高周波電界の出力密度が1W/cm以上であることを特徴とする前記7に記載の太陽電池ユニットの製造方法。
関係式(1):V1≧IV>V2、
関係式(2):V1>IV≧V2
【発明の効果】
【0019】
本発明の上記手段により、太陽電池の新たな用途展開の一環として、用途にあわせて太陽電池の意匠性、特に表面色のコントロール性に優れた太陽電池ユニットとその製造方法を提供することができる。
【図面の簡単な説明】
【0020】
【図1】本発明に係る可視光反射層の層構成と可視光反射率を示す図
【図2】ジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図
【図3】対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図
【図4】ロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図
【図5】角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図
【図6】バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図
【図7】発電層がp−i−nの三層構成となっている有機光電変換素子からなる太陽電池の一例を示す断面図
【図8】タンデム構成となっている有機光電変換素子からなる太陽電池の一例を示す断面図
【図9】本発明に係る可視光反射層の層構成と可視光反射率を示す図
【図10】本発明に係る可視光反射層の層構成と可視光反射率を示す図
【図11】本発明に係る可視光反射層の層構成と可視光反射率を示す図
【発明を実施するための形態】
【0021】
本発明の太陽電池ユニットは、太陽電池ユニットであって、光入射側の基板の少なくとも一方の面に、複数の異なる屈折率を有する材料で構成される可視光反射層を有すことを特徴とする。この特徴は、請求項1から請求項8に共通する技術的特徴である。
【0022】
本発明の実施態様としては、本発明の効果の観点から、基板上に設けられた透明電極と対極の間にp型有機半導体材料とn型有機半導体材料とを含有する光電変換層を有する有機光電変換素子からなる太陽電池ユニットであって、光入射側の基材の少なくとも一方の面に、複数の異なる屈折率を有する材料から構成される可視光反射層を有する態様の太陽電池ユニットであることが好ましい。
【0023】
本発明においては、前記可視光反射層が、その構成層として、屈折率が1.3〜1.6であり、厚さが5〜1000nmである低屈折率層と、屈折率が1.8〜2.5であり、厚さが5〜400nmである高屈折率層とを、交互に三層以上積層してなる態様であることが好ましい。また、当該可視光反射層が、その構成層として、光入射側から前記高屈折率層と前記低屈折率層とをこの順に、交互に三層以上積層してなる態様であることが好ましい。
【0024】
また、本発明においては、前記低屈折率層が、その構成層として、珪素若しくはアルミニウムを含む酸化物又は窒酸化物を主成分とする層を少なくとも一層有していることが好ましい。さらに、前記高屈折率層が、その構成層として、亜鉛、チタン、錫、インジウム、ニオブ、珪素若しくはアルミニウムを含む酸化物、窒酸化物、又は窒化物を主成分とする層を少なくとも一層有していることが好ましい。
【0025】
本発明の太陽電池ユニットを製造方法としては、可視光反射層を形成する工程として、大気圧若しくはその近傍の圧力下、放電空間に薄膜形成ガス及び放電ガスを含有するガスを供給し、当該放電空間に高周波電界を印加することにより当該ガスを励起し、基材を当該励起したガスに晒すことにより、当該基材上に可視光反射層を薄膜として形成する工程を有する態様の製造方法であることが好ましい。また、当該製造方法において、前記放電ガスが窒素ガスであり、前記放電空間に印加される高周波電界が第1の高周波電界及び第2の高周波電界を重畳したものであり、当該第1の高周波電界の周波数ω1より当該第2の高周波電界の周波数ω2が高く、当該第1の高周波電界の強さ(V1)、当該第2の高周波電界の強さ(V2)及び放電開始電界の強さ(IV)との関係が、前記関係式(1)又は(2)で表され、かつ、当該第2の高周波電界の出力密度が1W/cm以上であることが好ましい。
【0026】
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。
【0027】
<可視光反射層>
本発明に係る可視光反射層は、基材の光入射側に複数の異なる屈折率を有する材料から構成される。当該可視光反射層は屈折率の異なる材料から成る層を交互に積層して、可視光を反射できるように光学設計された積層体が代表的な構成であるが、積層体に限られるものではない。屈折率の異なる材料が均一又は主成分の割合を膜厚方向に傾斜させた場合でも、可視光反射効果が発揮できる。屈折率の異なる複数の材料の混合割合を膜厚方向で傾斜させて可視光を反射できるようにしてもよい。また、可視光反射層は、本発明に係る水蒸気バリア層と別に設けてもよいが、両者を兼ねることも可能である。
【0028】
本発明に係る可視光反射層は、透明な誘電体材料(屈折率:n)を、地球上に到達する可視光の波長:400nm〜780nm範囲内の特定の波長λに対して、例えばλ/2n(nm)の厚さでコーティングすることにより、波長λの近傍の可視光に対して、コーティング層の上下の界面からの反射光の位相を揃えることで、反射率を高めたものなどをいう。
【0029】
例えば、高屈折率膜と低屈折率膜の屈折率の異なる誘電体材料の膜を交互に多層コーティングすることで、反射率を上げたり、反射波長域を広げたりすることができる。例えば、一例として、透明フィルム上に高屈折率膜(酸化チタン(TiO):n=2.0、厚さ53nm)、低屈折率膜(酸化珪素(SiO)、n=1.46、厚さ100nm)を順次設けた11層(合計膜厚:818nm)の可視光反射膜は、特に可視光領域380〜780nmのうちの470〜530nmの光を85%程度反射する(図1にこの可視光反射膜の反射率、透過率特性を示した。)。そのような可視光反射層を設けることで、基材を透過する可視光をカットすることができ、当該反射層を有す表面保護層を設けた太陽電池ユニットの見た目の色を変化させることができる。可視光反射膜が反射する波長、および反射率は高屈折率層、低屈折率層のそれぞれの膜厚と積層数を変化させることにより制御することができる。
【0030】
可視光反射層の誘電体材料としては、金属酸化物、窒酸化物、窒化物を主成分とする材料を好適に使用できる。屈折率1.8〜2.4の高屈折率膜としては、少なくとも亜鉛、チタン、錫、インジウム、ニオブ、珪素又はアルミニウムを含む酸化物、窒酸化物、窒化物を主成分とする少なくとも1層以上からなることが好ましい。また、屈折率1.4〜1.8の低屈折率膜は、少なくともSi又はAlを含む酸化物、窒酸化物、窒化物を主成分とし、特に、酸化珪素から構成されることが好ましい。その誘電体材料の形成方法としては気相成長法が好ましく、さらに真空蒸着法、スパッタ法、イオンプレーティング法、触媒化学気相成長(Cat−CVD)法、又はプラズマCVD法が好ましい。特に、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガス及び放電ガスを含有するガスを供給し、該放電空間に高周波電界を印加することにより該ガスを励起し、樹脂基材を励起したガスに晒すことにより、該樹脂基材上に薄膜を形成する薄膜形成方法により形成される、所謂大気圧プラズマCVD法により形成される膜が低残留応力であり好ましい。低屈折率膜には、カルシウム、バリウム、リチウム、マグネシウムのフッ化物を主成分とする材料も用いる事ができる。また、本発明において、屈折率の異なる層のうち、少なくとも1層は主成分の割合を膜厚方向に傾斜させた構成とすることができる。
【0031】
前記可視光反射層は、太陽電池ユニットに所望の色味を付与するためには、屈折率1.3〜1.6の厚さ5〜1000nmの低屈折率層、及び屈折率1.8〜2.5の厚さ5〜400nmの高屈折率膜層を交互に、少なくとも3層以上積層されていることが好ましく、更に好ましくは、5層以上、特に好ましくは7層以上である。
【0032】
《基材》
本発明においては、ガラス、樹脂基材など上記ポリマー層や可視光反射層を保持することができるものであればなんでも良いが、樹脂基材からなるフレキシブルな太陽電池ユニットの場合には特に本発明の効果を十分に得ることができる。本発明の太陽電池ユニットとは、基材の少なくとも片面に後述する光安定剤を含有するポリマー層と可視光反射層を設けたものであることが必要である。
【0033】
《樹脂基材》
本発明において樹脂基材とは、樹脂フィルム単体、又は樹脂フィルムの片面又は両面に光安定剤を含有するポリマー層等の有機層を積層した樹脂フィルムをいう。
【0034】
本発明に用いられる樹脂基材は、上記ポリマー層や可視光反射層を保持することができる樹脂フィルムであれば特に限定されるものではない。
【0035】
樹脂基材を構成する樹脂としては、具体的には、エチレン、ポリプロピレン、ブテン等の単独重合体又は共重合体又は共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン−2,6−ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレンーパーフロロプロピレンーパーフロロビニルエーテル−共重合体(EPA)等のフッ素系樹脂等を用いることができる。
【0036】
また、上記樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物よりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解した樹脂組成物等の光硬化性樹脂及びこれらの混合物等を用いることも可能である。さらに、これらの樹脂の1又は2種以上をラミネート、コーティング等の手段によって積層したものを樹脂フィルムとして用いることも可能である。
【0037】
これらの素材は単独で、あるいは適宜混合して使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)等の市販品を好ましく使用することができる。
【0038】
また、樹脂フィルムは透明、高耐光性、高耐候性であることがより好ましい。
【0039】
また、上記に挙げた樹脂フィルムは、未延伸フィルムでも、延伸フィルムでもよい。
【0040】
本発明に係る樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、又は基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することができるが、縦軸方向及び横軸方向にそれぞれ2〜10倍が好ましい。
【0041】
基材フィルムを構成する樹脂のうち、ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに代表される芳香族ポリエステル、ナイロン6やナイロン66に代表される脂肪族ポリアミド、芳香族ポリアミド、ポリエチレンやポリプロピレンに代表されるポリオレフィン、ポリカーボネート等が好ましい。これらの中、芳香族ポリエステル、さらにはポリエチレンテレフタレート及びポリエチレン−2,6−ナフタレートが好ましく、特にポリエチレンテレフタレート、ポリブチレンテレフタレート又はポリエチレンナフタレートが好ましい。
【0042】
前記芳香族ポリエステルには、必要により、適当なフィラーを含有させることができる。このフィラーとしては、従来からポリエステルフィルムの滑り性付与剤として知られているものが挙げられるが、その例を挙げると、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、カオリン、酸化珪素、酸化亜鉛、カーボンブラック、炭化珪素、酸化錫、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、メラミン樹脂粒子、架橋シリコン樹脂粒子等が挙げられる。滑り性付与剤の平均粒径は、0.01〜10μm、含有量はフィルムが透明性を保持する量範囲であって、0.0001〜5質量%であることが好ましい。さらに芳香族ポリエステルには、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒残渣微粒子等も適宜含有させることができる。
【0043】
また、本発明に係る樹脂基材においては、ポリマー層、可視光反射層、水蒸気バリア層等を形成する前に、コロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の表面処理を行ってもよい。
【0044】
樹脂基材は、ロール状に巻き上げられた長尺品が便利である。樹脂基材の厚さは、特に制限はされないが、耐候性樹脂基材としての適性から、10〜400μm、中でも30〜200μmの範囲内とすることが好ましい。
【0045】
《ポリマー層》
本発明においては、基材と前記可視光反射層の間に、光安定剤を含有するポリマー層を設けることが好ましい。
【0046】
本発明において、これらポリマー層は、光硬化性もしくは熱硬化性の樹脂を主成分とすることが好ましい。
【0047】
(多官能アクリレート)
光硬化性もしくは熱硬化性の樹脂を主成分とするポリマー膜(層)は、一般に紫外線のような活性光線硬化性樹脂より構成され、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、およびジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基及び/又はメタクロイルオキシ基を有する化合物である。
【0048】
多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独又は2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
【0049】
活性光線硬化性樹脂の添加量は、ポリマー層形成組成物中では、固形分中の15質量%以上70質量%未満であることが好ましい。
【0050】
また、ポリマー層には光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤;活性光線硬化性樹脂=20:100〜0.01:100で含有することが好ましい。
【0051】
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等およびこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
【0052】
ポリマー層には、中間層に用いる熱可塑性樹脂、熱硬化性樹脂又はゼラチン等の親水性樹脂等のバインダーを上記活性光線硬化性樹脂に混合して使用することもできる。また、ポリマー層には耐傷性、滑り性や屈折率を調整するために酸化珪素等無機化合物又は有機化合物の微粒子を含んでもよい。
【0053】
本発明においては、ポリマー層中に、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′−チオビス(6−tert−3−メチルフェノール)、4,4′−ブチリデンビス(6−tert−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−tert−ブチルベンジルホスフェート等を挙げることができる。
【0054】
これらのハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。塗布後、加熱乾燥し、UV硬化処理を行う。
【0055】
ポリマー層形成組成物には、溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、又はこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)又はプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
【0056】
これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
【0057】
ポリマー層は塗布乾燥後に、紫外線を照射するのがよく、必要な活性光線の照射量を得るための照射時間としては、0.1秒〜1分程度がよく、紫外線硬化性樹脂の硬化効率又は作業効率の観点から0.1〜10秒がより好ましい。
【0058】
また、これら活性光線照射部の照度は0.05〜0.2W/mであることが好ましい。
【0059】
光硬化性もしくは熱硬化性の樹脂を主成分とする本発明に係るポリマー層には、光安定剤を含んでいる。
【0060】
《光安定剤》
ここで光安定剤とは基材等を紫外線照射での劣化から防ぐ効果を有するものであり、例えば紫外線(UV)吸収剤、ラジカル補足剤、酸化防止剤などが例示され、このような光安定剤としては、ヒンダードアミン系、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系、ベンゾエート系、蓚酸アニリド系などの有機系の光安定剤、あるいはゾルゲルなどの無機系の光安定剤を用いることができる。好適に用いられる光安定剤の具体例を以下に示すが、もちろんこれらに限定されるものではない。
【0061】
好ましくは、樹脂基材にもポリマー層にも光安定剤を含有することが好ましい。光安定剤は好ましくは紫外線吸収剤を用いる。
【0062】
ヒンダードアミン系:ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、コハク酸ジメチル/1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物 サリチル酸系:p−t−ブチルフェニルサリシレート、p−オクチルフェニルサリシレートベンゾフェノン系:2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2,2′−4,4′−テトラヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニル)メタン ベンゾトリアゾール系:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−5′−t−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−t−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ・t−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−5′−t−オクチルフェノール)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ・t−アミルフェニル)ベンゾトリアゾール、2,2′−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2(2′ヒドロキシ−5′−メタアクリロキシフェニル)−2H−ベンゾトリアゾール、2−[2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル]ベンゾトリアゾール、2−(2′−ヒドロキシ−5−アクリロイルオキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2′−ヒドロキシ−5′−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−t−ブチル−5′−アクリロイルエチルフェニル)−5−クロロ−2H−ベンゾトリアゾールシアノアクリレート系:エチル−2−シアノ−3,3′−ジフェニルアクリレート上記以外:ニッケルビス(オクチルフェニル)サルファイド、[2,2′−チオビス(4−t−オクチルフェノラート)]−n−ブチルアミンニッケル、ニッケルコンプレックス−3,5−ジ・t−ブチル−4−ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチルジチオカーバメート、2,4−ジ−t−ブチルフェニル−3′,5′−ジ・t−ブチル−4′−ヒドロキシベンゾエート、2,4−ジ・t−ブチルフェニル−3′,5′−ジ・t−ブチル−4′−ハイドロキシベンゾエート、2−エトキシ−2′−エチルオキザックアシッドビスアニリド、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール。
【0063】
本発明においては、紫外線吸収剤又はヒンダードアミン系光安定剤を用いることが好ましく、さらには、これらを併用して用いることがより好ましい。
【0064】
本発明においては、樹脂基材やポリマー層等の塗布層の形成をより容易にするために、塗布層中の光安定剤に対し、適宜他の樹脂成分を混合することが好ましい。すなわち、樹脂成分及び光安定剤をそれぞれ溶解し得る有機溶媒、水、2種以上の有機溶媒の混合液、あるいは有機溶媒/水混合液に樹脂成分と光安定剤を溶解もしくは分散して塗液状態にして用いることが好ましい。樹脂成分と光安定剤を予め別々に有機溶媒、水、有機溶媒混合液、あるいは有機溶媒/水混合液に溶解又は分散したものを任意に混合して使用してもよい。また、予め光安定剤成分と樹脂成分との共重合体を、そのまま塗布材料として用いることも好ましい。該共重合体を有機溶媒、水、2種以上の有機溶媒の混合液、あるいは有機溶媒/水混合液に溶解したものを用いてもよい。混合又は共重合する樹脂成分は特に限定されないが、その一例を挙げれば、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂等である。これらの樹脂は単独で用いても、あるいは2種以上の共重合体もしくは混合物としたものを用いてもよい。
【0065】
上記の樹脂製分のうち、アクリル樹脂もしくはメタクリル樹脂を選択して用いることが好ましく、さらにアクリル樹脂もしくはメタクリル樹脂に光安定剤成分を共重合したものを塗布層に使用することが、より好ましい。共重合する場合には、光安定剤モノマー成分に対して、アクリルモノマー成分あるいはメタクリルモノマー成分を共重合することが好ましい。
【0066】
光安定剤モノマー成分としては、例えばベンゾトリアゾール系反応性モノマー、ヒンダードアミン系反応性モノマー、ベンゾフェノン系反応性モノマー等が好ましく使用できる。ベンゾトリアゾール系モノマーとしては、基体骨格にベンゾトリアゾールを有し、かつ不飽和結合を有するモノマーであればよく、特に限定されないが、例えば2−(2′−ヒドロキシ−5−アクリロイルオキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2′−ヒドロキシ−5′−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−t−ブチル−5′−アクリロイルエチルフェニル)−5−クロロ−2H−ベンゾトリアゾール等を挙げることができる。
【0067】
同様に、ヒンダードアミン系反応性モノマー、ベンゾフェノン系反応性モノマーとしては、基体骨格に各々ヒンダードアミン、ベンゾフェノンを有し、かつ不飽和結合を有するモノマーであればよい。ヒンダードアミン系反応性モノマーとしては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル−5−アクリロイルオキシエチルフェニル)セバケート、コハク酸ジメチル・1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチル−5−アクリロイルオキシエチルフェニルピペリジン重縮合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル−5−メタクリロキシエチルフェニル)セバケート、コハク酸ジメチル・1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチル−5−メタクリロキシエチルフェニルピペリジン重縮合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル−5−アクリロイルエチルフェニル)セバケート、コハク酸ジメチル・1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチル−5−アクリロイルエチルフェニルピペリジン重縮合物等を挙げることができる。
【0068】
また、ベンゾフェノン系反応性モノマーとしては、例えば2−ヒドロキシ−4−メトキシ−5−アクリロイルオキシエチルフェニルベンゾフェノン、2,2′−4,4′−テトラヒドロキシ−5−アクリロイルオキシエチルフェニルベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシ−5−アクリロイルオキシエチルフェニルベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシ−5−アクリロイルオキシエチルフェニルベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−メタクリロキシエチルフェニルベンゾフェノン、2,2′−4,4′−テトラヒドロキシ−5−メタクリロキシエチルフェニルベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシ−5−アクリロイルエチルフェニルベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシ−5−アクリロイルエチルフェニルベンゾフェノン等を挙げることができる。
【0069】
これらの光安定剤モノマー成分と共重合されるアクリルモノマー成分あるいはメタクリルモノマー成分、又はそのオリゴマー成分としては、アルキルアクリレート、アルキルメタクリレート(アルキル基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ラウリル基、ステアリル基、シクロヘキシル基等)、及び架橋性官能基を有するモノマー、例えばカルボキシル基、メチロール基、酸無水物基、スルホン酸基、アミド基、メチロール化されたアミド基、アミノ基、アルキロール化されたアミノ基、水酸基、エポキシ基等を有するモノマーを例示することができる。さらにはアクリロニトリル、メタクリロニトリル、スチレン、ブチルビニルエーテル、マレイン酸、イタコン酸及びそのジアルキルエステル、メチルビニルケトン、塩化ビニル、塩化ビニリデン、酢酸ビニル、ビニルピリジン、ビニルピロリドン、ビニル基を有するアルコキシシラン、不飽和ポリエステル等との共重合体としてもよい。
【0070】
これらの光安定剤モノマー成分と共重合するモノマー類との共重合比率は特に限定するものではなく、それぞれの1種又は2種以上を任意の割合で共重合することができるが、好ましくは光安定剤モノマー成分の比率が10質量%以上、より好ましくは20質量%以上、さらには35質量%以上であることが最も好ましく、また塗布性や耐熱性の点から70質量%以下であることが好ましい。光安定剤モノマー成分の単独重合体であってもよい。これらの重合体の分子量は特に限定されないが、通常5,000以上、好ましくは10,000以上、さらには20,000以上であることが塗布層の強靱性の点で最も好ましい。これらの重合体は有機溶媒、水あるいは有機溶媒/水混合液に溶解もしくは分散した状態で使用される。これら以外にも市販のハイブリッド系光安定ポリマー、例えば、“ユーダブル”(日本触媒(株)製)等も使用することができる。
【0071】
樹脂フィルムとしてポリエステルフィルムを用いる場合には、ポリエステルフィルム中に光安定剤として紫外線吸収剤を含有させることが好ましい。紫外線吸収剤としては、紫外線吸収剤、例えばサリチル酸系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、及びトリアジン系化合物、ベンゾオキサジノン系化合物、環状イミノエステル系化合物等を挙げることができるが、380nmでの紫外線カット性、色調及びポリエステル中への分散性の点からトリアジン系化合物、ベンゾオキサジノン系化合物が特に好ましい。
【0072】
また、これらの化合物は1種単独であるいは2種以上一緒に併用することができる。またHALSや酸化防止剤等の安定剤を併用することもでき、また酸化防止剤を併用することが好ましい。
【0073】
ここでベンゾトリアゾール系の化合物としては、例えば2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−t−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−t−アミルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−t−ブチルフェノール、2−(2′−ヒドロキシ−3′−t−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール等が挙げられる。
【0074】
ベンゾフェノン系化合物としては、例えば2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェノン、2,2′,4,4′−テトラヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸等が挙げられる。
【0075】
ベンゾオキサジノン系化合物としては、例えば2−p−ニトロフェニル−3,1−ベンゾオキサジン−4−オン、2−(p−ベンゾイルフェニル)−3,1−ベンゾオキサジン−4−オン、2−(2−ナフチル)−3,1−ベンゾオキサジン−4−オン、2,2′−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2′−(2,6−ナフチレン)ビス(3,1−ベンゾオキサジン−4−オン)等が挙げられる。
【0076】
《水蒸気バリア層》
本発明においては、基材表面のいずれか一方に水蒸気バリア層を少なくとも1層設けても良い。水蒸気バリア層とは、水分、またガス透過率が低い層のことである。水蒸気バリア層は水蒸気透過率(JIS K7129−1992 B法、40℃、90%RH条件下)が、0.1g/(m・24h)以下であることが好ましい。さらに水蒸気透過率(JIS K7129−1992 B法、40℃、90%RH条件下)が、0.01g/(m・24h)以下であることがより好ましい。
【0077】
本発明に用いられる水蒸気バリア層は、Si又はAlを含む酸化物、窒酸化物又は窒化物を主成分とする金属酸化物層を少なくとも1層有することが好ましい。水蒸気バリア層が設けられた場合は、より水分、熱の影響を排除できるため、好ましい。
【0078】
水蒸気バリア層の形成方法としては気相成長法が好ましく、さらに真空蒸着法、スパッタ法、イオンプレーティング法、触媒化学気相成長(Cat−CVD)法、又はプラズマCVD法が好ましい。特に、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガス及び放電ガスを含有するガスを供給し、該放電空間に高周波電界を印加することにより該ガスを励起し、樹脂基材を励起したガスに晒すことにより、該樹脂基材上に薄膜を形成する薄膜形成方法により形成される、所謂大気圧プラズマCVD法により形成される膜は、低残留応力であり好ましい。
【0079】
大気圧プラズマ法及び大気圧プラズマ法による、少なくともSi又はAlを含む酸化物、窒酸化物、窒化物を主成分とする水蒸気バリア層の形成については後述する。
【0080】
本発明で用いる水蒸気バリア層は、屈折率1.4〜1.8の低屈折率であることが好ましい。屈折率を1.8未満にすることで、可視光透過率及び紫外線反射率にほとんど影響を及ぼさずに、耐久性やハンドリング性を向上させるために、低屈折率層の層設計を比較的自由に行うことができる。また、屈折率が1.3未満になると膜が緻密でなくなり、耐久性の向上が望めない。また、低屈折率であると、可視光反射層の低屈折率層としても、水蒸気バリア層を設けることができる。また、水蒸気バリア層に紫外線を遮断するための光安定剤を含有させてもよい。
【0081】
本発明において、前記水蒸気バリア層は、好ましくは、酸化珪素膜からなり、炭素含有量が異なる酸化ケイ素膜を少なくともそれぞれ1層以上ずつ含むものが好ましい。
【0082】
これらの酸化珪素膜は略同一組成物といっても、気相成長法を用いて薄膜を形成する場合、例えば、大気圧プラズマCVD法の場合において、製造条件、また用いる薄膜形成ガス(原料ガス、添加ガス等の種類、比率等)によって、酸化珪素粒子の充填の程度、また混入する微量の不純物粒子等に差が生じることで、物性、例えば密度等が異なってくる。
【0083】
水蒸気バリア層の屈折率は1.3以上、1.8未満が好ましいが、具体的には、例えば酸化珪素膜の屈折率は、X線反射率法により求めた値を用いる。
【0084】
<大気圧プラズマCVD法>
本発明に係る可視光反射層及び水蒸気バリア層における低屈折率セラミック層、例えば酸化珪素膜、またこれらの積層体の形成には、物理、あるいは化学気相成長法が用いられる。中でも、これらのうち最も好ましい方法である、大気圧プラズマCVD法について、以下説明する。
【0085】
大気圧プラズマCVD法は、例えば、特開平10−154598号公報や特開2003−49272号公報、WO02/048428号パンフレット等に記載されているが、大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガス及び放電ガスを含有するガスを供給し、該放電空間に高周波電界を印加することにより該ガスを励起し、励起したガスに晒すことにより、薄膜を形成する。
【0086】
特に、特開2004−68143号公報に記載されている薄膜形成方法が、緻密なセラミック層を形成するには好ましい。また、ロール状の元巻きからウエブ状の樹脂基材を繰り出して、組成の異なる層を連続的に形成することができる。
【0087】
高周波とは、少なくとも0.5kHzの周波数を有するものをいう。
【0088】
本発明に係るセラミック層の形成に用いられる上記の大気圧プラズマCVD法は、大気圧もしくはその近傍の圧力下で行われるプラズマCVD法であり、大気圧もしくはその近傍の圧力とは20〜110kPa程度であり、本発明に記載の良好な効果を得るためには、93〜104kPaが好ましい。
【0089】
本発明における放電条件としては、高周波電界の周波数が1kHz〜2500MHzで、かつ供給電力が1〜50W/cmであることが好ましく、周波数が50kHz以上で、かつ供給電力が5W/cm以上であることがより好ましい。更に、放電空間に異なる周波数の電界を2つ以上印加し、重畳したものがより好ましい。
【0090】
上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわない。また、更に周波数の異なる第3の電界を有していてもよい。
【0091】
本発明に係る高周波電界を、同一放電空間に印加する具体的な方法としては、例えば、対向電極を構成する第1の電極に周波数ω1の高周波電界を印加する第1電源を接続し、第2電極に周波数ω2の高周波電界を印加する第2電源を接続した大気圧プラズマ放電処理装置を用いる。
【0092】
ここで、第1電源の周波数としては、1kHz〜1MHzであり、200kHz以下が好ましく用いることができる。またこの電界波形としては、連続波でもパルス波でもよい。
【0093】
一方、第2電源の周波数としては、1MHz〜2500MHzが好ましく800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。
【0094】
また、第1電極、第1電源又はそれらの間のいずれかには第2電源からの高周波電界の電流を通過しにくくする第1フルタを、また第2電極、第2電源又はそれらの間のいずれかには第2フィルターを接続することが好ましい。
【0095】
大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御手段を有することが好ましい。
【0096】
本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによって、該基材の上に薄膜を形成させるものである。また他の方式として、大気圧プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入したガスを励起し又はプラズマ状態とし、該対向電極外にジェット状に励起又はプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても移送されていてもよい)を晒すことによって該基材の上に薄膜を形成させるジェット方式の装置がある。
【0097】
図2は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
【0098】
ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、図2では図示してない(後述の図3に図示してある。)が、ガス供給手段、電極温度調節手段を有している装置である。
【0099】
プラズマ放電処理装置10Aは、第1電極11Aと第2電極12Aから構成されている対向電極を有しており、該対向電極間に、第1電極11Aからは第1電源21Aからの周波数ω1の高周波電界が印加され、また第2電極12Aからは第2電源22Aからの周波数ω2の高周波電界が印加されるようになっている。
【0100】
第1の高周波電界の周波数ω1より第2の高周波電界の周波数ω2が高く、かつ第1の高周波電界の強さV1と、第2の高周波電界の強さV2と、放電開始電界の強さIVとの関係がV1≧IV>V2、又は、V1>IV≧V2を満たし、第2の高周波電界の出力密度が1W/cm以上であることが好ましい。高周波とは、少なくとも0.5kHzの周波数を有するものを指す。
【0101】
本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成等)及び反応条件(ガス条件等)において放電を起こすことのできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種又は電極間距離等によって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。
【0102】
ここで、本発明でいう印加電界強度と放電開始電界強度は、下記の方法で測定されたものをいう。
【0103】
印加電界強度V1及びV2(単位:kV/mm)の測定方法:
各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、所定の時点の電界強度を測定する。
【0104】
放電開始電界強度IV(単位:kV/mm)の測定方法:
電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記印加電界強度測定と同じである。
【0105】
第1電極11Aと第2電極12Aとの対向電極間(放電空間)13Aに、後述の図3に図示してあるようなガス供給手段から前述した薄膜形成ガスGを導入し、第1電源21Aと第2電源22Aにより第1電極11Aと第2電極12A間に、前述した高周波電界を印加して放電を発生させ、前述した薄膜形成ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14A付近で薄膜を形成させる。薄膜形成中、後述の図4に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱又は冷却する。プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、基材の幅手方向あるいは長手方向での温度ムラができるだけ生じないように電極の内部の温度を均等に調節することが望まれる。
【0106】
ジェット方式の大気圧プラズマ放電処理装置を、樹脂基材Fの搬送方向と平行に複数台並べ、同時に同じプラズマ状態のガスを放電させることにより、同一位置に複数層の薄膜を形成可能となり、短時間で所望の膜厚を形成可能となる。また樹脂基材Fの搬送方向と平行に複数台並べ、各装置に異なる薄膜形成ガスを供給して異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することもできる。
【0107】
図3は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
【0108】
大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。
【0109】
ロール回転電極(第1電極)35と固定電極群(第2電極)36との対向電極間32(以下対向電極間を放電空間32とも記す)で、樹脂基材Fをプラズマ放電処理して薄膜を形成するものである。
【0110】
ロール回転電極35と固定電極群36との間に形成された放電空間32に、ロール回転電極35には第1電源41から周波数ω1の高周波電界を、また固定電極群36には第2電源42から周波数ω2の第2の高周波電界をかけるようになっている。
【0111】
なお、本発明においては、ロール回転電極35を第2電極、また固定電極群36を第1電極としてもよい。いずれにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。
【0112】
ガス供給手段50のガス発生装置51で発生させた薄膜形成ガスGは、不図示のガス流量調整手段により流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。
【0113】
樹脂基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、又は前工程から矢印方向に搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら固定電極群36との間に移送する。
【0114】
移送中にロール回転電極35と固定電極群36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。樹脂基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。
【0115】
なお、固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されており、該電極の放電面積はロール回転電極35に対向している全ての固定電極のロール回転電極35と対向する面の面積の和で表される。
【0116】
樹脂基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。放電処理済みの処理排ガスG′は排気口53より排出する。
【0117】
薄膜形成中、ロール回転電極35及び固定電極群36を加熱又は冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。
【0118】
図4は、図3に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。図4において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御し、また、樹脂基材Fの表面温度を所定値に保つため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。
【0119】
図5は、電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。該電極の構造は図示しないが、ジャケット構造となっており、放電中の温度調節が行えるようになっている。図4において、固定電極36aは、導電性の金属質母材36Aに対し、図4同様の誘電体36Bの被覆を有している。図5に示した固定電極36aの形状は、特に限定されず、円筒型電極でも角筒型電極でも良い。
【0120】
図4及び図5において、ロール電極35a及び電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。
【0121】
導電性の金属質母材35A及び36Aとしては、チタン金属又はチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料又はアルミニウムとセラミックスとの複合材料を挙げることができる。
【0122】
対向する第1電極及び第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことをいう。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことをいう。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1〜20mmが好ましく、特に好ましくは0.5〜5mmである。
【0123】
プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウム又は、ステンレススティールのフレームの内面にポリイミド樹脂等を貼り付けてもよく、該金属フレームにセラミックス溶射を行い、絶縁性をとってもよい。図3において、平行した両電極の両側面(基材面近くまで)を上記のような材質のもので覆うことが好ましい。
【0124】
本発明に係る大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、神鋼電機社製SPG5−4500(5kHz)、春日電機製AGI−023(15kHz)、ハイデン研究所製PHF−6k(100kHz*)、パール工業製CF−2000−200k(200kHz)等の市販のものを挙げることができ、何れも使用することができる。
【0125】
また、第2電源(高周波電源)としては、パール工業製CF−2000−800k(800kHz)、同CF−5000−13M(13.56MHz)、同CF−2000−150M(150MHz)等の市販のものを挙げることができ、何れも好ましく使用できる。
【0126】
なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
【0127】
本発明においては、このような電界を印加して、均一で安定な放電状態を保つことができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。
【0128】
本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.0W/cmである。なお、放電面積(cm)は、電極間において放電が起こる範囲の面積のことを指す。
【0129】
また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、更なる膜質を向上させることができる。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。
【0130】
ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。
【0131】
〈X線反射率法〉
本発明に記載の屈折率は、具体的にはX線反射率法により求めた値である。
【0132】
X線反射率法の概要は、X線回折ハンドブック 151ページ(理学電機株式会社編 2000年 国際文献印刷社)や化学工業1999年1月No.22を参照して行うことができる。
【0133】
本発明に有用な測定方法の具体例を以下に示す。
【0134】
これは、表面が平坦な物質に非常に浅い角度でX線を入射させ測定を行う方法で、測定装置としてはマックサイエンス社製MXP21を用いて行う。X線源のターゲットには銅を用い、42kV、500mAで作動させる。インシデントモノクロメータには多層膜パラボラミラーを用いる。入射スリットは0.05mm×5mm、受光スリットは0.03mm×20mmを用いる。2θ/θスキャン方式で0から5°をステップ幅0.005°、1ステップ10秒のFT法にて測定を行う。得られた反射率曲線に対し、マックサイエンス社製Reflectivity Analysis Program Ver.1を用いてカーブフィッティングを行い、実測値とフィッティングカーブの残差平方和が最小になるように各パラメータを求める。各パラメータから積層膜の屈折率、厚さ及び密度を求めることができる。本発明における積層膜の膜厚評価も、上記X線反射率測定より求めることができる。
【0135】
<炭素含有量の分析>
水蒸気バリア層において、酸化珪素膜の密度は、微量成分である炭素含有量と密接に相関があり、例えば、炭素原子濃度が低い(0.1at%未満)膜は密度が高くガスバリア性が高い膜であるが、炭素原子濃度がこれよりも高い(1〜40at%)膜は、膜密度もより低くより柔らかい組成物である。
【0136】
本発明において低屈折率セラミック層の炭素含有量(at%)は、原子数濃度%(atomic concentration)を表す。炭素含有量を示す原子数濃度%(at%)は公知の分析手段を用いて求めることができるが、本発明においては下記のXPS法によって算出されるもので、以下に定義される。
【0137】
原子数濃度%(atomic concentration)=炭素原子の個数/全原子の個数×100
XPS表面分析装置は、本発明ではVGサイエンティフィックス社製ESCALAB−200Rを用いた。具体的には、X線アノードにはマグネシウムを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV〜1.7eVとなるように設定した。
【0138】
測定としては、先ず結合エネルギー0eV〜1100eVの範囲をデータ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。
【0139】
次に、検出されたエッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した。
【0140】
得られたスペクトルは、測定装置、あるいはコンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS−SCA−JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行い、各分析ターゲットの元素(炭素、酸素、珪素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求めた。
【0141】
定量処理を行う前に、各元素についてCount Scaleのキャリブレーションを行い、5ポイントのスムージング処理を行った。定量処理では、バックグラウンドを除去したピークエリア強度(cps*eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。また、Shirley法については、D.A.Shirley,Phys.Rev.,B5,4709(1972)を参考にすることができる。
【0142】
<接着剤>
本発明に係る太陽電池ユニットをかばん、モバイル携帯、建物の窓ガラス、自動車、電車などの窓ガラス、冷蔵庫の扉ガラスなどに貼り合わせるため接着剤層を塗設することもできる。
【0143】
本発明に係る接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。
【0144】
本発明に係る接着剤は紫外線に対して耐久性を有するものが好ましく、前記アクリル系粘着剤、ゴム系粘着剤、又はシリコン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系及びエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。
【0145】
例えば、骨格としての主モノマーとしては、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステルを好ましく例示できる。凝集力を向上させるためのコモノマーとしては、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等を好ましく例示できる。更に架橋を促進して安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するための官能基含有モノマーとしては、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等を好ましく例示できる。
【0146】
粘着剤の製造は、公知の方法で行うことができる。例えば、酢酸エチルやトルエン等の有機溶剤の存在下で、反応釜内に所定の出発物質を投入し、ベンゾイルパーオキサイド等のパーオキサイド系やアゾビスイソブチロニトリル等のアゾビス系を触媒として、加熱下で重合させることで製造できる。分子量を上げるためには、例えば反応初期にモノマーを一括投入する方法や、また使用する有機溶剤種では、連鎖移動係数が大きくポリマー成長を抑制するトルエンより酢酸エチルを使用すると良い。ポリマーの重量平均分子量(Mw)は40万以上が好ましく、50万以上が更に好ましい。分子量が40万未満では、イソシアネート硬化剤で架橋されても、凝集力が十分なものが得られず、荷重をかけての保持力評価でもすぐに落下し、又はガラス板に貼り合せた後経時後に剥がしたとき、粘着剤がガラス板に残ることがある。
【0147】
粘着剤の硬化剤としては、特にアクリル溶剤系では一般的なイソシアネート系硬化剤やエポキシ系硬化剤が使用できるが、均一な皮膜を得るためには経時による粘着剤の流動性と架橋が必要なため、イソシアネート系硬化剤が好ましい。
【0148】
粘着剤層には、添加剤として、例えば、安定剤、紫外線吸収剤、難燃剤、帯電防止剤等を含有させることもできる。粘着剤層の厚さは5〜50μmが好ましい。
【0149】
粘着剤層の塗布形成方法としては、任意の公知の方法が使用でき、例えば、ダイコーター法、グラビアコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法などが挙げられる。更に粘着層の積層前に、必要に応じて密着性、塗工性向上の目的で、フィルム表面に火炎処理、コロナ放電処理、プラズマ放電処理などの物理的表面処理、易接着性の有機又は無機樹脂塗布などの化学的表面処理を行うことが好ましい。
【0150】
次に、太陽電池について説明する。
【0151】
本願においては如何なる種類の太陽電池も用いることができるが、基板上に設けられた透明電極と対極の間にp型有機半導体材料とn型有機半導体材料とを含有する光電変換層を有する有機光電変換素子からなる太陽電池であることが好ましい。有機光電変換素子であれば、フレキシブルな基板を用いた軽量で薄い太陽電池を作製することができ、本願の意匠性の向上を付与することで、様々な用途展開が可能となる。
【0152】
(有機光電変換素子および太陽電池の構成)
本発明に係る有機光電変換素子の好ましい態様を説明するが、これに限定されるものではない。有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクへテロジャンクション層、i層とも言う)が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
【0153】
有機光電変換素子の層構成の好ましい具体例を以下に示す。
(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発光層/電子輸送層/中間電極/正孔輸送層/第2発光層/電子輸送層/陰極
ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを形成していても良いし、1層の内部で混合された状態となっているバルクへテロジャンクションを形成しても良いが、バルクへテロジャンクション構成のほうが光電変換効率が高いため、好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
【0154】
有機EL素子同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔及び電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料とn型半導体材料単体からなる層で発電層を挟み込むような構成(p−i−n構成ともいう)であっても良い。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であっても良い。
【0155】
(有機光電変換素子および太陽電池の構成)
図6は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。図6において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、陽極12、正孔輸送層17、バルクヘテロジャンクション層の発電層14、電子輸送層18及び陰極13が順次積層されている。
【0156】
基板11は、順次積層された陽極12、発電層14及び陰極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、発電層14の両面に陽極12及び陰極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
【0157】
発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。
【0158】
図6において、基板11を介して陽極12から入射された光は、発電層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、陽極12と陰極13の仕事関数が異なる場合では陽極12と陰極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、陽極12の仕事関数が陰極13の仕事関数よりも大きい場合では、電子は、陽極12へ、正孔は、陰極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、陽極12と陰極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
【0159】
なお、図6には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
【0160】
さらに好ましい構成としては、前記発電層14が、いわゆるp−i−nの三層構成となっている構成(図7)である。通常のバルクへテロジャンクション層は、p型半導体材料とn型半導体層が混合した、i層単体であるが、p型半導体材料単体からなるp層、およびn型半導体材料単体からなるn層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
【0161】
さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。
【0162】
図8は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の発電層14′を積層した後、電荷再結合層15を積層した後、第2の発電層16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の発電層16は、第1の発電層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また第1の発電層14′、第2の発電層16がともに前述のp−i−nの三層構成であってもよい。
【0163】
以下に、これらの層を構成する材料について述べる。
【0164】
〔p型半導体材料〕
本発明に係るバルクへテロジャンクション層に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
【0165】
縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。本発明においてはポルフィリン誘導体が好ましい。
【0166】
また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
【0167】
これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。より好ましくは、本発明に係るn型有機半導体材料と適度な相溶性を有するような化合物(適度な相分離構造形成し得る化合物)であることが好ましい。
【0168】
他方で、より厚い膜や複数の層からなる多層積層構成を得るためには、一度塗布した層の上にさらに塗布することができれば、容易狙いとする膜を得ることができる。通常溶解性の良い材料からなる層の上にさらに層を溶液プロセスによって積層使用とすると、下地の層を溶かしてしまうために積層することができないという課題もあることから、溶液プロセスで塗布した後に不溶化できるような材料が好ましい。
【0169】
このような材料としては、Technical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、又は米国特許出願公開第2003/136964号、および特開2008−16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。
【0170】
これらの中でも、テトラベンゾポルフィリン誘導体はその前区体を塗布後、熱処理により不溶化する半導体に構造変換することから、好ましく用いることができる。
【0171】
なお、前述の三次元ネットワーク構造を形成するn型半導体を用いると、バルクヘテロジャンクション層を形成するp型半導体材料、n型半導体材料の双方が溶剤に対して非常に耐溶剤性が高くなり、バルクへテロジャンクション層の上に正孔輸送層・電子輸送層・正孔ブロック層・電子ブロック層等を溶液プロセスで形成する際に、バルクへテロジャンクション層が溶解してしまうことがなくなる。さらに、前記n型半導体層の重合架橋反応が熱によって起きる場合は、p型半導体材料及びn型半導体材料の変換を同時に達成することができるため、好ましい。
【0172】
〔n型有機半導体材料〕
本発明に係る有機光電変換素子は、n型有機半導体材料(n型半導体材料ともいう)及びp型有機半導体材料(p型半導体材料ともいう)を混合したバルクヘテロジャンクション層を有する。
【0173】
なお、本発明において低分子化合物とは、化合物の分子量に分布のない、単一分子であることを意味する。他方、高分子化合物とは、所定のモノマーを反応させることによって一定の分子量分布を有する化合物の集合体であることを意味する。しかし、実用上分子量によって定義をする際には、好ましくは分子量が2000以下の化合物を低分子化合物と区分する。より好ましくは1500以下、さらに好ましくは1000以下である。他方、分子量が1000以上、より好ましくは2000以上、さらに好ましくは5000以上の化合物を高分子化合物と区分する。なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができるが、後述するような三次元ネットワーク構造を有するような高分子の場合は、正確に分子量を特定することは困難である。
【0174】
また一般に、p型、n型とは、半導体材料で電気伝導に寄与するのが、正孔であるか、電子であるかを示している。
【0175】
本発明に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
【0176】
しかし、各種のp型半導体材料と高速(〜50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
【0177】
中でも[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis−PCBM、特開2006−199674号公報等のアミノ化フラーレン、特開2008−130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
【0178】
〔バルクヘテロジャンクション層の形成方法〕
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、真空蒸着法、溶液塗布法(キャスト法、スピンコート法を含む)等を例示することができるが、生産性の観点から塗布法が好ましい。
【0179】
この際に使用する塗布方法に制限は無いが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
【0180】
塗膜形成後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱によるアニール処理を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集又は結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とさせることもできる。その結果、バルクへテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
【0181】
光電変換部(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。本発明においては、バルクへテロジャンクション層からなるi層を構成するp型有機半導体材料のキャリアの移動度がn層を構成するn型有機半導体材料のキャリアの移動度よりも大きくすることも好ましい形態である。
【0182】
〔正孔輸送層・電子ブロック層〕
本発明に係る有機光電変換素子10は、バルクへテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、バルクへテロジャンクション層と陽極との中間には正孔輸送層17を有していることが好ましい。
【0183】
これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、WO2006019270号パンフレット等に記載のシアン化合物、などを用いることができる。なお、バルクへテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクへテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能を付与することができる。電子ブロック機能をより発現するためには、p型半導体のLUMO準位よりも浅いLUMO準位を有すことがより好ましい。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうがより好ましい。このような材料としては、特開平5−271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクへテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
【0184】
〔電子輸送層・正孔ブロック層〕
本発明に係る有機光電変換素子10は、バルクへテロジャンクション層と陰極との中間には電子輸送層18を形成することで、バルクへテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
【0185】
また電子輸送層18としては、オクタアザポルフィリン、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)などを用いることができるが、同様に、バルクへテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクへテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。正孔ブロック機能をより発現させるためには、n型半導体のHOMO準位よりも深いHOMO準位を有すことがより好ましい。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクへテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
【0186】
〔その他の層〕
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
【0187】
〔透明電極(陽極)〕
本発明に係る透明電極は、陰極、陽極は特に限定せず、素子構成により選択することができる。例えば、陽極として用いる場合、好ましくは380〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤー、カーボンナノチューブ用いることができる。
【0188】
また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。
【0189】
〔対電極(陰極)〕
対電極は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用しても良い。対電極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
【0190】
対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
【0191】
また、対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノワイヤーの分散物であれば、透明で導電性の高い対電極を塗布法により形成でき好ましい。
【0192】
また、対電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対電極に適した導電性材料を薄く1〜20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。
【0193】
〔中間電極〕
また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層又はナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
【0194】
なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
【0195】
〔基板〕
基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚さ等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
【0196】
本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
【0197】
また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
【0198】
〔パターニング〕
本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
【0199】
バルクへテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしても良い。
【0200】
電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。
【0201】
〔封止〕
また、作製した有機光電変換素子10が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子などで公知の手法によって封止することが好ましい。例えば、アルミ又はガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上10を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)又は有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
【実施例】
【0202】
以下、実施例を挙げて本発明を説明するが、本発明はこれに限定されない。
【0203】
<太陽電池ユニットSTU−1の作製>
〔基材1〕
帝人デュポン社製厚さ75μmのPET(ポリエチレンテレフタレート)フィルムHSを基材として、以下のように積層体の作製を行った。
【0204】
<ポリマー層の作製>
〈ポリマー層1の形成〉
下記組成の活性線硬化樹脂層用塗布液は、A、B、C成分の合計100質量部に対して、E、F、Gの必要な質量部を加えて調製した。この塗布液を該当する層の上に、硬化後の膜厚が2μmとなるようにマイクログラビアコーターを用いて塗布した。溶剤を蒸発乾燥後、高圧水銀灯を用いて0.2J/cmの紫外線照射により硬化させアクリル系硬化層からなるポリマー層1を形成した。
【0205】
(活性線硬化樹脂層用塗布液)
A:ジペンタエリスリトールヘキサアクリレート単量体 60質量部
B:ジペンタエリスリトールヘキサアクリレート2量体 20質量部
C:ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
E:ジメトキシベンゾフェノン光反応開始剤 4質量部
F:メチルエチルケトン 75質量部
G:プロピレングリコールモノメチルエーテル 75質量部
〈光安定剤を含有するポリマー層2の形成〉
メチルメタクリレート65質量%、2−ヒドロキシエチルメタクリレート35質量%を共重合させ、平均分子量50000の水酸基導入メタクリル酸エステル樹脂を得た。この樹脂に対して、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤である2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−t−ペンチルフェノール(TINUVIN328;チバ・ジャパン(株)製)を5質量%、光安定剤としてヒンダードアミン系光安定剤であるデカン二酸ビス[2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル]エステル(TINUVIN123;チバ・ジャパン(株)製)を5質量%配合し、粘度調整のためメチルエチルケトンにて希釈し、固形分が20質量%となるよう調整した主剤(a)を得た。一方、架橋剤(硬化剤)となるポリイソシアネート化合物として、アダクト型のヘキサメチレンジイソシアネートをメチルエチルケトンで固形分が75質量%となるように調整した硬化剤(b)を得た。主剤(a)に対して、硬化剤(b)を15質量%添加して塗布液を調製した。この塗布液をマイクログラビアコーターにて基材の片面に、塗布量が固形分で5g/mとなるように連続塗工し、乾燥ゾーンの温度は80℃/110℃/125℃(各ゾーンは30秒)と段階的に熱風乾燥し、光安定剤を含有するポリマー層2とした。
【0206】
<水蒸気バリア層の作製>
〈第1低屈折率セラミック構成層の形成〉
上記の可視光反射層を設けた樹脂基板の反対側の面に、以下の作製条件で第1低屈折率セラミック構成層1(50nm)、第1低屈折率セラミック構成層2(50nm)、第1低屈折率セラミック構成層3(500nm)と以下に記載した条件で順次低屈折率セラミック構成層の形成を行った。屈折率は1.46であった。
【0207】
(第1低屈折率セラミック構成層1の作製)
〈第1低屈折率セラミック構成層1混合ガス組成物〉
放電ガス:窒素ガス 94.85体積%
薄膜形成ガス:ヘキサメチルジシロキサン 0.15体積%
添加ガス:酸素ガス 5.0体積%
(第1低屈折率セラミック構成層1成膜条件)
第1電極側
電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm(この時の電圧Vpは7kVであった。)
電極温度 120℃
第2電極側
電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 5W/cm(この時の電圧Vpは1kVであった。)
電極温度 90℃
<第1低屈折率セラミック構成層2の作製>
(低屈折率セラミック構成層2混合ガス組成物)
放電ガス:窒素ガス 94.99体積%
薄膜形成ガス:テトラエトキシシラン 0.01体積%
添加ガス:酸素ガス 5.0体積%
(第1低屈折率セラミック構成層2成膜条件)
第1電極側
電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm(この時の電圧Vpは7kVであった。)
電極温度 120℃
第2電極側
電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 10W/cm(この時の電圧Vpは2kVであった。)
電極温度 90℃
<第1低屈折率セラミック構成層3の作製>
(第1低屈折率セラミック構成層3混合ガス組成物)
放電ガス:窒素ガス 94.5体積%
薄膜形成ガス:ヘキサメチルジシロキサン 0.5体積%
添加ガス:酸素ガス 5.0体積%
(第1低屈折率セラミック構成層3成膜条件)
第1電極側
電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm(この時の電圧Vpは7kVであった。)
電極温度 120℃
第2電極側
電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 5W/cm(この時の電圧Vpは1kVであった。)
電極温度 90℃
〔太陽電池ユニットSTU−1の作製〕
ガラス基板上にITOを平均膜厚150nmで蒸着し、第1電極TC−1を作製した。
【0208】
第1電極TC−1上に、導電性高分子であるPEDOT/PSS(poly(3,4−ethylenedioxythiophene)−poly(styrenesulfonate))(Baytron P4083、H.C.Starck製)を30nmの乾燥膜厚となるようにスピンコートした後、140℃で大気中10分間加熱乾燥した。
【0209】
これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を140℃で3分間加熱処理した。
【0210】
次に、光電変換層用塗布液として、P3HT(プレクストロニクス製:レジオレギュラーポリ−3−ヘキシルチオフェン)(Mw=52000、高分子p型半導体材料)とPCBM(Mw=911、低分子n型半導体材料)(フロンティアカーボン:6,6−フェニル−C61−ブチリックアシッドメチルエステル)を3.0質量%になるように1:1で混合した液を調製し、フィルターでろ過しながら膜厚150nmになるようにスピンコーターを用いて塗布を行い、室温で放置して光電変換層を成膜した。
【0211】
上記光電変換層の上に、エタノールにTi−イソプロポキシドを0.05mol/Lになるように溶解した液を調製し、マスキングした後、膜厚20nmになるように塗布を行い、水蒸気量を調節した窒素中放置して電子輸送層を製膜した。
【0212】
次に、上記一連の光電変換層、電子輸送層を製膜した第1電極を真空蒸着装置内に設置した。10−3Pa以下にまでに真空蒸着機内を減圧した後、Alを80nm蒸着した。
【0213】
次に、陽極及び陰極の外部取り出し端子が形成できるように端部を除き、陰極の周囲に接着剤を塗り、ガラスを基材とした可撓性封止部材を貼合した後、熱処理で接着剤を硬化させ、有機光電変換素子STC−1を得た。
【0214】
得られた有機光電変換素子STC−1の受光面側に、上述の水蒸気バリア層が有機光電変換素子の受光面側なるように可撓性封止部材を介して貼合した後、熱処理で接着剤を硬化させ、太陽電池ユニットSTU−1を作製した。
【0215】
<太陽電池ユニットSTU−2の作製>
<可視光反射層の作製>
基材1の水蒸気バリア層を設けた側とは反対側に、下記条件で高屈折率層(厚さ:53nm、屈折率:2.0)、低屈折率層(厚さ:100nm、屈折率1.46)、を交互に7層設け、7層からなる可視光反射層を形成し、試料1を作製した。図9に示すように、この試料の可視光反射層から光を入射して測定した波長500nmの可視光反射率は90%であった。
【0216】
(高屈折率層の作製)
〈高屈折率層形成混合ガス組成物〉
放電ガス:窒素 97.9体積%
薄膜形成ガス:テトライソプロポキシチタン 0.1体積%
添加ガス:水素 2.0体積%
〈高屈折率層成膜条件〉
第1電極側
電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm(この時の電圧Vpは7kVであった。)
電極温度 120℃
第2電極側
電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 5W/cm(この時の電圧Vpは1kVであった。)
電極温度 90℃
(低屈折率層の作製)
〈低屈折率層混合ガス組成物〉
放電ガス:窒素 98.9体積%
薄膜形成ガス:テトラエトキシシラン 0.1体積%
添加ガス:酸素 1.0体積%
〈低屈折率層成膜条件〉
第1電極側
電源種類 ハイデン研究所 100kHz(連続モード) PHF−6k
周波数 100kHz
出力密度 10W/cm(この時の電圧Vpは7kVであった。)
電極温度 120℃
第2電極側
電源種類 パール工業 13.56MHz CF−5000−13M
周波数 13.56MHz
出力密度 10W/cm(この時の電圧Vpは2kVであった。)
電極温度 90℃
〔太陽電池ユニットSTU−2の作製〕
太陽電池ユニットSTU−1の作製と同様にして、上述の可視光吸収層と水蒸気バリア層を両面に設けたPET基板を可視光反射層が受光側になるように可撓性封止部材を介して貼合した後、熱処理で接着剤を硬化させ、太陽電池ユニットSTU−2を作製した。
【0217】
<太陽電池ユニットSTU−3、4の作製>
<可視光反射層の作製>
太陽電池ユニットSTU−2の可視光反射層の作製と同様にして、図10及び図11それぞれに示すような層構成で基材1の水蒸気バリア層を設けた面とは反対側に可視光反射層を設けた。
【0218】
<水蒸気バリア層の作製>
太陽電池ユニットSTU−1の水蒸気バリア層の作製と同様にして、上記可視光反射層を設けた基板の反対側の面に水蒸気バリア層を形成した。
【0219】
〔太陽電池ユニットSTU−3、4の作製〕
太陽電池ユニットSTU−2の作製と同様にして、上記の可視光反射層と水蒸気バリア層を設けた基板を用いて、太陽電池ユニットSTU−3、4を作製した。
【0220】
〔可視光反射層の評価〕
太陽電池ユニットSTU1〜4の作製において、可視光反射層をPET基板上に設けた部材の反射率は分光光度計U−4000型(日立製作所製)を用いて測定した。評価結果を図9〜図11に示す。
【0221】
図9(b)〜図11(b)から、本発明に係る可視光反射部材は特定の可視光反射率を有していることが分かる。
【0222】
〔太陽電池ユニットの表面色評価〕
太陽電池ユニットSTU−1〜4を用いて、自然光下で太陽電池ユニット表面の色を観察した。
【0223】
評価結果を表1に示す。
【0224】
【表1】

【0225】
表1に示した評価結果から、本発明に係る実施例である太陽電池ユニットSTU−2〜4の試料は、太陽電池ユニットとしての基本特性である発電機能は有しており、更に比較例である太陽電池ユニットSTU−1に対して異なる色合いを有し、用途に合わせて金属光沢を有す色に制御することができ、高い意匠性を付与することができることが分かった。
【符号の説明】
【0226】
10A プラズマ放電処理装置
11A 第1電極
12A 第2電極
21A 第1電源
22A 第2電源
24A 第2フィルター
30 プラズマ放電処理装置
32 放電空間
35 ロール回転電極
35a ロール電極
35A 金属質母材
35B 誘電体
36 角筒型固定電極群
40 電界印加手段
41 第1電源
42 第2電源
43 第1フィルター
44 第2フィルター
50 ガス供給手段
51 ガス発生装置
52 給気口
53 排気口
60 電極温度調節手段
G 薄膜形成ガス
G° プラズマ状態のガス
G′ 処理排ガス
F 基材
10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 透明電極
13 対極
14 光電変換部(バルクヘテロジャンクション層)
14p p層
14i i層
14n n層
14′ 第1の光電変換部
15 電荷再結合層
16 第2の光電変換部
17 正孔輸送層
18 電子輸送層
20 光センサアレイ
21 基板
22 透明電極
23 対電極
24 光電変換部
24a バッファ層
24b 光電変換層

【特許請求の範囲】
【請求項1】
太陽電池ユニットであって、光入射側の基板の少なくとも一方の面に、複数の異なる屈折率を有する材料で構成される可視光反射層を有すことを特徴とする太陽電池ユニット。
【請求項2】
基板上に設けられた透明電極と対極の間にp型有機半導体材料とn型有機半導体材料とを含有する光電変換層を有する有機光電変換素子からなる太陽電池ユニットであって、光入射側の基材の少なくとも一方の面に、複数の異なる屈折率を有する材料から構成される可視光反射層を有すことを特徴とする請求項1に記載の太陽電池ユニット。
【請求項3】
前記可視光反射層が、その構成層として、屈折率が1.3〜1.6であり、厚さが5〜1000nmである低屈折率層と、屈折率が1.8〜2.5であり、厚さが5〜400nmである高屈折率層とを、交互に三層以上積層してなることを特徴とする請求項1又は請求項2に記載の太陽電池ユニット。
【請求項4】
前記可視光反射層が、その構成層として、光入射側から前記高屈折率層と前記低屈折率層とをこの順に、交互に三層以上積層してなることを特徴とする請求項1から請求項3のいずれか一項に記載の太陽電池ユニット。
【請求項5】
前記低屈折率層が、その構成層として、珪素若しくはアルミニウムを含む酸化物又は窒酸化物を主成分とする層を少なくとも一層有していることを特徴とする請求項1から請求項4のいずれか一項に記載の太陽電池ユニット。
【請求項6】
前記高屈折率層が、その構成層として、亜鉛、チタン、錫、インジウム、ニオブ、珪素若しくはアルミニウムを含む酸化物、窒酸化物、又は窒化物を主成分とする層を少なくとも一層有していることを特徴とする請求項1から請求項5のいずれか一項に記載の太陽電池ユニット。
【請求項7】
請求項1から請求項6のいずれか一項に記載の太陽電池ユニットを製造する太陽電池ユニットを製造方法であって、可視光反射層を形成する工程として、大気圧若しくはその近傍の圧力下、放電空間に薄膜形成ガス及び放電ガスを含有するガスを供給し、当該放電空間に高周波電界を印加することにより当該ガスを励起し、基材を当該励起したガスに晒すことにより、当該基材上に可視光反射層を薄膜として形成する工程を有することを特徴とする太陽電池ユニットの製造方法。
【請求項8】
前記放電ガスが窒素ガスであり、前記放電空間に印加される高周波電界が第1の高周波電界及び第2の高周波電界を重畳したものであり、当該第1の高周波電界の周波数ω1より当該第2の高周波電界の周波数ω2が高く、当該第1の高周波電界の強さ(V1)、当該第2の高周波電界の強さ(V2)及び放電開始電界の強さ(IV)との関係が、下記関係式(1)又は(2)で表され、かつ、当該第2の高周波電界の出力密度が1W/cm以上であることを特徴とする請求項7に記載の太陽電池ユニットの製造方法。
関係式(1):V1≧IV>V2、
関係式(2):V1>IV≧V2

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−9419(P2011−9419A)
【公開日】平成23年1月13日(2011.1.13)
【国際特許分類】
【出願番号】特願2009−150884(P2009−150884)
【出願日】平成21年6月25日(2009.6.25)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】