説明

成膜方法および記憶媒体

【課題】成膜原料としてコバルトアミジネートまたはニッケルアミジネートを用いて、低温でかつ表面状態および膜中不純物が残存しにくい、膜質の良好なCo膜、Ni膜を成膜することができる成膜方法を提供する。
【解決手段】処理容器1内に基板Wを収容し、処理容器内にコバルトアミジネートまたはニッケルアミジネートを含む成膜原料とカルボン酸を含む還元剤とを気相状態で導入して、基板上にCo膜またはNi膜を成膜する。また、そのような成膜方法を実行するためのプログラムを記憶した記憶媒体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、CVD法によりCo膜等を成膜する成膜方法および記憶媒体に関する。
【背景技術】
【0002】
近時、半導体デバイスの高速化、配線パターンの微細化等に呼応して、Alよりも導電性が高く、かつエレクトロマイグレーション耐性等も良好なCuが配線として注目されており、このような用途には電解メッキが用いられている。電解メッキによるCu配線のシードとしては、埋め込み性を向上させる観点から、従来のCuからCoへの変更が検討されている。
【0003】
一方、MOS型半導体におけるソース・ドレイン電極、ゲート電極へのSiとのコンタクトに、Co膜またはNi膜を成膜した後にシリサイド化したCoSiまたはNiSiが用いられつつある。
【0004】
Co膜やNi膜の成膜方法としては、スパッタリングに代表される物理蒸着(PVD)法が多用されていたが、半導体デバイスの微細化にともなってステップカバレッジが悪いという欠点が顕在化している。
【0005】
そこで、Co膜やNi膜の成膜方法として、CoやNiを含む原料ガスの熱分解反応や、当該原料ガスの還元性ガスによる還元反応にて基板上にCo膜やNi膜を成膜する化学蒸着(CVD)法が用いられつつある。このようなCVD法により成膜されたCo膜やNi膜は、ステップカバレッジ(段差被覆性)が高く、細長く深いパターン内への成膜性に優れているため、微細なパターンへの追従性が高く、Cuメッキのシード層やコンタクト層として好適である。
【0006】
CVD法によるCo膜については、成膜原料(プリカーサー)としてコバルトアミジネートを用い、還元剤としてHやNHを用いる学術論文が発表されている(例えば非特許文献1)。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】naturematerials/Vol.2 November 2003 pp749-754
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、コバルトアミジネートとHとを用いたCVDでは、反応性が低く、膜中不純物が残存しやすく膜質が低いものとなってしまう。また、反応性が低い問題を解消するために高温成膜を行うと、Coの凝集による表面性状の悪化が問題となる。また、コバルトアミジネートとNHとを用いたCVDでは、Coの窒化物が形成されるため、膜が高抵抗となることが問題となる。
【0009】
Ni膜についてもニッケルアミジネートを用い、還元剤としてHやNHを用いて、CVD法により成膜することが考えられるが、同様の問題が生じる。
【0010】
本発明はかかる事情に鑑みてなされたものであって、成膜原料としてコバルトアミジネートを用いて、低温でかつ表面状態および膜質の良好なCo膜を成膜することができる成膜方法を提供することを目的とする。
同様に、成膜原料としてニッケルアミジネートを用いて、低温でかつ表面状態および膜質の良好なNi膜を成膜することができる成膜方法を提供することを目的とする。
また、そのような成膜方法を実行するためのプログラムを記憶した記憶媒体を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明者らは、上記課題を解決すべく検討した結果、成膜原料としてコバルトアミジネートまたはニッケルアミジネートを用いた場合には、還元剤としてカルボン酸を用いることにより、低温でかつ半導体プロセスに適用し得る成膜速度でCo膜、Ni膜を成膜することができ、表面性状や膜質も良好になることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明は、処理容器内に基板を収容し、前記処理容器内にコバルトアミジネートを含む成膜原料とカルボン酸を含む還元剤とを気相状態で導入して、基板上にCo膜を成膜することを特徴とする成膜方法を提供する。
【0013】
また、本発明は、処理容器内に基板を収容し、前記処理容器内にニッケルアミジネートを含む成膜原料とカルボン酸を含む還元剤とを気相状態で導入して、基板上にNi膜を成膜することを特徴とする成膜方法を提供する。
【0014】
さらに、本発明は、コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、上記成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする記憶媒体を提供する。
【発明の効果】
【0015】
本発明によれば、成膜原料であるコバルトアミジネートまたはニッケルアミジネートに対し、還元剤としてカルボン酸を用いるが、カルボン酸はコバルトアミジネートおよびニッケルアミジネートに対する還元能が高いため、CVD法により低温でかつ実用的な成膜レートで不純物の少ない良好な膜質のCo膜またはNi膜を成膜することができる。また、このように低温でかつ実用的な成膜レートで成膜できるため、CoやNiの凝集が生じ難く、表面性状が良好なCo膜およびNi膜を得ることができる。
【図面の簡単な説明】
【0016】
【図1】本発明のCu膜の成膜方法を実施する成膜装置の構成の一例を示す略断面である。
【図2】成膜シーケンスの一例を示すタイミングチャートである。
【図3】成膜シーケンスの他の例を示すタイミングチャートである。
【発明を実施するための形態】
【0017】
以下、添付図面を参照して、本発明の実施の形態について説明する。
【0018】
<本発明の成膜方法を実施するための成膜装置の構成>
図1は、本発明の成膜方法を実施する成膜装置の構成の一例を示す略断面である。
この成膜装置100は、気密に構成された略円筒状のチャンバー1を有しており、その中には被処理基板である半導体ウエハWを水平に支持するためのサセプタ2がその中央下部に設けられた円筒状の支持部材3により支持された状態で配置されている。このサセプタ2はAlN等のセラミックスからなっている。また、サセプタ2にはヒーター5が埋め込まれており、このヒーター5にはヒーター電源6が接続されている。一方、サセプタ2の上面近傍には熱電対7が設けられており、熱電対7の信号はヒーターコントローラ8に伝送されるようになっている。そして、ヒーターコントローラ8は熱電対7の信号に応じてヒーター電源6に指令を送信し、ヒーター5の加熱を制御してウエハWを所定の温度に制御するようになっている。なお、サセプタ2には3本のウエハ昇降ピン(図示せず)がサセプタ2の表面に対して突没可能に設けられており、ウエハWを搬送する際に、サセプタ2の表面から突出した状態にされる。
【0019】
チャンバー1の天壁1aには、円形の孔1bが形成されており、そこからチャンバー1内へ突出するようにシャワーヘッド10が嵌め込まれている。シャワーヘッド10は、後述するガス供給機構30から供給された成膜用のガスをチャンバー1内に吐出するためのものであり、その上部には、成膜原料ガスが導入される第1の導入路11と、チャンバー1内に還元剤が導入される第2の導入路12とを有している。これら第1の導入路11と第2の導入路12とはシャワーヘッド10内で別個に設けられおり、成膜原料ガスと還元剤とは吐出後に混合されるようになっている。
【0020】
シャワーヘッド10の内部には上下2段に空間13、14が設けられている。上側の空間13には第1の導入路11が繋がっており、この空間13から第1のガス吐出路15がシャワーヘッド10の底面まで延びている。下側の空間14には第2の導入路12が繋がっており、この空間14から第2のガス吐出路16がシャワーヘッド10の底面まで延びている。すなわち、シャワーヘッド10は、成膜原料ガスと還元剤としてのカルボン酸ガスとがそれぞれ独立して吐出路15および16から吐出するようになっている。
【0021】
チャンバー1の底壁には、下方に向けて突出する排気室21が設けられている。排気室21の側面には排気管22が接続されており、この排気管22には真空ポンプや圧力制御バルブ等を有する排気装置23が接続されている。そしてこの排気装置23を作動させることによりチャンバー1内を所定の真空度まで減圧することが可能となっている。
【0022】
チャンバー1の側壁には、ウエハ搬送室(図示せず)との間でウエハWの搬入出を行うための搬入出口24と、この搬入出口24を開閉するゲートバルブGとが設けられている。また、チャンバー1の壁部には、ヒーター26が設けられており、成膜処理の際にチャンバー1の内壁の温度を制御可能となっている。
【0023】
ガス供給機構30は、成膜原料Sを貯留する成膜原料タンク31を有している。成膜原料Sとしては、Co膜を成膜する場合にはコバルトアミジネートが用いられ、Ni膜を成膜する場合にはニッケルアミジネートが用いられる。コバルトアミジネートとしては、例えば、ビス(N−ターシャリブチル−N′−エチル−プロピオンアミジネート)コバルト(II)(Co(tBu−Et−Et−amd))を用いることができる。また、ニッケルアミジネートとしては、例えば、ビス(N,N′−ジ−ターシャリブチル−アセトアミジネート)ニッケル(II)(Ni(tBu−amd))を用いることができる。
【0024】
これら成膜原料Sは通常、常温で固体であるため、成膜原料タンク31の周囲にはヒーター32が設けられ、これにより成膜原料を加熱して液化するようになっている。また、成膜原料タンク31の底部からは、キャリアガスとして例えばArガスを供給するキャリアガス配管33が挿入されている。キャリアガス配管33には、マスフローコントローラ34およびマスフローコントローラ34を挟んで2つのバルブ35が設けられている。また、成膜原料タンク31には、上方から成膜原料供給配管36が挿入されており、成膜原料供給配管36の他端は第1の導入路11に接続されている。そして、ヒーター32により加熱されて液体になった成膜原料がキャリアガス配管33から供給されたキャリアガスによりバブリングされ、ガス状となって成膜原料配管36および第1の導入路11を経てシャワーヘッド10へ供給される。成膜原料供給配管36の周囲には、ガス状の成膜原料が液化しないように、ヒーター37が設けられている。また、成膜原料供給配管36には、流量調整バルブ38と、そのすぐ下流側の開閉バルブ39と、第1の導入路11の直近の開閉バルブ40とが設けられている。
【0025】
シャワーヘッド10の第2の導入路12には、還元剤であるカルボン酸ガスを供給する還元剤供給配管44が接続されている。この還元剤供給配管44には還元剤であるカルボン酸を供給するカルボン酸供給源46が接続されている。また、この還元剤供給配管44の第2の導入路12近傍にはバルブ45が介装されている。さらに、この還元剤供給配管44には、マスフローコントローラ47およびマスフローコントローラ47を挟んで2つのバルブ48が設けられている。還元剤供給配管44のマスフローコントローラ47の上流側にはキャリアガス供給配管44aが分岐しており、そのキャリアガス配管44aにはキャリアガス供給源41が接続されている。そして、カルボン酸供給源46から還元剤供給配管44およびシャワーヘッド10を通って、チャンバー1内に成膜原料であるコバルトアミジネートまたはニッケルアミジネートを還元するための還元剤であるカルボン酸ガスが供給される。また、キャリアガス供給源41からキャリアガス供給配管44a、還元ガス供給配管44およびシャワーヘッド10を通ってチャンバー1内にキャリアガスとして例えばArガスを供給給するようになっている。還元剤であるカルボン酸としては、蟻酸(HCOOH)、酢酸(CHCOOH)を好適に用いることができる。
【0026】
成膜装置100は制御部50を有し、この制御部50により各構成部、例えばヒーター電源6、排気装置23、マスフローコントローラ34,47、流量調整バルブ38、バルブ35,39,40,45,48等の制御やヒーターコントローラ8を介してのサセプタ2の温度制御等を行うようになっている。この制御部50は、マイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ51と、ユーザーインターフェース52と、記憶部53とを有している。プロセスコントローラ51には成膜装置100の各構成部が電気的に接続されて制御される構成となっている。ユーザーインターフェース52は、プロセスコントローラ51に接続されており、オペレータが成膜装置100の各構成部を管理するためにコマンドの入力操作などを行うキーボードや、成膜装置100の各構成部の稼働状況を可視化して表示するディスプレイ等からなっている。記憶部53もプロセスコントローラ51に接続されており、この記憶部53には、成膜装置100で実行される各種処理をプロセスコントローラ51の制御にて実現するための制御プログラムや、処理条件に応じて成膜装置100の各構成部に所定の処理を実行させるための制御プログラムすなわち処理レシピや、各種データベース等が格納されている。処理レシピは記憶部53の中の記憶媒体(図示せず)に記憶されている。記憶媒体は、ハードディスク等の固定的に設けられているものであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。
【0027】
そして、必要に応じて、ユーザーインターフェース52からの指示等にて所定の処理レシピを記憶部53から呼び出してプロセスコントローラ51に実行させることで、プロセスコントローラ51の制御下で、成膜装置100での所望の処理が行われる。
【0028】
<本発明の成膜方法をCo膜の成膜に適用した実施形態>
次に、以上のように構成された成膜装置を用いて行われる本発明の成膜方法をCo膜の成膜に適用した実施形態について説明する。
【0029】
Co膜の成膜に際しては、まず、ゲートバルブGを開け、図示しない搬送装置によりウエハWをチャンバー1内に導入し、サセプタ2上に載置する。Co膜を電解メッキによるCu配線のシードとして用いる場合にはウエハWとしては、表面に下地となるSiOxCy絶縁膜(x、yは正の数)、または有機系絶縁物膜が形成されたものが用いられる。また、コンタクト層として用いられる場合には、ウエハWとして、表面にソース・ドレイン電極となるシリコン基板面が露出しているか、表面にポリシリコン膜が形成されたものが用いられる。
【0030】
次いで、チャンバー1内を排気装置23により排気してチャンバー1内の圧力を1.33〜1333Pa(10mTorr〜10Torr)とし、ヒーター5によりサセプタ2を加熱してサセプタ2の温度(ウエハ温度)を300℃以下、好ましくは120〜250℃とし、キャリアガス供給源41、キャリアガス供給配管44a、還元剤供給配管44、シャワーヘッド10を介してチャンバー1内に100〜1500mL/min(sccm)の流量でキャリアガスを供給して安定化を行う。
【0031】
安定化を所定時間行って条件が安定した時点で、ヒーター32により、例えば60〜120℃に加熱されている成膜原料タンク31に配管33からキャリアガスを100〜1500mL/min(sccm)の流量で供給し、バブリングにより成膜原料として、コバルトアミジネート、例えばビス(N−ターシャリブチル−N′−エチル−プロピオンアミジネート)コバルト(II)(Co(tBu−Et−Et−amd))の蒸気を成膜原料供給配管36からシャワーヘッド10を介してチャンバー1内に導入し、さらにカルボン酸供給源46から還元剤として気体状のカルボン酸を還元剤供給配管44およびシャワーヘッド10を介してチャンバー1内に導入してCo膜の成膜を開始する。
【0032】
コバルトアミジネートは、以下の(1)式のような構造式を有しており、通常、常温で液体である。(1)式に示すように、コバルトアミジネートのCo原子は4つのN原子に結合しており、還元剤であるカルボン酸によりこの結合を切断することにより、Co膜を得る。
【化1】

ただし、R,R,R,R,R,Rは、炭化水素系官能基を表す。
【0033】
コバルトアミジネートの具体例であるCo(tBu−Et−Et−amd)は、液体の蒸気圧は110℃で3990Pa(30Torr)以下である。Co(tBu−Et−Et−amd)の構造式を以下の(2)式に示す。
【化2】

【0034】
還元剤として用いられるカルボン酸としては、上述したように、蟻酸(HCOOH)および酢酸(CHCOOH)を好適に用いることができる。カルボン酸の中では、これらが特に還元性が高い。これらの中では蟻酸がより好適である。
【0035】
原料容器温度80℃、容器内圧力10Torrの条件下などの成膜処理におけるコバルトアミジネートの流量は、Co(tBu−Et−Et−amd)を用いた場合に、上記キャリアガスの流量である100〜1500mL/min(sccm)の範囲では、2〜30mL/min(sccm)程度となる。また、還元剤であるカルボン酸の流量は、1〜2000mL/min(sccm)程度である。
【0036】
成膜のシーケンスとしては、図2に示すように、成膜原料(この場合にはコバルトアミジネート)と還元剤であるカルボン酸とを同時に供給する通常のCVDを挙げることができる。また、図3に示すように、成膜原料(コバルトアミジネート)と還元剤であるカルボン酸とを、パージを挟んで交互に行う、いわゆるALD的手法を用いることもできる。パージはキャリアガスを供給することで行うことができる。このALD的手法により、成膜温度をより低下することができる。
【0037】
そして、このようにしてCo膜を成膜した後、パージ工程を行う。パージ工程では、成膜原料タンク31へのキャリアガスの供給を停止してコバルトアミジネートの供給を停止した後、排気装置23の真空ポンプを引き切り状態とし、キャリアガス供給源41からキャリアガスをパージガスとしてチャンバー1内に流してチャンバー1内をパージする。この場合に、できる限り迅速にチャンバー1内をパージする観点から、キャリアガスの供給は断続的に行うことが好ましい。
【0038】
パージ工程が終了後、ゲートバルブGを開け、図示しない搬送装置により、搬入出口24を介してウエハWを搬出する。これにより、1枚のウエハWの一連の工程が終了する。
【0039】
このように、成膜原料であるコバルトアミジネートに対し、還元剤としてカルボン酸を用いてCVD成膜を行う場合には、カルボン酸はコバルトアミジネートに対する還元能が高いため、120〜300℃という低温で、実用的な成膜速度でCo膜を成膜することができる。カルボン酸の中でも、蟻酸(HCOOH)または酢酸(CHCOOH)を用いた場合には、特に高い還元能を得ることができ、
120〜250℃という低温でかつ実用的な成膜レートで不純物の少ない良好な膜質のCo膜成膜することができる。また、このように低温でかつ実用的な成膜レートでCo膜を成膜できるため、Coの凝集が生じ難く、表面性状が良好なCo膜を得ることができる。
【0040】
以上のようにして成膜されたCo膜は、電解メッキで形成されたCu配線のシード膜として好適である。また、CVD−Cu膜の下地膜として用いることもできる。さらには、コンタクト層として用いる場合には、シリコン基板表面またはポリシリコン膜の表面に以上のようにしてCo膜を成膜した後、不活性ガス雰囲気または還元ガス雰囲気でシリサイド化のための熱処理を行う。この際の熱処理の温度は、450〜800℃が好ましい。
【0041】
<本発明の成膜方法をNi膜の成膜に適用した実施形態>
次に、上記成膜装置を用いて行われる本発明の成膜方法をNi膜の成膜に適用した実施形態について説明する。
【0042】
Ni膜の成膜に際しては、まず、ゲートバルブGを開け、図示しない搬送装置によりウエハWをチャンバー1内に導入し、サセプタ2上に載置する。Ni膜をコンタクト層として用いられる場合には、ウエハWとして、表面にソース・ドレイン電極となるシリコン基板面が露出しているか、表面にポリシリコン膜が形成されたものが用いられる。
【0043】
次いで、チャンバー1内を排気装置23により排気してチャンバー1内の圧力を1.33〜1333Pa(10mTorr〜10Torr)とし、ヒーター5によりサセプタ2を加熱してサセプタ2の温度(ウエハ温度)を300℃以下、好ましくは120〜250℃とし、キャリアガス供給源41、キャリアガス供給配管44a、還元剤供給配管44、シャワーヘッド10を介してチャンバー1内に100〜1500mL/min(sccm)の流量でキャリアガスを供給して安定化を行う。
【0044】
安定化を所定時間行って条件が安定した時点で、ヒーター32により、例えば60〜120℃に加熱されている成膜原料タンク31に配管33からキャリアガスを100〜1500mL/min(sccm)の流量で供給し、バブリングにより成膜原料として、ニッケルアミジネート、例えばビス(N,N′−ジ−ターシャリブチル−アセトアミジネート)ニッケル(II)(Ni(tBu−amd))の蒸気を成膜原料供給配管36からシャワーヘッド10を介してチャンバー1内に導入し、さらにカルボン酸供給源46から還元剤として気体状のカルボン酸を還元剤供給配管44およびシャワーヘッド10を介してチャンバー1内に導入してNi膜の成膜を開始する。
【0045】
ニッケルアミジネートは、以下の(3)式のような構造式を有しており、通常、常温で固体であり、融点は85〜90℃である。(3)式に示すように、ニッケルアミジネートのNi原子は4つのN原子に結合しており、還元剤であるカルボン酸によりこの結合を切断することにより、Ni膜を得る。
【化3】

ただし、R,R,R,R10,R11,R12は、炭化水素系官能基を表す。
【0046】
ニッケルアミジネートの具体例であるNi(tBu−amd)は、融点が87℃であり、液体の蒸気圧は90℃で26.6Pa(200mTorr)以下である。Ni(tBu−amd)の構造式を以下の(4)式に示す。
【化4】

【0047】
還元剤として用いられるカルボン酸としては、上述したように、蟻酸(HCOOH)および酢酸(CHCOOH)を好適に用いることができる。カルボン酸の中では、これらが特に還元性が高い。これらの中では蟻酸がより好適である。
【0048】
原料容器温度90℃、容器内圧力10Torrの条件下などの成膜処理におけるニッケルアミジネートの流量は、Ni(tBu−amd)を用いた場合に、上記キャリアガスの流量である100〜1500mL/min(sccm)の範囲では、2〜30mL/min(sccm)程度となる。また、還元剤であるカルボン酸の流量は、10〜2000mL/min(sccm)程度である。
【0049】
成膜のシーケンスとしては、上述の図2に示すように、成膜原料(この場合にはニッケルアミジネート)と還元剤であるカルボン酸とを同時に供給する通常のCVDを挙げることができる。また、上述の図3に示すように、成膜原料(ニッケルアミジネート)と還元剤であるカルボン酸とを、パージを挟んで交互に行う、いわゆるALD的手法を用いることもできる。パージはキャリアガスを供給することで行うことができる。このALD的手法により、成膜温度をより低下することができる。
【0050】
そして、このようにしてNi膜を成膜した後、パージ工程を行う。パージ工程では、成膜原料タンク31へのキャリアガスの供給を停止してコバルトアミジネートの供給を停止した後、排気装置23の真空ポンプを引き切り状態とし、キャリアガス供給源41からキャリアガスをパージガスとしてチャンバー1内に流してチャンバー1内をパージする。この場合に、できる限り迅速にチャンバー1内をパージする観点から、キャリアガスの供給は断続的に行うことが好ましい。
【0051】
パージ工程が終了後、ゲートバルブGを開け、図示しない搬送装置により、搬入出口24を介してウエハWを搬出する。これにより、1枚のウエハWの一連の工程が終了する。
【0052】
このように、成膜原料であるニッケルアミジネートに対し、還元剤としてカルボン酸を用いてCVD成膜を行う場合には、カルボン酸はニッケルアミジネートに対する還元能が高いため、120〜300℃という低温で、実用的な成膜速度でNi膜を成膜することができる。カルボン酸の中でも、蟻酸(HCOOH)または酢酸(CHCOOH)を用いた場合には、特に高い還元能を得ることができ、
120〜250℃という低温でかつ実用的な成膜レートで不純物の少ない良好な膜質のNi膜成膜することができる。また、このように低温でかつ実用的な成膜レートでNi膜を成膜できるため、Niの凝集が生じ難く、表面性状が良好なNi膜を得ることができる。
【0053】
以上のようにして成膜されたNi膜は、コンタクト層として好適である。コンタクト層として用いる場合には、シリコン基板表面またはポリシリコン膜の表面に以上のようにしてNi膜を成膜した後、不活性ガス雰囲気または還元ガス雰囲気でシリサイド化のための熱処理を行う。この際の熱処理の温度は、300〜700℃が好ましい。
【0054】
<本発明の他の適用>
なお、本発明は、上記実施の形態に限定されることなく種々変形可能である。例えば、上記実施の形態においては、成膜原料を構成するコバルトアミジネートとして、Co(tBu−Et−Et−amd)を例示し、ニッケルアミジネートとしてNi(tBu−amd)を例示したが、これに限るものではない。また、還元剤を構成するカルボン酸としても、蟻酸および酢酸に限らず、プロピオン酸、酪酸、吉草酸等、他のカルボン酸を用いることもできる。
【0055】
また、成膜原料であるコバルトアミジネート、ニッケルアミジネートの供給手法についても上記実施形態の手法に限定する必要はなく、種々の方法を適用することができる。さらに、成膜装置についても上記実施の形態のものに限らず、例えば、成膜原料ガスの分解を促進するためにプラズマを形成する機構を設けたもの等、種々の装置を用いることができる。
【0056】
さらにまた、被処理基板として半導体ウエハを用いた場合を説明したが、これに限らず、フラットパネルディスプレイ(FPD)基板等の他の基板であってもよい。
【符号の説明】
【0057】
1;チャンバー
2;サセプタ
5;ヒーター
10;シャワーヘッド
23;排気装置
30;ガス供給機構
31;成膜原料タンク
46;カルボン酸供給源
50;制御部
51;プロセスコントローラ
53;記憶部(記憶媒体)
W;半導体ウエハ


【特許請求の範囲】
【請求項1】
処理容器内に基板を収容し、前記処理容器内にコバルトアミジネートを含む成膜原料とカルボン酸を含む還元剤とを気相状態で導入して、基板上にCo膜を成膜することを特徴とする成膜方法。
【請求項2】
前記成膜原料を構成するコバルトアミジネートは、ビス(N−ターシャリブチル−N′−エチル−プロピオンアミジネート)コバルト(II)であることを特徴とする請求項1に記載の成膜方法。
【請求項3】
基板上にCo膜を成膜した後、電解メッキによるCuを堆積させることを特徴とする請求項1または請求項2に記載の成膜方法。
【請求項4】
基板上にCo膜を成膜した後、CVDによりCuを堆積させることを特徴とする請求項1または請求項2に記載の成膜方法。
【請求項5】
前記Co膜はシリコンの上に成膜され、成膜後、不活性ガス雰囲気または還元ガス雰囲気でシリサイド化のための熱処理を行うことを特徴とする請求項1または請求項2に記載の成膜方法。
【請求項6】
処理容器内に基板を収容し、前記処理容器内にニッケルアミジネートを含む成膜原料とカルボン酸を含む還元剤とを気相状態で導入して、基板上にNi膜を成膜することを特徴とする成膜方法。
【請求項7】
前記成膜原料を構成するニッケルアミジネートは、ビス(N,N′−ジ−ターシャリブチル−アセトアミジネート)ニッケル(II)であることを特徴とする請求項5に記載の成膜方法。
【請求項8】
前記Ni膜はシリコンの上に成膜され、成膜後、不活性ガス雰囲気または還元ガス雰囲気でシリサイド化のための熱処理を行うことを特徴とする請求項6または請求項7に記載の成膜方法。
【請求項9】
成膜の際の基板温度を300℃以下とすることを特徴とする請求項1から請求項8のいずれか1項に記載の成膜方法。
【請求項10】
前記還元剤を構成するカルボン酸は、蟻酸であることを特徴とする請求項1から請求項9のいずれか1項に記載の成膜方法。
【請求項11】
前記還元剤を構成するカルボン酸は、酢酸であることを特徴とする請求項1から請求項9のいずれか1項に記載の成膜方法。
【請求項12】
前記処理容器内に前記成膜原料と前記還元剤とを同時に供給することを特徴とする請求項1から請求項11のいずれか1項に記載の成膜方法。
【請求項13】
前記処理容器内に前記成膜原料と前記還元剤とをパージガスの供給を挟んで交互的に供給することを特徴とする請求項1から請求項11のいずれか1項に記載の成膜方法。
【請求項14】
コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、請求項1から請求項11のいずれかの成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする記憶媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−63848(P2011−63848A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−215414(P2009−215414)
【出願日】平成21年9月17日(2009.9.17)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】