説明

計算機式断層写真法(CT)検出器の製造方法

【課題】CTシステムで典型的に見受けられるX線フォトン線束量で飽和することのない直接変換型エネルギ識別CT検出器を提供する。
【解決手段】エネルギ識別及び直接変換が可能なCT検出器20aは、半導体層厚が異なる第一の半導体層62、第二の半導体層64を含む。各々の半導体層62,64は検出素子65を二次元的に画定するようピクセル化された構造に構築され、連続した高電圧電極66、68を含む。高電圧電極層はX線吸収特性を低減するような厚さの金属化層とされるので、検出器20aは、計数速度性能を最適化すると共に飽和を回避するようにX線入射方向にセグメント分割されて構築されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般的には、診断撮像に関し、さらに具体的には、フォトン数データ及び/又はエネルギ・データを与えることが可能な直接変換型CT検出器を構築する或いは製造する方法に関する。
【背景技術】
【0002】
典型的には、放射線イメージング・システムでは、X線源が患者又は手荷物のような被検体又は物体に向かってX線を放出する。以下では、「被検体」及び「対象」との用語は、撮像が可能な任意の物体を記述するために互換的に用いられる場合がある。ビームは、被検体によって減弱された後に、放射線検出器のアレイに入射する。検出器アレイで受光される減弱後のビーム放射線の強度は典型的には、X線の減弱に依存する。検出器アレイの各々の検出器素子が、各々の検出器素子によって受光された減弱後のビームを示す別個の電気信号を発生する。電気信号はデータ処理システムへ伝送されて解析され、解析から最終的に画像が形成される。
【0003】
幾つかの計算機式断層写真法(CT)イメージング・システムでは、X線源及び検出器アレイは、撮像平面内で被検体を中心としてガントリの周りで回転する。X線源は典型的には、焦点においてX線をビームとして放出するX線管を含んでいる。X線検出器は典型的には、検出器で受光されるX線ビームをコリメートするコリメータと、コリメータに隣接して設けられておりX線を光エネルギへ変換するシンチレータと、隣接するシンチレータから光エネルギを受け取ってここから電気信号を発生するフォトダイオードとを含んでいる。典型的には、シンチレータ・アレイの各々のシンチレータがX線を光エネルギへ変換する。各々のフォトダイオードが光エネルギを検出して対応する電気信号を発生する。次いで、フォトダイオードの出力はデータ処理システムへ伝送されて画像再構成を施される。
【0004】
従来のCTイメージング・システムは検出器を用いて放射線撮像エネルギを電流信号へ変換し、電流信号を時間にわたって積算した後に測定して最終的にディジタル化する。かかる検出器の欠点は、検出されたフォトンの数及び/又はエネルギについてのデータ又はフィードバックを与えることができないことである。すなわち、従来のCT検出器はシンチレータ構成要素及びフォトダイオード構成要素を有し、シンチレータ構成要素は放射線撮像エネルギの受光時に発光し、フォトダイオードはシンチレータ構成要素の発光を検出して、発光の強度の関数としての電気信号を与える。CT撮像が現実性のある診断撮像ツールとなるためには従来のCT検出器設計で達成されている先進技術が欠かせないことは一般に認められているが、これらの検出器の欠点は、エネルギ識別データを与えること、或いは所与の検出器素子若しくはピクセルによって実際に受光されたフォトンの数を数える及び/又はフォトンのエネルギを測定することができないことである。従って、近年の検出器開発は、フォトン計数及び/又はエネルギ識別型のフィードバックを与え得るエネルギ識別直接変換型検出器の設計を含めている。この点で、検出器は、X線計数モード、各々のX線事象のエネルギ測定モード、又はこれら両方で動作するように構成され得る。
【0005】
これらのエネルギ識別直接変換型検出器は、X線計数ばかりでなく、検出された各々のX線のエネルギ・レベルの測定を行なうことも可能である。直接変換型エネルギ識別検出器の構築には多くの材料が用いられ得るが、半導体が一つの好ましい材料であることが判明している。しかしながら、直接変換型半導体検出器の欠点は、これらの形式の検出器は、従来のCTシステムで典型的に遭遇する極めて高いX線フォトン線束量(flux rate)では計数を行ない得ないことである。極めて高いX線フォトン線束量は最終的には検出器飽和を招く。すなわち、これらの検出器は典型的には、比較的低いX線束レベルで飽和する。この飽和は、検出器と放射線撮像エネルギ発生源又はX線管との間に載置されている被検体の厚みが小さくなっている検出器位置で生じ得る。これら飽和領域は、検出器ファンのアーク(円弧)に投射される被検体の全幅端部に近い又はその外部の被検体厚みの小さい経路に対応することが判明している。多くの場合に、被検体は、X線束の減弱及び引き続き生ずる検出器への入射の強度に対する効果としては略円形又は楕円形である。この場合には、飽和領域はファン・アークの両端の離れた2箇所の領域に相当する。典型的というほどではないがよくある他の例では、飽和は、他の位置で、検出器の離れた2箇所よりも多い領域で生ずる。楕円形の被検体の場合には、ファン・アークの両端での飽和は、被検体とX線源との間にボウタイ・フィルタを挿入することにより低減される。典型的には、フィルタは、ファン・アークにわたってフィルタ及び被検体の合計減弱を等化するように被検体の形状に合わせて構築される。すると、検出器に入射する線束はファン・アークの全体にわたって比較的一様になり、飽和を生じない。しかしながら、問題となるのは、被検体の集団が一様には程遠く形状が正確に楕円形である訳ではないのでボウタイ・フィルタが最適でない場合があることである。このような場合には、1箇所以上の離れた飽和領域が生ずるか、又は反対にX線束が過度に濾波されて極めて低い線束を有する領域が生ずる可能性がある。投影でのX線束が小さいと、最終的には被検体の再構成画像の雑音に寄与する。
【特許文献1】米国特許第6704391号
【発明の開示】
【発明が解決しようとする課題】
【0006】
検出器の任意の部分の飽和に対処するための多くの撮像方法が開発されてきた。これらの手法には、例えば低管電流又はビュー毎に変調させた電流を用いることにより検出器アレイの全幅にわたって低X線束を維持するもの等がある。しかしながら、この解決法は走査時間の増大を招く。すなわち、画像取得時間は、画質要件を満たす何らかの本数のX線を得るのに必要なノミナル線束に比例して増大するという代償がある。他の解決法としては、飽和したデータの置き換えデータを生成するのに用いられるオーバ・レンジ・アルゴリズムを具現化するものがある。しかしながら、これらのアルゴリズムでは飽和データの置き換えが不完全であり、またCTシステムの複雑化に寄与する場合がある。
【0007】
従って、従来のCTシステムで典型的に見受けられるX線フォトン線束量で飽和することのない直接変換型エネルギ識別CT検出器を設計できると望ましい。
【課題を解決するための手段】
【0008】
本発明は、上述の欠点を克服する極めて高い計数速度での実行を可能にした多層CT検出器に関するものである。
【0009】
エネルギ識別及び直接変換が可能なCT検出器を開示する。この検出器は、厚みの異なる半導体物質の多数の層を検出器の全体にわたって含んでいる。この点で、検出器はX線入射方向にセグメント分割されて計数速度性能を最適化すると共に飽和を回避するように構築される。
【0010】
このCT検出器はX線フォトン計数ばかりでなく、エネルギ測定又はタグ付け(tagging)もまたサポートする。結果として、本発明は、解剖学的詳細及び組織特徴評価情報の両方の取得をサポートする。この点で、エネルギ識別情報又はデータを用いてビーム・ハードニング等の影響を低減することができる。さらに、これらの検出器は組織識別データの取得をサポートし、従って、疾患又は他の病状を示す診断情報を与える。例えば、プラークにおけるカルシウムのビューでの検出が可能である。また、この検出器を用いて、造影剤、及び標的薬のような他の特殊な物質等の被検体に注入され得る物質の検出、測定及び特徴評価を行なうこともできる。造影剤は例えば、血流を見易くするために血流に注入されるヨウ素を含み得る。かかる検出器の作製方法も開示する。
【0011】
従って、本発明の一観点によれば、放射線撮像用の直接変換型検出器を製造する方法を提供する。この方法は、X線を電気信号へ直接変換するように設計されている半導体物質の多数の層を設けるステップと、半導体物質の各々の層の少なくともX線入射面に導電性フィルム層を固着させるステップとを含んでいる。この方法はさらに、半導体物質の多数の層を、各々の層が少なくとも2層の導電性フィルム層に接触するようにして積層体として構成するステップを含んでいる。
【0012】
本発明のもう一つの観点によれば、半導体物質の多数の層及び間隙導電層を有する放射線撮像用の直接変換型検出器が、複数の半導体層の各々の少なくともX線入射面に金属化層を付着させることにより形成される。検出器はさらに、これら複数の半導体層を、各々の半導体層が1対の金属化層の間に介設されるようにX線入射方向に積層することにより形成される。
【0013】
本発明のさらにもう一つの観点によれば、CT検出器製造方法が提供され、この方法は、複数のCZT基材の各々に金属化層を固着させる金属化段階を含んでいる。各々のCZT基材は、X線を電気信号へ直接変換するように設計されている。この製造方法はさらに、これら複数のCZT基材を、各々のCZT基材が1対の金属化層の間に介設された状態にあるCZT検出器積層体を形成するように構成する構成段階を含んでいる。また、これら複数のCZT基材が互いに連結されて一体の複合構造を形成する複合段階も設けられる。
【0014】
本発明のその他様々な特徴、目的及び利点は以下の詳細な説明及び添付図面から明らかとなろう。
【発明を実施するための最良の形態】
【0015】
図面は、本発明を実施するために現状で想到される好ましい一実施形態を示している。
【0016】
4スライス型計算機式断層写真法(CT)システムに関連して本発明の動作環境を説明する。但し、当業者であれば、本発明がシングル・スライス型構成又は他のマルチ・スライス型構成での利用にも同等に適用可能であることが認められよう。さらに、X線の検出及び変換に関連して本発明を説明する。しかしながら、当業者は、本発明が他の放射線撮像エネルギの検出及び変換にも同等に適用可能であることをさらに認められよう。
【0017】
図1及び図2には、計算機式断層写真法(CT)イメージング・システム10が、「第三世代」CTスキャナに典型的なガントリ12を含むものとして示されている。ガントリ12はX線源14を有しており、X線源14は、X線ビーム16をガントリ12の対向する側に設けられている検出器アセンブリ18に向かって投射する。検出器アセンブリ18は複数の検出器20によって形成されており、検出器20は一括で、患者22を透過した投射X線を感知する。各々の検出器20は、入射X線ビームの強度を表わすばかりでなくフォトン又はX線の計数データを与えることが可能な電気信号、従って患者22を透過した減弱後のビームを表わす電気信号を発生する。X線投影データを取得するための1回の走査の間に、ガントリ12、及びガントリ12に装着されている構成部品が回転中心24の周りを回転する。
【0018】
ガントリ12の回転及びX線源14の動作は、CTシステム10の制御機構26によって制御される。制御機構26はX線制御器28とガントリ・モータ制御器30とを含んでおり、X線制御器28はX線源14に電力信号及びタイミング信号を供給し、ガントリ・モータ制御器30はガントリ12の回転速度及び位置を制御する。制御機構26内に設けられているデータ取得システム(DAS)32が検出器20からのデータを精査して、後続の処理のためにこれらのデータをディジタル信号へ変換する。画像再構成器34が、サンプリングされてディジタル化されたX線データをDAS32から受け取って高速再構成を実行する。再構成された画像はコンピュータ36への入力として印加され、コンピュータ36は大容量記憶装置38に画像を記憶させる。
【0019】
コンピュータ36はまた、キーボードを有するコンソール40を介して操作者から指令及び走査用パラメータを受け取る。付設されている陰極線管表示器42によって、操作者は再構成された画像及びコンピュータ36からのその他のデータを観測することができる。操作者が供給した指令及びパラメータはコンピュータ36によって用いられて、DAS32、X線制御器28及びガントリ・モータ制御器30に制御信号及び情報を供給する。加えて、コンピュータ36は、モータ式テーブル46を制御するテーブル・モータ制御器44を動作させて、患者22及びガントリ12を配置する。具体的には、テーブル46は患者22の各部分をガントリ開口48を通して移動させる。
【0020】
図3及び図4に示すように、検出器アセンブリ18は複数の検出器20を含んでおり、各々の検出器がセル型アレイとして配列されている一定数の検出器素子50を含んでいる。コリメータ(図示されていない)が、X線16のビームが検出器アセンブリ18に入射する前にX線16をコリメートするように配置されている。図3に示す一実施形態では、検出器アセンブリ18は57個の検出器20を含んでおり、各々の検出器20が16×16のアレイ寸法を有している。結果として、アセンブリ18は16行及び912列(16×57個の検出器)を有し、ガントリ12の各回の回転で同時に16枚のスライスのデータを収集することができる。
【0021】
図4のスイッチ・アレイ54及び56は、セル型アレイ52とDAS32との間に結合されている多次元半導体アレイである。スイッチ・アレイ54及び56は、多次元アレイとして配列されている複数の電界効果トランジスタ(FET、図示されていない)を含んでおり、多数のセルの出力を結合してデータ取得チャネル数及び関連経費を最低限に抑えるように設計されている。FETアレイは、検出器素子50の各々にそれぞれ接続されている一定数の電気リードと、可撓性電気インタフェイス58を介してDAS32に電気的に接続されている一定数の出力リードとを含んでいる。具体的には、検出器素子出力の約半数がスイッチ54に電気的に接続されており、検出器素子出力の残り半数がスイッチ56に電気的に接続されている。各々の検出器20は、装着用ブラケット62によって図3の検出器フレーム60に固定されている。
【0022】
幾つかの応用では、FETアレイの計数速度の制限によってFETアレイが望ましいものとなっていない場合があることが想到され認められる。この点で、後述するように、各々の検出ピクセル又はセルが電子回路の1個ずつのチャネルに接続される。
【0023】
スイッチ・アレイ54及び56はさらに、所望のスライス数、及び各々のスライスについての所望のスライス分解数に従って検出器素子出力のイネーブル、ディスエーブル及び結合を行なうデコーダ(図示されていない)を含んでいる。デコーダは一実施形態では、当技術分野で公知のデコーダ・チップ又はFETコントローラである。デコーダは、スイッチ・アレイ54及び56並びにDAS32に結合されている複数の出力線及び制御線を含んでいる。16スライス・モードとして定義される一実施形態では、デコーダは、検出器アセンブリ18の全横列が起動されるようにスイッチ・アレイ54及び56をイネーブルにして、結果として、DAS32によって処理される16スライス分のデータを同時に生成する。言うまでもなく、他の多くのスライスの組み合わせが可能である。例えば、デコーダは、1スライス・モード、2スライス・モード及び4スライス・モードを含めた他のスライス・モードから選択してもよい。
【0024】
図5に示すように、適当なデコーダ命令を送信することにより、スイッチ・アレイ54及び56を4スライス・モードとして構成して、データが検出器アセンブリ18の1列以上の横列から成る4枚のスライスから収集されるようにすることができる。スイッチ・アレイ54及び56の特定の構成に応じて、1列、2列、3列又は4列の検出器素子50でスライス厚みを構成し得るように検出器20の様々な組み合わせのイネーブル、ディスエーブル又は結合を行なうことができる。他の例としては、1.25mm厚〜20mm厚のスライスによる1枚のスライスを含んだシングル・スライス・モード、1.25mm厚〜10mm厚のスライスによる2枚のスライスを含んだ2スライス・モード等がある。所載以外のモードも想到される。
【0025】
上述のように、各々の検出器20は、放射線撮像エネルギを、エネルギ識別データを含む電気信号へ直接変換するように設計されている。本発明は、これらの検出器の幾つかの構成を思量している。これらの実施形態の各々は異なっているが、各々の検出器は二つの共通特徴を共有している。これらの特徴の一つは、半導体フィルム又は半導体層の多層構成である。好適実施形態では、各々の半導体フィルムがテルル化カドミウム亜鉛(CZT)から作製される。但し、当業者は、放射線撮像エネルギの直接変換が可能なその他材料を用いてよいことを容易に認められよう。様々な実施形態の間でのもう一つの共通特徴は、半導体層を分離する間隙又は介在の金属化フィルム又は層の利用である。後述するように、これらの金属化層を用いて、半導体層に跨がって電圧を印加すると共に半導体層から電気信号を収集する。
【0026】
半導体のフォトン計数速度性能が検出器の厚みの自乗の関数であり、放射線撮像エネルギ蓄積過程は指数関数に従うことは周知である。CZT検出器の計数速度性能は、次式によって定義することができる。
【0027】
TR = L/(Vμ
この定義から、厚みL=0.3cm及び電場Vを1000V/cmとし、μeを約1000とすると、100万個の最大計数速度を達成することができる。換言すると、3mm厚のCZT半導体層の計数速度は、100万個/秒の範囲の計数速度性能であり得る。しかしながら、後述するように、単一の比較的厚い層ではなく多数の層を備えた直接変換型半導体検出器を構築することにより、計数速度性能を高めることができる。
【0028】
図6には、本発明の一実施形態による二層CZT型又は直接変換型の検出器20aの一部が遠近図として示されている。検出器20aは、第一の半導体層62と、第二の半導体層64とによって画定されている。作製工程では、各々の半導体層62及び64は、一定数の検出素子65を画定する一定数の電子的にピクセル化された構造又はピクセルを有するように構築される。この電子的ピクセル化は、直接変換物質の層62及び64の上に電気接点65の2次元アレイ67及び69を付着させることにより達成される。さらに、好適実施形態では、このピクセル化は、各々の半導体層62及び64の全幅及び全長にわたって二次元的に画定される。
【0029】
検出器20aは、半導体層62及び64のそれぞれのための連続した高電圧電極66及び68を含んでいる。各々の高電圧電極66及び68は、電源(図示されていない)に接続されており、X線又はγ線の検出過程時にそれぞれの半導体層に電力を供給するように設計されている。当業者は、各々の高電圧接続層が各々の層のX線吸収特性を低減するように比較的薄いものであって、好適実施形態では数百オングストローム厚であることを認められよう。後に詳述するように、これらの高電圧電極を、金属化工程を通じて半導体層に固着させることができる。
【0030】
図7には、図6の線7−7に沿って見た断面図が各々の半導体層62及び64の相対的な厚みを示している。高電圧電極層66及び68と同様に、二次元アレイ67及び69も放射線撮像エネルギの吸収性は最小限であるものとする。各々のアレイ又は信号収集層は、半導体層によって生成された電気信号をデータ取得システム又は他のシステム電子回路へ出力する機構を提供するように設計されている。当業者は、数百のインターコネクト(図示されていない)を用いて各々の接点65をCTシステム電子回路と接続することを認められよう。
【0031】
加えて、図7に示すように、半導体層62及び64の厚みは互いに異なっている。この点で、半導体層64よりも半導体層62の方に多くのX線が蓄積する。例えば、半導体層62の厚みが1ミリメートル(mm)であり半導体64の厚みが2mmであるとすると、半導体層62はX線の約78%を吸収し、第二の半導体層64はX線の約22%を吸収すると期待される。さらに、第一の半導体層62は、3mm厚の単一層半導体よりも約9倍速い最大計数速度を有すると期待される。しかしながら、第一の半導体層62は合計線束の約78%を測定するに留まるので、これにより3mm厚の単一半導体層に比較して有効最大計数速度性能が11.5倍の増大となる。第二の半導体層64は、計数速度が単一の3mm厚半導体よりも2.25倍速いと期待されるが、合計線束の約22%を測定するに留まり、これにより、3mm厚半導体物質の単一層が有すると期待される速度の約10.2倍の等価又は有効最大計数速度を与える。上述のようなセグメント分割した検出器の計数速度が単一層の半導体物質よりも高まる結果として、検出器20aを、計数速度性能の10倍の増大を与えるように構築することができる。
【0032】
以上に述べた各寸法は、二層検出器が有し得る最大計数速度の向上を説明するためのものである。しかしながら、2層よりも多い層を用いて計数速度特性を高めたCT検出器を構築し得ることが想到される。例えば、0.43mmの単一層は、受光したX線の約54%を吸収すると期待され、このようなものとして、単一層の3.0mm厚半導体の約40倍の最大計数速度を有する。しかしながら、0.43mm層は合計線束の約54%を吸収するに留まり、3mm厚の単一半導体層の約92倍の等価又は有効最大計数速度を与える。付加的な層を追加して9200%の全計数速度増大を与えることができる。
【0033】
図8には、CZT又は直接変換型検出器の想到されるもう一つの設計が示されている。本実施形態では、検出器20bが、やはり1対の半導体層74及び76を含んでいる。上述の実施形態とは対照的に、検出器20bは単一の共通信号収集層又は二次元接点アレイ78を含んでいる。この単一であるが共通のアレイ78は、半導体層74及び76の両方からの電気信号を収集し、これらの電気信号をDAS又は他のシステム電子回路へ出力するように設計されている。加えて、検出器20bは1対の高電圧電極80及び82を含んでいる。各々の高電圧電極がカソードとして実効的に動作し、二次元アレイ78の接点がアノードとして動作する。この点で、高電圧接続80及び82を介して印加される電圧が、各々の半導体層を通って信号収集接点アレイ78に至る回路を形成する。
【0034】
想到されるさらにもう一つの実施形態を図9に示す。この実施形態に示すように、検出器20cが4層の半導体層84、86、88及び90を含んでいる。検出器20cはさらに、2本の導電線又は導電路92及び94を含んでおり、これらの導電路92及び94は高電圧電極87、89及び91、並びに収集接点アレイ93及び95に電気的に接続されている。導電路92は接点アレイ93及び95からの電気信号を受け取って伝達する。この点で、CTシステムの電子回路への単一のデータ出力が設けられる。単一の信号収集リードと同様に、単一の高電圧接続94を用いて電極87、89及び91を介して4層の半導体層84〜90に電力を供給する。検出器20cは、単一の高電圧接続を必要とするに留まる。
【0035】
図10に、本発明のモノリシック型の実施形態を示す。図9の実施形態と同様に、検出器20dが4層の半導体層96〜102を含んでいる。各々の半導体層96〜102は1対の導電層に接続されている。この点で、一方の導電層を電圧の印加に用い、他方の導電層をそれぞれの半導体層によって発生される電気信号の収集に用いる。導電層の数を最小にするために、検出器20dは交互型の導電層アーキテクチャを採用している。すなわち、1層置きの導電層を高電圧接続に用い、残りの導電層を信号収集に用いる。この点で、導電層104、106及び108は比較的高い電圧の印加に用いられ、層110及び112は信号収集のための接点を含んでいる。このようなものとして、高電圧収集層104及び108を用いて半導体層96及び102にそれぞれ電圧を印加する。高電圧接続層106を用いて半導体層98及び100に電圧を印加する。
【0036】
上述のように、好適実施形態では、各々の半導体層がCZT材料で構築される。当業者は、かかる半導体を構築するのに用いることのできる多くの手法が存在していることを認められよう。例えば、分子ビーム・エピタキシ(MBE)はCZT材料の各々の薄層を成長させるのに用いることのできる一つの方法である。当業者は、半導体層を金属化して以上に述べた導電性接続を設けるのに多くの手法を用いる得ることが認められよう。
【0037】
さらに、図11に示すように、金属化を用いて収集接点用の信号フィードスルーを設けてもよい。図示のように、単一層の半導体物質114を収集接点のアレイ116と高電圧電極層118との間に介設する。半導体層114を金属化して収集接点アレイ116及び高電圧電極層118を形成する前に、半導体114に孔120を蝕刻する或いは形成することができる。次いで、孔120を金属化して、それぞれの収集接点124からの信号供給経路122を形成することができる。信号フィードスルー又は導電路122は、近くの連続高電圧電極層118と接触しないように孔120の内部に構築される。この点で、信号経路を垂直に又はX線受光方向に延在させて、検出器を貫通させ、個々の収集接点124によって放出される電気信号をCTシステム電子回路に伝達するように設計されているバス(図示されていない)に到達させることができる。結果として、X線方向に一連の薄い積層から成る積層構成が形成される。
【0038】
図12について説明する。小荷物/手荷物検査システム126が、小荷物又は手荷物を通過させることのできる開口130を内部に有する回転式ガントリ128を含んでいる。回転式ガントリ128は、高周波電磁エネルギ源132と、検出器アセンブリ134とを収容している。また、コンベヤ・システム136が設けられており、コンベヤ・システム136は、構造140によって支持されており走査のために開口130を通して小荷物又は手荷物142を自動的に且つ連続的に通過させるコンベヤ・ベルト138を含んでいる。対象142をコンベヤ・ベルト138によって開口130内に送り込み、次いで撮像データを取得し、コンベヤ・ベルト138によって開口130から小荷物142を除去することを、制御された連続的な態様で行なう。結果として、郵便物検査官、手荷物積み降ろし員及び他の保安人員が、小荷物142の内容物を爆発物、刃物、銃及び密輸品等について非侵襲的に検査することができる。
【0039】
従って、本発明の一実施形態によれば、放射線撮像用の直接変換型検出器を製造する方法を提供する。この方法は、X線を電気信号へ直接変換するように設計されている半導体物質の多数の層を設けるステップと、半導体物質の各々の層の少なくともX線入射面に導電性フィルム層を固着させるステップとを含んでいる。この方法はさらに、半導体物質の多数の層を、各々の層が少なくとも2層の導電性フィルム層に接触するようにして積層体として構成するステップを含んでいる。
【0040】
本発明のもう一つの実施形態によれば、半導体物質の多数の層及び間隙導電層を有する放射線撮像用の直接変換型検出器が、複数の半導体層の各々の少なくともX線入射面に金属化層を付着させることにより形成される。検出器はさらに、これら複数の半導体層を、各々の半導体層が1対の金属化層の間に介設されるようにX線入射方向に積層することにより形成される。
【0041】
本発明のさらにもう一つの観点によれば、CT検出器製造方法が提供され、この方法は、複数のCZT基材の各々に金属化層を固着させる金属化段階を含んでいる。各々のCZT基材は、X線を電気信号へ直接変換するように設計されている。この製造方法はさらに、これら複数のCZT基材を、各々のCZT基材が1対の金属化層の間に介設された状態にあるCZT検出器積層体を形成するように構成する構成段階を含んでいる。また、これら複数のCZT基材が互いに連結されて一体の複合構造を形成する複合段階も設けられる。
【0042】
本発明を好適実施形態について説明したが、明示的に述べたもの以外の均等構成、代替構成及び改変が可能であり、特許請求の範囲に属することが認められよう。また、図面の符号に対応する特許請求の範囲中の符号は、単に本願発明の理解をより容易にするために用いられているものであり、本願発明の範囲を狭める意図で用いられたものではない。そして、本願の特許請求の範囲に記載した事項は、明細書に組み込まれ、明細書の記載事項の一部となる。
【図面の簡単な説明】
【0043】
【図1】CTイメージング・システムの見取り図である。
【図2】図1に示すシステムのブロック模式図である。
【図3】CTシステム検出器アセンブリの一実施形態の遠近図である。
【図4】CT検出器の遠近図である。
【図5】4スライス・モードでの図4の検出器の様々な構成の図である。
【図6】本発明による二層検出器の部分遠近図である。
【図7】図6の線7−7に沿って見た断面図である。
【図8】本発明の幾つかの追加実施形態による直接変換型検出器の断面図である。
【図9】本発明の幾つかの追加実施形態による直接変換型検出器の断面図である。
【図10】本発明の幾つかの追加実施形態による直接変換型検出器の断面図である。
【図11】図10に示す断面図で本発明のもう一つの実施形態で形成される信号フィードスルーを示す断面模式図である。
【図12】非侵襲的小荷物検査システムと共に用いられるCTシステムの見取り図である。
【符号の説明】
【0044】
10 CTシステム
12、128 ガントリ
14 X線源
16 X線ビーム
18、134 検出器アセンブリ
20、20a、20b、20c、20d 検出器
22 患者
24 回転中心
26 制御機構
42 表示器
46 モータ式テーブル
48、130 ガントリ開口
50 検出器素子
52 セル型アレイ
54、56 スイッチ・アレイ
58 可撓性電気インタフェイス
60 検出器フレーム
62 装着用ブラケット(図4)
62 第一の半導体層(図6)
64 第二の半導体層
65 検出器素子(電気接点)
66、68、80、82、87、89、91、118 高電圧電極
67、69、78 二次元接点アレイ
74、76、84、86、88、90、96、98、100、102 半導体層
92、94 導電路
93、95、116 収集接点アレイ
104、106、108 高電圧印加用導電層
110、112 信号収集接点を含む層
114 半導体物質
120 孔
122 信号供給経路
124 収集接点
126 小荷物/手荷物検査システム
132 高周波電磁エネルギ源
136 コンベヤ・システム
138 コンベヤ・ベルト
140 支持構造
142 小荷物又は手荷物

【特許請求の範囲】
【請求項1】
放射線撮像用の直接変換型検出器を製造する方法であって、
X線(16)を電気信号へ直接変換するように設計されている半導体物質の多数の層(62、64)を設けるステップと、
半導体物質の各々の層(62、64)の少なくともX線入射面に導電性フィルム層(67、69)を固着させるステップと、
前記半導体物質の多数の層(62、64)を、各々の層が少なくとも2層の導電性フィルム層に接触するようにして積層体として構成するステップと、
を備えた方法。
【請求項2】
前記固着させるステップは、半導体物質の各々の層(62、64)の少なくともX線入射面を金属化するステップを含んでいる、請求項1に記載の方法。
【請求項3】
前記設けるステップは、テルル化カドミウム亜鉛(CZT)バルクから半導体物質の各々の層(62、64)を成長させるステップを含んでいる、請求項1に記載の方法。
【請求項4】
前記成長させるステップは、各々のテルル化カドミウム亜鉛層を成長させるために分子ビーム・エピタキシを用いるステップを含んでいる、請求項3に記載の方法。
【請求項5】
1層の半導体物質(62、64)のX線入射面及び裏面(66、68)に導電性フィルム(67、69)を固着させるステップをさらに含んでいる請求項1に記載の方法。
【請求項6】
前記多数の層を積層体として構成するステップは、前記多数の層を、導電性フィルムの2面の表面を有する前記層(64)がX線源(14)から最も遠い側に配置されるようにして互いに接合するステップを含んでいる、請求項5に記載の方法。
【請求項7】
前記構成するステップは、前記多数の層(62、64)を、各々の層(62、64)が高電圧(HV)接続フィルム層(66、68)及び信号収集フィルム層(67、69)に接触するようにして、互いに対して配置するステップを含んでいる、請求項1に記載の方法。
【請求項8】
前記構成するステップは、
共通軸に沿って前記多数の層(62、64)の各々に少なくとも1個ずつの孔(120)を形成するステップと、
前記積層体の前記多数の層(62、64)を接合するために前記少なくとも1個ずつの孔(120)を金属化する(122)ステップと、
を含んでいる、請求項1に記載の方法。
【請求項9】
前記多数の層は、少なくとも3層の半導体層(96、98、100)を含んでいる、請求項1に記載の方法。
【請求項10】
前記検出器は、解剖学的詳細及び組織特徴評価を与える単一の画像になるように処理され得る電気信号へX線を直接変換するように構成されている、請求項1に記載の方法。
【請求項11】
放射線撮像用の直接変換型検出器であって、半導体物質の多数の層及び間隙導電層を有しており、
複数の半導体層の各々の少なくともX線入射面に金属化層を付着させて、
前記複数の半導体層を、各々の半導体層が1対の金属化層の間に介設されるようにX線入射方向に積層する
ことにより形成される直接変換型検出器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−13451(P2006−13451A)
【公開日】平成18年1月12日(2006.1.12)
【国際特許分類】
【出願番号】特願2005−134870(P2005−134870)
【出願日】平成17年5月6日(2005.5.6)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】