説明

MEMSおよびMEMS製造方法

【課題】MEMSの可撓部の撓み検出精度を高める。
【解決手段】x軸、y軸およびz軸を直交座標系の3軸とするとき、支持部と、前記支持部からx方向に突出しz方向に薄い膜状の可撓部と、前記可撓部の突端に結合している錘部Wと、前記可撓部と前記支持部との境界に対して近傍のx区間である検出区間にあるxy領域であってy方向において前記可撓部の中心に対して近傍のxy領域である検出領域に設けられ前記可撓部の突端のz方向の変位に応じた歪みを検出するための歪み検出手段と、を備え、前記検出区間にあって前記検出領域より外側の両方にある領域における前記可撓部のyz断面は、それぞれ、前記検出領域から相対的に遠い方の半分の部分の断面積が残部の断面積よりも広い形態である、MEMS。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はMEMS(Micro Electro Mechanical Systems)およびMEMS製造方法に関する。
【背景技術】
【0002】
従来、錘部に結合された可撓部の変形を電気信号に変換することにより加速度、角速度、振動などを検出するMEMSが知られている。ピエゾ抵抗素子、圧電素子などの歪み検出手段によって可撓部の変形を電気信号として検出する場合、歪みは撓みによってもねじれによっても生ずるため、1つの歪み検出手段の出力からは可撓部が撓んでいるのかねじれているのかを特定できない。特許文献1には梁の両側面にピエゾ抵抗素子を配置することにより、ピエゾ抵抗素子の出力に含まれる梁のねじれ成分を相殺する加速度センサが開示されている。特許文献2には、梁の縁部が酸化シリコンで構成され、梁の残部がシリコンで構成された加速度センサが開示されている。
【特許文献1】特開平10−32341号公報
【特許文献2】特開2001−56343号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
特許文献1に記載された加速度センサにおいては、シリコンウエハの表裏にピエゾ抵抗素子を形成し、その後にシリコンウエハを切削するときに梁の厚さが決まるため、梁の厚さのばらつきが大きくなるという問題がある。また特許文献1の加速度センサでは、梁の幅が広くなければピエゾ抵抗素子の出力に含まれる梁のねじれ成分を相殺することができないため、梁の撓み剛性が結果的に高まる。したがって特許文献1の加速度センサでは、梁の撓みの検出感度の低下と梁のねじれ成分の相殺効果とはトレードオフの関係になる。
【0004】
特許文献2に記載された加速度センサにおいては、梁がねじれるときに応力が集中する梁の縁部がシリコンよりも硬い酸化シリコンからなるため、梁のねじれが抑制される。しかし、梁の熱膨張係数が均一でないと、温度変化により梁が変形しやすくなる。このため、特許文献2に記載された技術を適用すると加速度センサの温度特性が悪くなるという問題がある。
【0005】
本発明はこれらの問題を解決しつつMEMSの可撓部の撓み検出精度を高めることを目的の1つとする。
【課題を解決するための手段】
【0006】
(1)上記目的を達成するためのMEMSは、x軸、y軸およびz軸を直交座標系の3軸とするとき、支持部と、支持部からx方向に突出しz方向に薄い膜状の可撓部と、可撓部の突端に結合している錘部と、可撓部と支持部との境界に対して近傍のx区間である検出区間にあるxy領域であってy方向において可撓部の中心に対して近傍のxy領域である検出領域に設けられ可撓部の突端のz方向の変位に応じた歪みを検出するための歪み検出手段と、を備え、検出区間にあって検出領域より外側の両方にある領域における可撓部のyz断面は、それぞれ、検出領域から相対的に遠い方の半分の部分の断面積が残部の断面積よりも広い形態である。
本発明によると、可撓部の撓みを検出するための歪み検出手段が設けられる検出区間における可撓部の断面が検出区間のねじれを抑制する形態であるため、可撓部の撓み検出精度が高まる。さらに本発明によると、可撓部の撓みを検出するための歪み検出手段が設けられる検出区間における可撓部の断面がねじれほどには撓みを抑制しない形態であるため、可撓部の撓み検出感度の低下が抑制される。なお、可撓部の突端のz方向の変位に応じて生ずる可撓部の変形が可撓部の撓みであり、可撓部の突端が固定端に対してx軸周りに相対的に回転する可撓部の変形が可撓部のねじれである。
【0007】
(2)上記目的を達成するためのMEMSにおいて、検出区間において可撓部はx方向にリブが延びるリブ構造を有してもよい。
【0008】
(3)上記目的を達成するためのMEMSにおいて、リブが検出区間のy方向の縁の両方に形成されていてもよい。
可撓部がねじれるときには検出区間のy方向(幅方向)の縁に応力が集中するため、そこにリブを形成することによって検出区間において可撓部がねじれにくくなる。
【0009】
(4)上記目的を達成するためのMEMSにおいて、リブは、可撓部のy方向の縁の両方において可撓部と支持部との境界から可撓部の突端の手前まで延びていてもよい。
本発明によると、x方向においてリブが可撓部の端から端まで延びていないため、リブが延びている区間においては可撓部がねじれにくい一方で、リブが延びていない区間では可撓部のねじれが抑制されない。その結果、1個の可撓部の全体ではねじれが抑制されにくくなる。1個の可撓部の全体でのねじれが抑制されにくくなると、1個の可撓部をねじるように錘部に作用する力も検出する場合には、その力の検出感度の低下が抑制される。
【0010】
(5)上記目的を達成するためのMEMSにおいて、リブが検出領域に形成されていてもよい。
リブには応力が集中するため、本発明によると可撓部の撓みによる応力が検出領域に集中する。したがって可撓部の撓み検出感度が高まる。
【0011】
(6)上記目的を達成するためのMEMSにおいて、リブの幅はz方向の突端に向かって漸減していてもよい。
本発明によると、過度の応力集中による可撓部の破損を防止できる。
【0012】
(7)上記目的を達成するためのMEMSにおいて、可撓部のxy方向に広がる主面の一方は凹部と残部とからなり、可撓部の厚さは残部に向かって漸増していてもよい。
本発明によると、過度の応力集中による可撓部の破損を防止できる。
【0013】
(8)上記目的を達成するためのMEMSにおいて、検出区間は可撓部と支持部との境界を含んでもよい。
【0014】
可撓部が撓むとき、応力は可撓部と支持部との境界を含む領域に集中するからである。
【0015】
(9)上記目的を達成するためのMEMSにおいて、可撓部が検出領域を除いて均質であってもよい。
本発明によると、温度変化による可撓部の変形を抑制できる。
【0016】
(10)上記目的を達成するためのMEMSにおいて、可撓部はシリコンからなり、検出領域には、ピエゾ抵抗素子を形成するための不純物が拡散していてもよい。
歪み検出手段としてピエゾ抵抗素子を用いることにより、低い周波数領域において可撓部の撓み検出感度を高めることができる。
【0017】
(11)上記目的を達成するためのMEMSにおいて、歪み検出手段は、可撓部と錘部との境界に対して近傍のx区間である第二の検出区間にあるxy領域であってy方向において可撓部の中心に対して近傍のxy領域である第二の検出領域にも設けられていてもよい。
【0018】
(12)上記目的を達成するためのMEMS製造方法は、x軸、y軸およびz軸を直交座標系の3軸とするとき、支持部と、支持部からx方向に突出しz方向において薄い膜状の可撓部と、可撓部の突端に結合している錘部と、可撓部と支持部との境界に対して近傍のx区間である検出区間にある領域であってy方向において可撓部の中心に対して近傍のxy領域である検出領域に設けられ可撓部の突端のz方向の変位に応じた歪みを検出するための歪み検出手段と、を備えるMEMS製造方法である。この製造方法は、シリコンからなる部分の熱酸化された表層をエッチングすることにより、検出区間にあって検出領域より外側の両方にある領域における可撓部のyz断面を、それぞれ、検出領域から相対的に遠い方の半分の部分の断面積が残部の断面積よりも広い形態にすることを含む。
本発明によると、熱酸化にともなう拡散が生ずるため、応力が過度に集中しにくい断面形態を有する可撓部を形成できる。
【発明を実施するための最良の形態】
【0019】
1.原理
はじめに後述する実施形態に適用される本発明の原理を説明する。説明の便宜を図るため、図2に示すように、可撓部31が支持部32から突出する方向と平行にx軸を定め、膜状の可撓部31の幅方向と平行にy軸を定め、可撓部31の厚さ方向と平行にz軸を定める。
【0020】
1−1 検出手段を設ける領域
錘部Wが突端31aに結合された膜状の可撓部31の撓みに応じた歪みを精度良く検出するため、歪み検出手段は、薄い膜状の可撓部31の撓みを感度良く検出でき、可撓部31のねじれを検出しにくい領域に設けられる。すなわち以下に詳述するように、検出手段は可撓部31が撓むときの歪みが大きく、可撓部31が捻れるときの歪みが小さい領域に設けられる。
【0021】
支持部32の厚さを可撓部31に対して十分厚く設定することにより、可撓部31の撓みに応じた応力は支持部32と可撓部31の境界近傍に集中する。そこで歪み検出手段は可撓部31と支持部32との境界に対して近傍のx区間である検出区間33に設ける。歪みはほぼ可撓部31と支持部32との境界で最大となるため、検出区間33は可撓部31と支持部32との境界を跨いでいることが望ましい。実質的に歪みが生じない範囲にまで検出区間33を設定するとかえって感度が落ちるため、検出区間33は可撓部31と支持部32との境界に対して近傍に限定される。
【0022】
図3Bおよび図3Cに示すように厚さが幅方向(y方向)において一定の可撓部31がねじれるとき、可撓部31に生じる応力は図4に示すように可撓部31の幅方向(y方向)の縁から中心に近くなるに従い小さくなり、可撓部31の幅方向の中心線上では理論上ゼロとなる。可撓部31の撓みによる歪みを検出する場合は、可撓部31のねじれにより生じる歪みを検出しないことが望ましい。このために、可撓部31のねじれによる応力がほぼゼロになる可撓部31の幅方向の中心線上に検出手段を設けることが望ましい。撓み検出手段を可撓部31の中心線上に設けられない場合、可撓部31の中心線に出来る限り近い領域に検出手段を設ければよい。検出手段が可撓部31の中心線上に設けられる場合、検出手段を設けるy方向の幅が狭いほど、ねじれによる歪みが検出されにくくなる。
【0023】
したがって、可撓部31の撓みに応じた歪みを検出するため検出手段は、図2Aに示すように可撓部31と支持部32との境界に対して近傍であり、かつ、可撓部31の中心に対して近傍のxy領域である検出領域34に設けられる。例えば検出手段の長さの1%程度が支持部32に位置し残部が可撓部31に位置するように設定すればよい。
【0024】
1−2 可撓部の断面形状
図3Bおよび図3Cに示すように厚さが幅方向(y方向)において一定の可撓部31がねじれるとき、可撓部31に生じる応力は図4に示すように可撓部31の幅方向の中心から縁に近くなるに従い大きくなる。したがって、任意のx区間にある可撓部31の幅方向の縁近傍において可撓部31の剛性が小さくなればその区間において可撓部31がねじれにくくなる。可撓部31の幅方向の縁近傍における剛性は可撓部31の幅方向の縁近傍部分のyz断面積との相関が高い。検出手段が設けられるx区間である検出区間33において可撓部31がねじれにくくなると、検出区間33内にあって可撓部31の中心に対して近傍のxy領域である検出領域34に生ずる歪みは小さくなる。
【0025】
一方、図5Aに示すように厚さが幅方向(y方向)において一定の可撓部31がねじれずに撓むとき、可撓部31に生じる応力は図5Bに示すように可撓部31の幅方向において一定である。また可撓部31の厚さが幅方向において一定でないとしても、可撓部31がねじれずに撓むときの曲率は可撓部31の幅方向において一定である。そして可撓部31がねじれずに撓むとき、微小なx区間における可撓部31の曲率は、その区間における可撓部31の剛性との相関が高く、その区間における可撓部31のyz断面形状との相関は低い。微小なx区間における可撓部31の剛性はその区間における可撓部31のyz断面積との相関が高い。
【0026】
したがって、検出手段が設けられるx区間である検出区間33において可撓部31を捻れにくくするために可撓部31の幅方向の縁近傍部分のyz断面積を大きくしても、それに応じて可撓部31の幅方向の中心近傍部分のyz断面積を小さくすれば、検出区間における可撓部31の撓みによる歪みの減少を抑制できる。このように可撓部31が捻れにくく撓みやすくなる検出区間33における可撓部31のyz断面形状を図6Aから図6Eに例示した。図6Aに示すように可撓部31の幅方向(y方向)の両側の縁においてx方向に延びる凸部であるリブ31bを設けてもよい。図6Bに示すように可撓部31の幅方向の両側の縁からわずかに中心よりの2カ所においてx方向に延びるリブ31bを設けてもよい。図6Cに示すように可撓部31の幅方向の中心から縁に向かってリブ31bの配列密度が高くなるようにx方向に延びる4つ以上のリブ31bを設けてもよい。図6Dに示すように可撓部31の厚さが可撓部31の幅方向の中心から縁に向かって漸増してもよい。図6Aから図6Eに例示するように、可撓部31のyz断面形状は、検出区間33において相対的に可撓部31の幅方向の縁近傍部分のyz断面積が大きく可撓部31の幅方向の中心近傍部分のyz断面積が小さければどのように設計しても良く、どの程度までねじれ成分の混入による撓み検出精度の誤差を許すかという観点や、撓み検出感度をどの程度求めるかという観点や、製造の容易さの観点などによって適宜設計すればよい。なお、図6Eに示すように可撓部31の幅方向の中心線上に設けられたリブ31bは、可撓部31のねじれよりも撓みを抑制する。しかしながら、微小なx区間における曲率(応力がゼロになる仮想面の曲率)が同じであれば、可撓部31が厚いほど可撓部31の表面の歪みは大きくなる。そこで撓みの検出感度が高まる範囲においてリブ31bの高さと幅を設計すれば、リブ31bを可撓部31の幅方向の中心線上に設けることによって撓みの検出感度を高めることもできる。
【0027】
したがって、検出手段が設けられる検出領域34より外側の両方にある領域における可撓部31のyz断面が、それぞれ、検出領域34から相対的に遠い方の半分の部分のyz断面積が残部のyz断面積よりも大きい形態を採用することにより、検出区間33における可撓部31のねじれを抑制しつつ検出区間33における可撓部31の撓みによる歪みの減少を抑制できる。また、これにより可撓部31のねじれに対する強度が高まるという副次的な効果も期待できる。
【0028】
1−3 リブの長さとねじれ抑制効果
図7Aに示すようにリブ31bが可撓部31のy方向の縁の両方において可撓部31と支持部32との境界から可撓部31の突端の手前まで延びている構成では、可撓部31にはリブ31bのないx区間31dがあることになる。この構成では、可撓部31の突端31aをねじる力が作用した場合に、ねじれにより検出区間33に生ずる歪みをリブ31bが抑制する一方で、可撓部31の全体のねじれが抑制されにくくなる。なぜならば、リブ31bによって可撓部31の検出区間33がねじれにくくなっても、リブ31bの無いx区間31dにおいては可撓部31のねじれが抑制されていないため、可撓部31をねじる力によって検出区間33に生ずるはずの歪みがリブ31bの無いx区間31dに分散するからである。その結果、検出区間33における可撓部31のねじれがさらに抑制されるとともに、1個の可撓部31の全体ではねじれが抑制されにくくなる。
【0029】
このように可撓部31にリブ31bのないx区間31dがある構成を2次元または3次元の加速度または角速度を検出するセンサ等に適用すると、ある方向の成分を検出するための1個の可撓部31のねじれを抑制することによりその方向に直交する方向の成分の検出感度が低下することを抑制する効果を得られる。
【0030】
1−4 可撓部の表面形態
図8は可撓部31の表面形態を示すyz断面図である。可撓部31の断面積または表面形態がステップ状に変化すると、その境界に応力が集中する。したがって、図8Aから図8Dに示すようにリブ31bの幅(y方向の長さ)をz方向の突端に向かって漸減させることにより、可撓部31のリブ31bと残部31cの境界において断面積および表面形態をなだらかに変化させることが望ましい。すなわち可撓部31の厚さは凹部から凸部に向かって漸増していることが好ましい。また、可撓部31のリブ31bと残部31cの境界において可撓部31の表面は図8Cおよび図8Dに示すようになだらかに湾曲していることがさらに好ましい。
【0031】
このように可撓部31の厚さを凹部から凸部に向かって漸増させることによって、可撓部31に過度の力が生じた場合でも、可撓部31が破断しにくくなる。また、可撓部31の凹部と凸部とにまたがって可撓部31の表面に配線などを形成する工程において生ずる断線などの不具合を低減できる。
【0032】
1−5 可撓部の材質
熱膨張係数の異なる材質からなる複数の層で可撓部31を構成すると、周囲温度の変化により撓みやねじれが可撓部31に生じる。これらの撓みやねじれは検出精度を低下させる。したがって可撓部31の熱膨張係数は均質であることが好ましい。
【0033】
以下、上述した本発明の原理を適用した実施の形態を添付図面を参照しながら説明する。各図において対応する構成要素には同一の符号が付され、重複する説明は省略される
2.第一実施形態
図1A、図1Bおよび図1Cは本発明のMEMSの第一実施形態としての加速度センサ100の要部を示している。図1Bは図1AにおけるB−B断面図である。図1Cは図1AにおけるC−C断面図である。
加速度センサ100は支持部112と、支持部112にそれぞれ結合している4つの可撓部111と、4つの可撓部111と結合している錘部Wと、支持部112と可撓部111の境界近傍に形成された複数のピエゾ抵抗素子Rとを備えている。図1Bおよび図1Cにおいてこれらの機能要素の境界は実線によって示されている。これらの機能要素はガラス層319、厚いシリコン(Si)層313、二酸化シリコン(SiO)層312、薄いシリコン層311などで構成されている。すなわち加速度センサ100は薄膜の積層構造を有する固体素子である。図1Bおよび図1Cにおいてこれらのこれらの層の境界は破線によって示されている。
【0034】
支持部112は矩形の枠形態を有する。
4つの可撓部111はそれぞれ支持部112の内側空間の中央に位置する錘部Wに向かって突出している薄い膜状の片持ち梁の形態である。4つの可撓部111と錘部Wとは十字形態に結合している。加速度が生ずると、それぞれの可撓部111の突端に結合している錘部Wに慣性力が作用するためそれぞれの可撓部111が変形する。一直線に並ぶ2つの可撓部111の撓みを検出することにより、その直線と平行な方向の加速度成分とz方向(可撓部の厚さ方向)の加速度成分とを検出できる。2つの可撓部111が並ぶ直線と平行な方向またはz方向に加速度が生ずると、2つの可撓部111の突端がz方向に変位する。
【0035】
それぞれの可撓部111の幅方向の両縁には、支持部112から錘部Wに向かって可撓部111の中央より手前まで延びているリブ113aと、錘部Wから支持部112に向かって可撓部111の中央より手前まで延びているリブ113bとが形成されている。これらのリブ113はピエゾ抵抗素子Rが設けられる区間における可撓部111の捻れを抑制する。可撓部111の長手方向の中心近傍の区間にはリブ113が形成されていない。したがって可撓部111の1つに着目すると、その可撓部111のねじれはピエゾ抵抗素子Rが設けられている区間において抑制されている一方で、全体としては抑制されていない。その結果、全ての可撓部111が撓みやすくなっている。
【0036】
それぞれの可撓部111の幅方向の中心近傍には、支持部112から錘部Wに向かって可撓部111の中央より手前まで延びているリブ113c、113d、113jと、錘部Wから支持部112に向かって可撓部111の中央より手前まで延びているリブ113e、113f、113iとが形成されている。これらのリブ113c、113d、113e、113fは可撓部111のピエゾ抵抗素子Rが設けられる表層の歪みを増大させる。ピエゾ抵抗素子Rが設けられないリブ113i、113jは可撓部111のyz断面を対称形にするために形成されている。
【0037】
可撓部111の撓みを検出するためにピエゾ抵抗素子Rがそれぞれの可撓部111に設けられる。可撓部111と支持部112との境界近傍に設けられるピエゾ抵抗素子Rは可撓部111の突端のz方向の変位に応じた歪みを検出するための歪み検出手段として機能する。本実施形態では、加速度の互いに直交する3軸の成分を検出するため、各軸4個、合計12個が4つの可撓部111に設けられている。2つの可撓部111が並ぶ直線と平行な方向(x方向およびy方向)の加速度成分を検出するためのピエゾ抵抗素子Rは可撓部111の幅方向の中心線上に位置するリブ113d、113eの表層に設けられる。z方向の加速度を検出するためのピエゾ抵抗素子Rは可撓部111の幅方向の中心近傍に位置するリブ113c、113fの表層に設けられる。
【0038】
図10〜図15、図19および図20は図1のC−C断面において加速度センサ100の製造工程を示している。図16〜図18は図1のB−B断面において加速度センサ100の製造工程を示している。加速度センサ100は例えば次のようにして製造される。
【0039】
最初に図10に示すように厚いシリコン層313と二酸化シリコン層312と薄いシリコン層311とが積層されたSOI基板314(Silicon On Insulator)を準備する。
【0040】
次に図11に示すように薄いシリコン層311の表面に酸化シリコン層315と窒化シリコン層316を例えばCVD(Chemical Vapor Deposition)により形成する。
【0041】
次に図12に示すように窒化シリコン層316を例えばCF+O、CHFガスにてドライエッチングして無機マスク317を形成する。
【0042】
次に図13に示すように無機マスク317を保護膜として用いて薄いシリコン層311の表層を熱酸化する。熱酸化では酸素(O)が無機マスク317の開口から拡散するため、二酸化シリコン層315の一部が拡大し、薄いシリコン層311と二酸化シリコン層315とのなだらかな界面が形成される。
【0043】
次に図14に示すように二酸化シリコン層315の無機マスク317から露出している部分を例えばCF+O、CHFガスによるドライエッチングにより除去する。その結果、可撓部111の主面の一方が形成される。すなわち可撓部111の主面の一方にリブ113の表面形状が形成される。前工程において熱酸化によって拡大した二酸化シリコン層318とシリコン層311との界面がなだらかであるため、可撓部111の厚さは薄肉部114からリブ113を構成する残部に向かって漸増する。
【0044】
次に図15と図16に示すように薄いシリコン層311の一部の表層に不純物イオンを注入する。その結果、薄いシリコン層311の一部の表層には、不純物イオンが拡散し、ピエゾ抵抗素子Rが形成される。
【0045】
次に図17に示すようにコンタクトホール117を有する表層絶縁膜116とピエゾ抵抗素子Rの配線115とを形成する。可撓部111の厚さは薄肉部114から残部に向かって漸増する形態であるので、配線115の厚みを小さくしても配線115が断線することがない。
【0046】
次に図18に示すように、薄いシリコン層311を例えばSFガスによる反応性イオンエッチング等でエッチングすることにより可撓部111の輪郭と支持部112および錘部Wの薄いシリコン層311からなる部分の輪郭を形成する。
【0047】
次に図19と図20に示すように、厚いシリコン層313をDeep−RIE(CプラズマとSFプラズマによる所謂ボッシュプロセス)によってエッチングすることにより支持部112および錘部Wの厚いシリコン層313からなる部分の輪郭を形成する。
【0048】
次にガラスウエハを厚いシリコン層313に直接接合した後にガラスウエハをダイサーで切断することによって支持部112および錘部Wのガラス層319からなる部分の輪郭を形成する。その後、ダイシング、パッケージングなどの工程を実施すると加速度センサ100が完成する
【0049】
尚、図13と図14で用いた製造工程の換わりに、無機マスク317を保護膜として用いてイオン注入をおこなった後に、イオン注入により形成された不純物拡散部の除去をおこなってもよい。
【0050】
また、図12〜図14で用いた製造工程の換わりに、図21で示すようにフォトレジスト321をマスクとして用いてRIE(反応性イオンエッチング)等によってエッチングした後に、フォトレジスト321を除去し、図22に示すように熱酸化により薄いシリコン層311の表面に酸化シリコン層320を形成し、その後、酸化シリコン層320をエッチングにより除去してもよい。これにより薄肉部114とリブ113とにおける可撓部111の厚さの差を大きくすることができる。
【0051】
また、可撓部31の材質はシリコンに限るものではなく、化合物半導体やセラミック等でもよい。また、錘部Wの材質はガラスに限るものではなく、金属やセラミック等でもよい。また、エッチングの方法はDeep−RIEやRIEのドライエッチングに限るものではなく、ウエットエッチングでもよい。
【0052】
3.第二実施形態
図9A、図9Bおよび図9Cは本発明のMEMSの第二実施形態としての加速度センサ200の要部を示している。図9Bは図9AにおけるB−B断面図である。図9Cは図9AにおけるC−C断面図である。
【0053】
図9Aに示すように加速度センサ200のそれぞれの可撓部211の幅方向の両縁には、支持部212から錘部Wまで延びているリブ213を形成しても良い。また、ピエゾ抵抗素子Rは可撓部211の凹部214に設けてもよい。
4.他の実施形態
【0054】
尚、本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態で示した材質や寸法や成膜方法やパターン転写方法はあくまで例示であるし、当業者であれば自明である工程の追加や削除や工程順序の入れ替えについては説明が省略されている。また例えば、上述した製造工程において、膜の組成、成膜方法、膜の輪郭形成方法、工程順序などは、MEMSを構成しうる物性を持つ膜材料の組み合わせや、膜厚や、要求される輪郭形状精度などに応じて適宜選択されるものであって、特に限定されない。
【0055】
また例えば圧電素子やFETを検出手段として用いてもよい。また本発明は片持ち梁形態の可撓部を1つだけ備えた1軸の加速度センサにも適用できる。また本発明は角速度センサ、振動センサなどにも適用できる。また可撓部の変形をレーザ等で検出するカンチレバーなどにも本発明を適用できる。
【図面の簡単な説明】
【0056】
【図1】図1Aは本発明の第一実施形態にかかる平面図。図1Bおよび図1Cは本発明の第一実施形態にかかる断面図。
【図2】図2Aは本発明の原理説明にかかる平面図。図2Bおよび図2Cは本発明の原理説明にかかる断面図。
【図3】図3Aは本発明の原理説明にかかる平面図。図3B、図3Cおよび図3Dは本発明の原理説明にかかる断面図。
【図4】本発明の原理説明にかかる線グラフ。
【図5】図5Aは本発明の原理説明にかかる断面図。図5Bは本発明の原理説明にかかる線グラフ。
【図6】図6A、図6B、図6C、図6Dおよび図6Eは本発明の原理説明にかかる断面図。
【図7】図7Aは本発明の原理説明にかかる平面図。図7Bおよび図7Cは本発明の原理説明にかかる断面図。
【図8】図8A、図8B、図8Cおよび図8Dは本発明の原理説明にかかる断面図。
【図9】図9Aは本発明の第二実施形態にかかる平面図。図9Bおよび図9Cは本発明の第二実施形態にかかる断面図。
【図10】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図11】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図12】本発明の第一実施形態にかかる製造工程を説明する断面図。
【図13】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図14】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図15】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図16】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図17】本発明の第一実施形態にかかる製造工程を説明する断面図。
【図18】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図19】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図20】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図21】本発明の第二実施形態にかかる製造工程を説明する断面図。
【図22】本発明の第二実施形態にかかる製造工程を説明する断面図。
【符号の説明】
【0057】
31:可撓部、31a:突端、31b:リブ、31c:残部、31d:x区間、32:支持部、33:検出区間、34:検出領域、100:加速度センサ、111:可撓部、112:支持部、113:リブ、114:残部、115:配線、116:表層絶縁層、117:コンタクトホール、200:加速度センサ、211:可撓部、212:支持部、213:リブ、214:凹部、311:薄いシリコン層、312:二酸化シリコン層、313:厚いシリコン層、314:SOI基板、315:酸化シリコン層、316:窒化シリコン層、317:無機マスク、318:二酸化シリコン、319:ガラス層、320:酸化シリコン層、321:フォトレジスト、R:ピエゾ抵抗素子、W:錘部

【特許請求の範囲】
【請求項1】
x軸、y軸およびz軸を直交座標系の3軸とするとき、
支持部と、
前記支持部からx方向に突出しz方向に薄い膜状の可撓部と、
前記可撓部の突端に結合している錘部と、
前記可撓部と前記支持部との境界に対して近傍のx区間である検出区間にあるxy領域であってy方向において前記可撓部の中心に対して近傍のxy領域である検出領域に設けられ前記可撓部の突端のz方向の変位に応じた歪みを検出するための歪み検出手段と、
を備え、
前記検出区間にあって前記検出領域より外側の両方にある領域における前記可撓部のyz断面は、それぞれ、前記検出領域から相対的に遠い方の半分の部分の断面積が残部の断面積よりも広い形態である、
MEMS。
【請求項2】
前記検出区間において前記可撓部はx方向にリブが延びるリブ構造を有する、
請求項1に記載のMEMS。
【請求項3】
前記リブが前記検出区間のy方向の縁の両方に形成されている、
請求項2に記載のMEMS。
【請求項4】
前記リブは、前記可撓部のy方向の縁の両方において前記可撓部と前記支持部との境界から前記可撓部の突端の手前まで延びている、
請求項3に記載のMEMS。
【請求項5】
前記リブが前記検出領域に形成されている、
請求項2から4のいずれか一項に記載のMEMS。
【請求項6】
前記リブの幅はz方向の突端に向かって漸減している、
請求項2から5のいずれか一項に記載のMEMS。
【請求項7】
前記可撓部のxy方向に広がる主面の一方は凹部と残部とからなり、
前記可撓部の厚さは前記残部に向かって漸増している、
請求項1から6のいずれか一項に記載のMEMS。
【請求項8】
前記検出区間は前記可撓部と前記支持部との境界を含む、
請求項1から7のいずれか一項に記載のMEMS。
【請求項9】
前記可撓部は前記検出領域を除いて均質である、
請求項1から8のいずれか一項に記載のMEMS。
【請求項10】
前記可撓部はシリコンからなり、
前記検出領域には、ピエゾ抵抗素子を形成するための不純物が拡散している、
請求項1から9のいずれか一項に記載のMEMS。
【請求項11】
前記歪み検出手段は、前記可撓部と前記錘部との境界に対して近傍のx区間である第二の検出区間にあるxy領域であってy方向において前記可撓部の中心に対して近傍のxy領域である第二の検出領域にも設けられている、
請求項1から10のいずれか一項に記載のMEMS。
【請求項12】
x軸、y軸およびz軸を直交座標系の3軸とするとき、
支持部と、
前記支持部からx方向に突出しz方向において薄い膜状の可撓部と、
前記可撓部の突端に結合している錘部と、
前記可撓部と前記支持部との境界に対して近傍のx区間である検出区間にある領域であってy方向において前記可撓部の中心に対して近傍のxy領域である検出領域に設けられ前記可撓部の突端のz方向の変位に応じた歪みを検出するための歪み検出手段と、
を備えるMEMSの製造方法であって、
シリコンからなる部分の熱酸化された表層をエッチングすることにより、前記検出区間にあって前記検出領域より外側の両方にある領域における前記可撓部のyz断面を、それぞれ、前記検出領域から相対的に遠い方の半分の部分の断面積が残部の断面積よりも広い形態にする、
ことを含むMEMS製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2010−48700(P2010−48700A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2008−213953(P2008−213953)
【出願日】平成20年8月22日(2008.8.22)
【出願人】(000004075)ヤマハ株式会社 (5,930)
【Fターム(参考)】