説明

Fターム[4K029BA02]の内容

物理蒸着 (93,067) | 被膜材質 (15,503) | 金属質材 (5,068) | 単体金属 (3,635)

Fターム[4K029BA02]の下位に属するFターム

Al (562)
Ag (263)
Au (197)
Co (87)
Cr (335)
Cu (398)
Fe (66)
In (49)
Mo (124)
Ni (175)
Pt (183)
Sb (2)
Sn (64)
Ta (165)
Ti (419)
Zn (60)

Fターム[4K029BA02]に分類される特許

221 - 240 / 486


【課題】仕事関数の低い材料を迅速に有機層と陰極との界面近傍に挿入する。
【解決手段】PM1は、処理容器100と、有機材料を加熱して気化させる蒸着装置200と、第1の蒸着源に連通し、第1の蒸着源にて気化された有機材料を不活性ガスにより運搬させる第1のガス供給路150と、処理容器外に設けられ、陰極を形成する第1の金属よりも仕事関数が小さい第2の金属を加熱して気化させるディスペンサDsと、ディスペンサに連通し、ディスペンサにて気化された第2の金属を不活性ガスにより運搬させる第2のガス供給路320と、各ガス供給路150、320に連通し、気化された第2の金属を気化された有機材料に混入させて処理容器内の被処理体に向けて吹き出させる吹き出し機構120fと、気化された有機材料に混入させる前記気化された第2の金属の割合を制御する制御器50とを有する。 (もっと読む)


【課題】効果的な修飾微粒子の形成方法の提供。
【解決手段】微粒子を単層固定させる基板表面に金を所定の厚さで蒸着する。一方、1-ethyl-3(3-dimethylaminopropyl)carbodiimidehydrochloride(通称EDC)、NaCl、あるいは、KCl等の微粒子間の静電反発力を抑制するための材料を利用した粒子固定液を作製し、これに微粒子を混合した粒子懸濁液として上記基板上に塗布することにより、金を所定の厚さで蒸着された基板表面に微粒子を単層固定させる。また、単層固定された微粒子表面に遷移金属、金属または半導体を蒸着させて修飾微粒子を形成する。基板から修飾微粒子剥離させるには、超音波洗浄装置等を利用して、基板に超音波を作用させて、剥離を促進する。修飾微粒子を生体機能分子によって修飾して生体物質の検査のための標識として利用する場合、修飾微粒子からの反射電子を利用する。 (もっと読む)


スパッタチャンバ(10)のスパッタリングターゲット(18)の後方でスパッタチャンバ(10)の中心軸(14)の周りで回転するマグネトロン(42)の方位角位置および円周位置を決定し、例えば遊星歯車機構を用いてほぼ任意の走査経路を可能にする、2つのモータ(32、36)を制御するための制御システムおよび方法が提供される。システムコントローラ(88)が、複数のコマンドをモーションコントローラ(150)に周期的に送出し、モーションコントローラがモータを密に制御する。各コマンドは、コマンドチケットを含む。モーションコントローラは、直前のコマンドとは異なる値のコマンドチケットを有するコマンドだけを受領する。あるコマンドは、モーションコントローラ内に格納された走査プロファイルを選択するものであり、別のコマンドは、センサに問い合わせて、アームが期待位置にあるかを判定する、動的帰着コマンドを命令するものである。
(もっと読む)


【課題】ターゲットの結晶配向の組織を改善し、スパッタリングを実施した際の、膜の均一性(ユニフォーミティ)を良好にし、スパッタ成膜の品質を向上させ、さらに製造歩留まりを著しく向上させることができるスパッタリング用ターゲット及びその製造方法を提供する。
【解決手段】平板状のターゲットにおいて、ターゲット材料の中心面から半分に切断し2枚のターゲットとし、またさらに切断前のターゲット材料の中心面に位置する結晶配向が(222)優先である結晶組織を備えるターゲットを製造する。 (もっと読む)


【課題】絶縁膜の絶縁耐圧の向上を図ることのできる絶縁膜の製造方法、反応装置、発電装置及び電子機器を提供する。
【解決手段】反応物の反応を起こすマイクロリアクタ1は、金属基板である上板2及び底板3等から構成されてなり、底板3とその表面に設けられる薄膜ヒータ32との間に絶縁膜31として、希土類元素Rの結晶構造を有するR膜(Y膜)が形成されている。R膜は、底板3の表面にR膜を成膜した後、水素化してRH膜を形成し、さらに酸化することによって形成される。 (もっと読む)


【課題】低温で成膜でき、膜形成材料と繊維材料の反応を抑制することができる繊維強化複合材料膜の製造方法を提供する。
【解決手段】表面に繊維材料が固定された基板33を成膜チャンバー30に配置し、一方、不活性ガス雰囲気で、膜形成材料の蒸発源15の加熱により膜形成材料粒子を生成し、次に、膜形成材料粒子を移送し、超音速フリージェットJの気流に乗せて真空チャンバー(30)中に噴出して、繊維材料が固定された基板33上に物理蒸着させて、膜形成材料からなる膜中に繊維材料が内包された繊維強化複合材料膜を形成する。 (もっと読む)


【課題】チャンバ内で基板表面に複数の蒸着膜を形成する際に、膜層毎に異なる成膜パターンで膜形成することが可能な成膜方法及び装置を提供する。
【解決手段】基板を装着する基板装着体とマスク板装着体とを、互いの相対的位置が変更可能に構成し、この位置を変更するシフト手段を設ける。そしてこの基板装着体とマスク板装着体との位置移動によって特定の基板に対して第1のマスク開口を対向させて第1層を成膜し、第2のマスク開口を対向させて第2層を成膜する。上記シフト手段は例えば基板装着体を回転させながら小着被膜を形成する場合、その回転方向を正逆転させることによって特定の基板に対向するマスク開口が第1第2切換わるように構成する。そして第1のマスク開口では成膜パターンの上下又は左右端に膜厚さが漸減するグラデーション領域を形成し、第2のマスク開口ではパターン全体を均一な膜厚さに形成する。 (もっと読む)


ここに記載される、導電性材料のトレンチの内面への磁気的に強化されたスパッタリングの方法は、磁場を導電性材料から少なくとも部分的に形成されたターゲットに隣接して設けるステップと、アノードとターゲットとの間にDC電圧を複数のパルスとしてかけるステップと、を含んでいる。高周波信号は、半導体基板を支持するペデスタルに与えられて、半導体基板に隣接する自己バイアス場を生成する。高周波信号は、DC電圧パルスがかけられている時間に重複する時間、パルス状にペデスタルに与えられる。高周波信号が与えられる時間は、アノードとターゲットとの間にかけられるDC電圧パルスの終了時を超えて延びている。それぞれのDC電圧パルスの間に、導電性材料はスパッターされて半導体基板に形成されたトレンチの側壁に蒸着する。
(もっと読む)


【課題】 加飾性、金属光沢性があり、光透過性と光吸収性が両立され、さらには導電性を有する光学薄膜積層体を提供することを課題とする。
【解決手段】 基材の一方の面に薄膜積層体を備える光学薄膜積層体であって、該薄膜積層体が高屈折率薄膜層、低屈折率薄膜層を少なくとも1層以上積層した積層構造であり、且つ、前記基材の薄膜積層体が形成されている面と反対側の面に導電性薄膜層が形成されていることを特徴とする光学薄膜積層体とした。また、前記導電性薄膜層が形成されている面の表面の表面抵抗率が1.00×10−4Ω/□未満であることを特徴とする光学薄膜積層体とした。 (もっと読む)


【課題】 Ru原料粉末の特定不純物の低減を容易にかつ安価に実現すると同時に、高純度で均質性の高いRuスパッタリングターゲットを作製する方法を提供する。
【解決手段】 Ru原料粉末に、100Pa以下の減圧雰囲気で、温度900〜1300℃かつ30分以上の加熱処理を施すことで、C:50massppm以下、O:400massppm以下、Cl:10massppm以下に低減するとともに前記Ru原料粉末よりも粒成長させた成長させたRu粉末とし、次いで該Ru粉末を加圧焼結するRuスパッタリングターゲット材の製造方法である。 (もっと読む)


【課題】高い磁気抵抗変化率(MR比)と低い層間結合磁界(Hin)を両立するスピンバルブ型巨大磁気抵抗薄膜を製造することができるマルチチャンバ成膜装置を提供する。
【解決手段】第1成膜室13Aでの反強磁性層の成膜、プラズマ処理室14でのプラズマ処理、第1成膜室13Aでの磁化固定層の成膜、プラズマ処理室14でのプラズマ処理、第2成膜室13Bでの非磁性伝導層または酸化物層の成膜の順に基板を移動させる基板搬送ロボットを備えたマルチチャンバ成膜装置とする。 (もっと読む)


【課題】
優れた耐衝撃性、耐薬品性、ハイサイクル性、寸法安定性、流動性、金属調の高級感のある光沢・深み・色調の意匠性を兼備した直接金属蒸着層とハードコート層を有する成形品用ポリエステル樹脂組成物、及び該樹脂組成物からなる成形品を提供すること。
【解決手段】
表面に金属蒸着層とハードコート層をこの順に設ける樹脂製基体用ポリエステル樹脂組成物であって、該ポリエステル樹脂組成物が、ポリエステル樹脂(A)100重量部に対してポリカーボネート樹脂(B)5〜100重量部と、熱可塑性エラストマー(C)0.5〜40重量部を含有してなるポリエステル樹脂組成物、及びこれを成形してなる樹脂製基体。 (もっと読む)


【課題】 マイクロプラズマの径を可能な限り小さくし、その熱容量を低減させてプラズマジェット照射時の基板のダメージを防ぐと共に、金属等を溶融、蒸発又は気化させ、プラズマジェットと共に噴出させることにより、基板上に微小なサイズの金属等のドット及びラインを形成する。
【解決手段】 マイクロプラズマにより溶融、蒸発又は気化する材料を、低融点基板上にドット状に堆積した直径1〜100μmの前記材料のドットを備えていることを特徴とする微小なドットを備えた低融点基板。石英管の中に堆積させるための材料及びプラズマガスを導入すると共に、石英管の外周に誘導コイルを配置し、この誘導コイルに高周波を印加して材料を溶融、蒸発又は気化させ、100μm以下の内径を有する石英管のキャピラリー先端から基板に向かって噴射させることを特徴とする基板上の微小な領域にドット又はラインを形成するマイクロプラズマによる堆積方法。 (もっと読む)


【課題】ピンホールの発生を抑止し、膜厚が薄く、水素透過性が良好である水素透過膜の製造方法を提供する。
【解決手段】スパッタリング法で基板上に第1のPd層またはPd合金層を形成する工程(S2)と、該第1のPd層またはPd合金層を洗浄する工程(S3)と、該洗浄した第1のPd層またはPd合金層の上に、スパッタリング法で第2のPd層またはPd合金層を積層する工程(S4)と、前記第1のPd層またはPd合金層と前記第2のPd層またはPd合金層とを有する一体構造膜を前記基板から剥離する工程(S6)と、前記一体構造膜を400〜1200℃の温度にて、真空中または不活性雰囲気中で熱処理する工程(S7)と、を有する。 (もっと読む)


【課題】連続して多数の電子ビームパルスを発生することが可能なパルス電子ビーム発生装置およびこの装置を用いたパルス電子ビーム成膜装置を得る。
【解決手段】パルス状の電子ビームを発生するためのパルス電子ビーム発生部(8a)と、絶縁材料で構成された中空のチューブであって、パルス電子ビーム発生部(8a)に連結され、発生させた電子ビームをターゲット表面に案内するためのガイドチューブ(8b)とを備えるパルス電子ビーム発生装置(8)において、ガイドチューブ側面の少なくとも一部を被覆する筒状構造物(8c)を、ガイドチューブ(8b)表面と空隙を設けて取り付ける。 (もっと読む)


【課題】被処理基板の裏面端部や側面に付着した膜(汚染物質)を除去することを可能にする汚染物質除去方法等を提供する。
【解決手段】本発明の汚染物質除去方法は、表面に薄膜が形成された被処理基板7の裏面縁部及び側面に対して、真空中において、指向性を有するビームを照射することを含む。 (もっと読む)


半導体装置は、半導体基板上に形成された絶縁膜と、絶縁膜中に形成され、銅又は銅合金からなる埋め込み配線とを備え、絶縁膜と埋め込み配線との間に、白金族元素、又は白金族元素の合金からなるバリアメタル層を有しており、バリアメタル層は、相対的にバリア性が高くなる非晶質度を有する非晶質構造を一部に含んでいる。
(もっと読む)


【課題】発熱体CVD(化学蒸着)法において、作成される薄膜中への不純物の混入を抑制する方法を提供する。
【解決手段】処理容器1内にガス供給系2によって供給された原料ガスが、エネルギー供給機構30により所定の高温に維持された発熱体3の表面で分解及び又は活性化して基板9の表面に薄膜が作成される。発熱体3は、タングステン製の基体の表面に、不純物金属含有量が0.01重量%以下のタングステン粉末を蒸発源とした電子ビーム蒸着法又は六フッ化タングステンの水素による還元反応を利用した化学蒸着法により、不純物金属含有量が0.01重量%以下のタングステンの被覆膜を形成したものである。発熱体3からの不純物金属の放出が抑制され、作成される薄膜中への不純物金属の混入も抑制される。 (もっと読む)


【課題】原子炉炉心に挿入して炉心内の中性子を測定する中性子検出器のカソードに形成される中性子変換層ついて、高真空度下においても安定なプラズマを発生させて、品質(膜質)の高い中性子変換層を得ることのできる成膜装置を提供する。
【解決手段】成膜装置1は、放電電極2と、中性子検出器30のカソード33として用いられる円筒状の接地電極4と、放電電極2と接地電極4とを電気的に絶縁する筒状あるいはスリーブ状の絶縁体5と、放電電極2と接地電極4との間に電力を供給する電源部6と、放電電極2と絶縁体5とを接地電極4の長手軸方向に移動させる電極移動部7と、電源部6が供給した電力により放電電極2と接地電極4との間に発生した電界へ磁界を加える磁界発生部8と、少なくとも接地電極4内を真空にする真空手段9とから構成される。 (もっと読む)


【課題】 バリアメタル膜とCu膜との密着性を向上させた薄膜形成方法を提供する。
【解決手段】 被処理物表面にPVD法によりバリアメタル膜を形成する工程と、このバリアメタル膜表面にCVD法によりCu膜を形成する工程と、前記バリア膜及びCu膜を積層したものを所定温度で熱処理する工程とを実施する。前記バリアメタル膜としてTi及びRuを含むものを用い、当該バリアメタル膜中のTiの組成比を5〜25原子%の範囲とする (もっと読む)


221 - 240 / 486