説明

ハイブリット駆動装置における発進制御装置

【課題】バッテリ残存容量(SOC)により、発進制御を、モータジェネレータ主体とするかエンジン主体とするかに切換え、一層の低燃費及び排ガスの減少を図る。
【解決手段】SOCが所定値以上ある場合、入力クラッチを切った状態で、モータジェネレータ主体で発進制御し、SOCが所定値以下の場合、入力クラッチを接続してエンジン主体で発進制御する。モータジェネレータ主体では、アクセル開度に基づき算出される必要駆動力となる出力トルクにて発進し、エンジン最良効率特性及びSOCにより求められるエンジン始動時の回転数まで回転数を増加する。無限変速機構をO/D方向に変速して、モータ回転数を前記エンジン始動回転数に維持しつつ車速を増速すると共に、前記必要駆動力を保持するようにモータトルクを増加するように制御する。該モータトルクがエンジン始動時のトルクになった状態で、内燃エンジンを始動する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃エンジン及び/又はモータジェネレータにて車輌を駆動するハイブリット駆動装置に係り、詳しくは無段変速機を介して車輌を駆動するハイブリット駆動装置における発進時の制御装置に関する。
【背景技術】
【0002】
従来、特許文献1に示すように、無段変速装置(CVT)を用いたバイブリット駆動装置が提案されている。このものは、エンジンとモータジェネレータがダンパを介して直結されており、更にこれらエンジン及びモータジェネレータの出力軸がオイルポンプに連結していると共に、前進クラッチ及び後進ブレーキを有する前後進切換え機構を介してCVTに連結し、更に歯車等を介して駆動輪に連結している。そして、車輌が交差点等で停止する際、エンジンを停止するようにして、燃費の改善を図っており、更に再発進時、モータジェネレータの回転によりエンジンを再始動すると共に、油圧が不充分で前進クラッチの係合が遅れる所定時間、モータジェネレータを回生制御することにより、エンジンの吹上りの防止を図っている。
【0003】
【特許文献1】特開平9−71138号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、上述した従来の技術のものは、始動時、モータジェネレータをモータ(セルモータ)として機能し、エンジンを始動した後に、オイルポンプの油圧上昇を待って、前進クラッチ等を接続することにより発進する。
【0005】
従って、エンジンを停止したままで、モータジェネレータにより発進することができず、更に上記発進時は、低速から内燃エンジンの出力を用いるため、エンジンを効率の高い処で使用することができず、特に発進、停止を繰返す市街地等において、更なる燃費の向上及び排ガスのクリーン化を図ることができない。
【0006】
また、エンジンによるオイルポンプの回転に伴い、油圧が上昇した状態でないと、前進クラッチの接続及びCVTの変速操作を行うことができず、再発進時における遅れ感を生じてしまう。
【0007】
そこで、本発明は、エンジンを停止した状態でモータジェネレータによる発進を可能とし、一層の低燃費及び排ガスの減少を図ったハイブリット駆動装置における発進制御装置を提供することを目的とするものである。
【課題を解決するための手段】
【0008】
請求項1に係る本発明は、モータジェネレータ(2)と、無段変速機(M)と、を備え、内燃エンジン(1)及び/又はモータジェネレータ(2)の出力を前記無段変速機(M)を介して駆動車輪に伝達し、また前記内燃エンジンの出力により前記モータジェネレータにて発電してバッテリに充電してなる、ハイブリット駆動装置において、
内燃エンジン(1)の出力軸(1a)と前記無段変速機(M)の入力軸(8)との間に介在する入力クラッチ(6)と、
前記バッテリの残存容量(SOC)が所定値以上かを判断するバッテリ残存容量判断手段(85a)と、
前記入力クラッチ(6)を切った状態で前記モータジェネレータ(2)の出力を直接前記無段変速機(M)の入力軸(8)に伝達して車輌を発進制御し、かつ該車輌の走行状態で前記入力クラッチ(6)を接続して前記内燃エンジン(1)を始動するモータジェネレータ主体制御手段(85b)と、
前記入力クラッチ(16)を接続した状態で前記内燃エンジン(1)の出力に基づき発進制御するエンジン主体制御手段(85c)と、を備え、
前記バッテリ残存容量判断手段が前記所定値以上と判断した場合、前記モータジェネレータ主体制御手段(85b)を機能し、また前記所定値以下と判断した場合、前記エンジン主体制御手段(85c)を機能してなる、
ことを特徴とするハイブリット駆動装置における発進制御装置にある(図8参照)。
【0009】
請求項2に係る本発明は、前記内燃エンジンの所定特性は、該エンジン出力が最良効率となる特性(B)である、
請求項1記載のハイブリット駆動装置における発進制御装置にある。
【0010】
請求項3に係る本発明は、前記内燃エンジン(1)を前記モータジェネレータ(2)にて始動してなる、
請求項1記載のハイブリット駆動装置における発進制御装置にある。
【0011】
請求項4に係る本発明は、前記モータジェネレータ主体制御手段(85b)は、ドライバの操作によるアクセル開度(θ)に基づき必要駆動力(F)を算出して、該必要駆動力により発進開始時(S)における始点回転数(Sm)及び始点トルク(St)を決定し、
前記内燃エンジンの所定特性及び前記バッテリの残存容量(SOC)に基づき該内燃エンジン始動時(Se)における回転数(Sen)及びトルク(Set)を決定し、
前記無段変速機(M)を所定低速位置に保持した状態で、前記始点トルク(St)により前記モータジェネレータ(2)の回転数(Nm)を増加して発進し、
該モータジェネレータの回転数(Nm)が前記エンジン始動時回転数(Sen)になると、該モータジェネレータの出力トルク(Tm)を増加すると共に、前記始動時回転数を保持するように前記無段変速機を変速操作し、
そして前記モータジェネレータの出力トルク(Tm)が前記エンジン始動時トルク(Set)になると、前記入力クラッチ(6)を接続して前記内燃エンジン(1)を始動してなる、
請求項1記載のハイブリット駆動装置における発進制御装置にある(図9参照)。
【0012】
請求項5に係る本発明は、前記エンジン主体制御手段(85c)は、前記入力クラッチを接続した状態で、ドライバのアクセルオン操作により前記内燃エンジンを所定スロットル開度(θ)による所定回転数(Neo)及び所定トルク(Teo)にて運転すると共に、前記モータジェネレータ(2)を、前記所定回転数(Neo)に合うように目標速度制御して前記エンジンの出力トルク(Te)を該モータジェネレータに吸収し、
更に前記モータジェネレータをトルク制御に切換え、前記アクセル操作によるアクセル開度(θ)及び車速に基づき前記モータジェネレータが吸収するトルクを減少するように制御して前記内燃エンジンの出力トルクを前記無段変速機に入力すると共に、該無段変速機を、前記内燃エンジンが前記所定回転数及び所定トルクを保持するように変速操作してなる、
請求項1又は4記載のハイブリット駆動装置における発進制御装置にある(図13,図14参照)。
【0013】
請求項6に係る本発明は、前記無段変速機(M)は、プライマリシャフト(8)とセカンダリシャフト(15)との間に配置されこれら両シャフト間のトルク比(I)を無段に変速する無段変速装置(CVT11)と、
前記無段変速装置のプライマリ側に連動する第1の回転要素(19c)、該無段変速装置のセカンダリ側に連動する第2の回転要素(19s)、前記第1の回転要素及び第2の回転要素の回転をトルク循環を生じる状態で合成して駆動車輪に出力する第3の回転要素(19r)を有するプラネタリギヤユニット(19)と、を有し、前記無段変速装置(11)を、前記第3の回転要素(19r)がニュートラル位置(GN)となるように自己収束するニュートラル制御と、該ニュートラル位置から無段に変速する変速制御とを行う無限変速機構(IVT18)と、を備えてなる、
請求項1ないし5のいずれか記載のハイブリット駆動装置における発進制御装置にある(図1参照)。
【0014】
請求項7に係る本発明は、前記モータジェネレータのロータ(2a)を前記プライマリシャフト(8)に直接的に連動し、かつ前記内燃エンジンの出力軸(1a)と前記プライマリシャフト(8)との間に入力クラッチ(6)を介在してなる、
請求項6記載のハイブリット駆動装置における発進制御装置にある。
【0015】
[作用]
以上構成に基づき、バッテリ残存容量(SOC)が所定値(SOCL)以上ある場合、モータジェネレータ(2)を主体とした制御手段(85b)により発進制御し、またSOCが所定値以下の場合、モータジェネレータ(2)による発進は不可として、エンジンを主体とした制御手段(85c)により発進制御する。
【0016】
上記モータジェネレータ主体制御にあっては、入力クラッチ(6)を切った状態で、ドライバが操作するアクセル開度(θ)に基づき算出される必要駆動力(F)となるモータジェネレータの出力トルクにて発進し、エンジン最良効率特性(理想曲線)及びSOCにより求められるエンジン始動時の回転数(Sen)まで回転数(Nm)を増加する。そして、無限変速機構(IVT18)等を有する無段変速機(M)をO/D方向に変速して、モータ回転数(Nm)を前記エンジン始動回転数(Sen)に維持しつつ車速を増速すると共に、前記必要駆動力を保持するようにモータトルク(Tm)を増加するように制御する。そして、該モータトルク(Tm)がエンジン始動時のトルク(Set)になると、入力クラッチ(6)を接続して内燃エンジン(1)を始動する。
【0017】
また、上記エンジン主体制御にあっては、入力クラッチ(6)を接続した状態で、ドライバのアクセルオン操作により、内燃エンジン(1)を電子スロットルシステム(77)により所定スロットル開度(θ)に運転し、同時にモータジェネレータ(2)を、上記所定スロットルによるエンジン回転数(Neo)に合せるように目標速度制御すると共に、上記エンジン出力トルク(Te)を吸収する。そして、該モータジェネレータをトルク制御に切換えて、上記負方向のトルク(−Tm)を徐々に減少して、上記エンジン出力トルクの入力軸(8)へ伝達されるトルク分を増大し、かつ無段変速機(M)をO/D側に操作して、エンジン出力を前記所定スロットル開度の状態に維持しつつ車速を増加する。
【0018】
なお、上記カッコ内の符号は、図面と対照するためのものであるが、何等本発明の構成を限定するものではない。
【発明の効果】
【0019】
請求項1に係る本発明によると、バッテリ残存容量が大きい場合、入力クラッチを切った状態で、モータジェネレータの出力により発進するので、特に市街地等で発進及び停止を繰返す場合、燃費を一層向上し得ると共に排ガスのクリーン化を図ることができ、更にバッテリ残存容量が小さい場合、入力クラッチを接続して内燃エンジンの出力に基づき発進するので、バッテリ不足による発進不能等の不具合の発生を防止することができる。
【0020】
請求項2に係る本発明によると、内燃エンジンを最良効率状態で始動することができる。
【0021】
請求項3に係る本発明によると、内燃エンジンをモータジェネレータの出力により始動するので、エンジン始動時のスタータモータによる異音の発生等がなく、滑らかにかつ良好なフィーリングにてモータジェネレータ出力から内燃エンジン出力に移行することができる。
【0022】
請求項4に係る本発明によると、バッテリ残存容量が大きい場合のモータジェネレータ主体制御は、発進開始時、モータジェネレータを高い効率により使用し、かつ内燃エンジンの使用に適する状態となる時点で該エンジンを始動するので、モータジェネレータ及び内燃エンジンを高い効率により運転して、一層の燃費向上及び排ガスの減少を図ることができる。
【0023】
請求項5に係る本発明によると、内燃エンジンを比較的高い所定スロットル開度で用いると共に、モータジェネレータの負方向のトルク制御により上記内燃エンジンから入力軸に伝達されるトルクを制御するので、正確な制御が可能なモータジェネレータ制御により確実に発進時の入力トルクを制御することができ、正確な制御が困難な電子スロットルによる吸入空気量制御に起因して過大な入力トルクが入力軸に作用することを防止し、無段変速機、特にトルク循環を生じる無限変速機構を備える無段変速機の耐久性及び信頼性を向上し得ると共に、モータジェネレータにより吸収したエンジン出力は回生されてバッテリに充電されるので、バッテリの充電不足を減少することができる。
【0024】
また、バッテリ残存容量が小さい場合のエンジン主体制御手段を、上述した正確かつ確実な制御が可能なモータジェネレータによる制御にて行うことができると共に、該バッテリ残存容量の不足状態から、上記モータジェネレータにて回生される電気量にて早期に脱出することができる。
【0025】
また、バッテリ残存容量が大きい場合のモータジェネレータ主体制御を、上述した高い効率にて行うことができると共に、バッテリ残存容量の小さい場合のエンジン主体制御を上述した正確でかつ該バッテリ残存容量不足状態から脱出し得る制御にて行うことができる。
【0026】
請求項6に係る本発明によると、入力軸を回転した状態で、無限変速機構をニュートラル位置にして車輌を停止することができるので、車輌停止状態にあっても、モータジェネレータ又は内燃エンジンを回転して、専用の駆動源を設けることなくオイルポンプ等を駆動でき、発進に際して遅れ感を生じることはない。
【0027】
請求項7に係る本発明によると、入力クラッチを切断することにより、軽負荷又は略々無負荷にてモータジェネレータを始動することができ、例えば該モータジェネレータにブラシレスDCモータを用いる場合でも、高価なロータ位置検出センサを不要とすることが可能となる。
【発明を実施するための最良の形態】
【0028】
以下、図面に沿って、本発明に係る実施の形態について説明する。図1は、車載用ハイブリット駆動装置の全体概略を示す図で、1は、ガソリンエンジン、ディーゼルエンジン等の内燃エンジンであり、2は、ブラシレスDCモータ等のモータジェネレータである。なお、該モータジェネレータは、上記モータに限らず、直流直巻モータ、直流分差モータ、誘導モータ等の他のモータでもよい。
【0029】
そして、エンジン1の出力軸1aは、フライホィール3及びダンパ5を介してシャフト4に連結しており、該シャフトとモータジェネレータ2のロータ2aとの間に入力クラッチ6が介在している。更に、エンジン出力軸1a及びロータ2aの中心軸と整列しかつ該ロータに連結しているプライマリシャフト(第1軸)8にはオイルポンプ10の回転側10aが連結されていると共に、ベルト式無段変速装置(CVT)11のプライマリプーリ7が配置されており、更にロークラッチCを介して動力伝達されるスプロケット13が回転自在に支持されている。
【0030】
また、プライマリシャフト(第1軸)8に平行してセカンダリシャフト(第2軸)15が配置されており、該セカンダリシャフトには、前記CVT11のセカンダリプーリ9、シンプルプラネタリギヤ19、出力ギヤ21及び前記スプロケット13とチェーン22を介して連動しているスプロケット20が配置されている。上記プラネタリギヤ19及びCVT11は、後述するギヤニュートラル(GN)を有する無限変速機構(IVT)18を構成する。
【0031】
更に、カウンタ軸(第3軸)23が配置されており、該カウンタ軸には、前記セカンダリシャフト15に支持されている出力ギヤ21に噛合する大歯車25及び小歯車26が一体に固定されている。また、小歯車26はディファレンシャル装置29のデフキャリヤに連結しているギヤ30に噛合しており、該ディファレンシャル装置29は左右前輪に連結するフロントアクスルシャフト31l,31rにそれぞれ差動回転を出力する。上記IVT18及び歯車21,25,26,30からなる最終減速装置により無段変速機Mを構成している。
【0032】
そして、プライマリシャフト8におけるオイルポンプ10とプライマリプーリ7との間には補機駆動用スプロケット(回転体)32が固定されており、またプライマリシャフト8と平行に延びる補機駆動軸33が配置され、該駆動軸の一端に固定されたスプロケット35と前記駆動用スプロケット32との間にチェーン36が巻掛けられていると共に、該駆動軸の他端に固定されたスプロケット37と補機39の入力軸に固定されたスプロケット40との間にチェーン41が巻掛けられている。なお、前記補機39には、エンジン冷却用ウォータポンプ、エンジン始動等の低圧バッテリ用オルタネータ(モータジェネレータ2による走行用バッテリとの電圧が大きく相違する;ex,低圧用バッテリ12V、走行用バッテリ300V)、エアコンディショナー用コンプレッサ、パワーステアリング用ポンプ等が含まれ、これらはプライマリシャフト(入力軸)8の回転により伝達装置42を介して駆動される(伝達装置42は、必ずしも上述したスプロケット及びチェーン32〜41に限らず、ギヤ、ベルト等の他の伝達手段でもよい)。
【0033】
ついで、上述したCVT11及びプラネタリギヤ19から構成される無限変速機構(IVT)18について、図2に沿って説明する。なお、該IVTの油圧装置等の詳細は、本出願人による出願にて既に公開になっている以下の公開公報、特開平8−261303号公報、特開平8−326860号公報、特開平8−326893号公報、特開平9−144835号公報、特開平9−166191号公報、特開平9−166215号公報、特開平9−177928号公報を参照されたい。
【0034】
前記ロークラッチCの出力側に連結しているスプロケット13,チェーン22及びスプロケット20にて構成される定速伝動装置16の回転と、前記プライマリプーリ7,セカンダリプーリ9及びベルト19にて構成される前記CVT11の無段変速回転とが、プラネタリギヤ19にてトルク循環を生じるように合成される。即ち、前記プラネタリギヤ19は、サンギヤ19s、リングギヤ19r及びこれら両ギヤに噛合しているピニオン19pを回転自在に支持しているキャリヤ19cを有するシングルピニオンプラネタリギヤからなり、前記サンギヤ19sがCVT11のセカンダリプーリ9に連結されて第2の回転要素を構成し、前記リングギヤ19rが出力ギヤ21に連結されて第3の回転要素を構成し、前記キャリヤ19cが定速伝動装置16のセカンダリ側スプロケット20に連結されて第1の回転要素を構成している。
【0035】
また、前記プライマリプーリ7及びセカンダリプーリ9の油圧アクチュエータ7c,9cはそれぞれ固定シーブボス部7a,9aに固定されている仕切り部材45,46及びシリンダ部材47,49と、可動シーブ7b,9b背面に固定されているドラム部材50,51及び第2ピストン部材52,53とを有しており、仕切り部材45,46が第2ピストン部材52,53に油密状に嵌合すると共に、これら第2ピストン部材52,53がシリンダ部材47,49及び仕切り部材45,46に油密状に嵌合して、それぞれ第1の油圧室55,56及び第2の油圧室57,59からなるダブルピストン(ダブルチャンバ)構造となっている。
【0036】
そして、前記油圧アクチュエータ7c,9cにおける第1の油圧室55,56は、それぞれ可動シーブ7b,9bの背面がピストン面を構成しかつ該ピストン面の有効受圧面積が、プライマリ側及びセカンダリ側にて等しくなっている。また、プライマリ側及びセカンダリ側固定シーブボス部7a,9aにはそれぞれ第1の油圧室55,56に連通する油路及び第2の油圧室57,59に連通する油路が形成されており、またプライマリ側及びセカンダリ側の可動シーブ7b,9bをそれぞれ固定シーブ7a,9aに近づく方向に付勢するプリロード用のスプリング65,66が縮設されている。
【0037】
ついで、上記無限変速機構(IVT)18に基づく作用について、図2ないし図6に沿って説明する。エンジン1及び/又はモータジェネレータ2の回転は、プライマリシャフト(入力軸)8に伝達される。Dレンジおいて、ロークラッチCが接続してハイクラッチCが切断されているローモードにあっては、前記入力軸8の回転は、プライマリプーリ7に伝達されると共に、プライマリ側スプロケット13、巻掛け体22及びセカンダリ側スプロケット20からなる定速伝動装置16を介してプラネタリギヤ19のキャリヤ19cに伝達される。一方、前記プライマリプーリ7の回転は、後述する油圧アクチュエータ7c,9cによりプライマリ及びセカンダリプーリのプーリ比が適宜調節されることにより無段に変速されてセカンダリプーリ9に伝達され、更に該プーリ9の変速回転がプラネタリギヤ19のサンギヤ19sに伝達される。
【0038】
プラネタリギヤ19において、図3の速度線図に示すように、定速伝動装置16を介して定速回転が伝達されるキャリヤ19cが反力要素となって、ベルト式無段変速装置(CVT)11からの無段変速回転がサンギヤ19sに伝達され、これらキャリヤとサンギヤの回転が合成されてリングギヤ19rを介して出力ギヤ21に伝達される。この際、出力ギヤ21には反力支持要素以外の回転要素であるリングギヤ19rが連結されているため、前記プラネタリギヤ19はトルク循環を生じると共に、サンギヤ19sとキャリヤ19cとが同方向に回転するため、出力軸5は零回転を挟んで正転(Lo)及び逆転(Rev)方向に回転する。即ち、前記トルク循環に基づき、出力軸31l,31rの正転(前進)方向回転状態では、ベルト式無段変速装置11はセカンダリプーリ9からプライマリプーリ7へトルクが伝達され、出力軸の逆転(後進)方向回転状態では、プライマリプーリ7からセカンダリプーリ9へトルクが伝達される。
【0039】
そして、ロークラッチCが切断されかつハイクラッチCが接続されているハイモードにあっては、定速伝動装置16を介してのプラネタリギヤ19への伝達は断たれ、該プラネタリギヤ19は、ハイクラッチCの係合により一体回転状態となる。従って、入力軸8の回転は、専らベルト式無段変速装置(CVT)11及びハイクラッチCを介して出力ギヤ21に伝達される。即ち、CVT11は、プライマリプーリ7からセカンダリプーリ9に向けて動力伝達する。更に、出力ギヤ21の回転は、カウンタシャフト23のギヤ25,26を介してディファレンシャル装置29に伝達され、左右のアクスル軸31l,31rを介して左右前輪に伝達される。
【0040】
図3の速度線図、図5の出力トルク図、図6の出力回転数図にて示すように、ローモードにあっては、ベルト式無段変速装置(以下CVTという)11が増速方向の限度(O/D端)にある場合(図3の線a位置)、サンギヤ19sが最大回転することに基づき、一定回転数のキャリヤ19cの回転に対してリングギヤ19rを逆転し、逆回転(REV)を出力ギヤ21に伝達する。そして、CVT11が減速(U/D)方向に変速することにより、逆回転の回転数が減少し、プラネタリギヤ19及び定速伝動装置16のギヤ比で定まる所定プーリ比において、出力ギヤ21の回転数が零になるギヤニュートラル位置(GN)になる。更に、CVT11が減速方向に変速することにより、リングギヤ19rは正転方向に切換えられ、出力ギヤ21には該正転回転即ち前進方向の回転が伝達される。この際、図5から明らかなように、上記ギヤニュートラル位置GN近傍にあっては、理論的には、出力ギヤ21のトルクは無限大に発散する。
【0041】
ついで、CVT11が減速方向(U/D)端になると、ハイクラッチC が接続してハイモードに切換えられる。該ハイモードにあっては、CVT11の出力回転がそのまま出力ギヤ21に伝達されるため、図3の速度線図にあっては、bに示すように平行線となる。そして今度は、CVT11が増速(O/D)方向に変速されるに従って、出力ギヤ21の回転も増速方向に変更され、その分伝達トルクは減少する。なお、図3におけるλは、サンギヤの歯数Zsとリングギヤの歯数Zrとの比(Zs/Zr)である。
【0042】
なお、図4に示すパーキングレンジP及びニュートラルレンジNにあっては、ロークラッチC及びハイクラッチCが共に切断されて、エンジンからの動力は断たれる。この際、パーキングレンジPにあっては、ディファレンシャル装置29がロックされて車軸31l,31rがロックされる。
【0043】
また、プライマリプーリ7は、その固定シーブ7aのボス部がプライマリシャフト8にスプライン嵌合されており、該固定シーブボス部に可動シーブ7bが油圧アクチュエータ7cにより軸方向移動自在に支持されている。一方、セカンダリプーリ9は、その固定シーブ9aがセカンダリシャフト15と一体に構成されており、該固定シーブ9aに可動シーブ9bが油圧アクチュエータ9cにより軸方移動自在に支持されている。
【0044】
そして、Dレンシス又はRレンジにあり、車速が所定速度以下にあって、かつアクセルペダルを離した状態にあると、制御部からギヤニュートラル信号が出力して、プライマリ及びセカンダリの両油圧アクチュエータ7c,9cにおける第1の油圧室55,56に油圧を供給した状態で、両第2の油圧室57,59の油圧を解放し、両プーリ7,9の軸力を実質的に等しくする。即ち、プライマリ及びセカンダリプーリの軸力の差を、出力トルク方向が正の場合その時点でのCVTの入力トルク及びプーリ比から決定される前記両プーリの軸力の差より、その大小関係を逆転させない範囲で小さい値か、又は出力トルク方向が負の場合のその時点でのCVTの入力トルク及びプーリ比から決定されるプライマリ及びセカンダリプーリの軸力の差より、その大小関係を逆転させない範囲で小さい値になるように制御する。
【0045】
これにより、CVTの前進域から又は後進域からギヤニュートラル(GN)点に自己収束する力が発生し、自動的に、IVT18はGN点に移行・保持されて、無負荷或は限りなく無負荷に近い状態となる。なお、CVT11自体は、プライマリ及びセカンダリプーリがベルト張力により拮抗した状態、即ちプーリ比が1.0になる状態が安定状態にあり、該プーリ比1.0に向って力Fが発生し、従ってIVT18がGN点に無負荷状態になると同時に、CVT11がプーリ比1.0に向う力Fが発生し、該無負荷状態でのプーリ比1.0に向う力Fと、該力FによりGN点から外れることによる負荷状態でのGN点に向う力Fが、渦状態となって前進クリープトルクが発生する(特願平8−263344号参照;本出願時未公開)。
【0046】
そして、Dレンジにあっては、ロークラッチCが接続され、かつプライマリ及びセカンダリの前記両第1の油圧室55,56に所定油圧が供給されている状態で、セカンダリ側の第2の油圧室59に油圧が徐々に供給され、前記ギヤニュートラル(GN)点からセカンダリプーリ9の有効径が大きくなるアンダードライブ(U/D)方向に移動し、この状態では入力軸8からロークラッチC及び定速伝動装置16を介してプラネタリギヤ19のキャリヤ19cに伝達されるトルクは、サンギヤ19sを介して所定プーリ比によるCVT11にて規制されつつ(トルク循環)、リングギヤ19rを介して出力ギヤ21に出力する。
【0047】
更に、CVT11がU/Dの所定位置以上において、ロークラッチCを切断すると共にハイクラッチCを接続し、かつプライマリ側の第2の油圧室57に油圧が供給されるように切換えられる。この状態では、入力軸8のトルクは、プライマリプーリからセカンダリプーリ9に伝達されるCVTにより、適宜変速され、更にハイクラッチCを介して出力ギヤ21から取出される。なお、ダウンシフトは、上述の逆の油圧制御により行なわれるが、ローモードにおけるダウンシフトにあっては、所定プーリ比以下では機械的に禁止されている。
【0048】
また、Rレンジにあっては、ロークラッチCが接続され、かつプライマリ及びセカンダリの前記両第1の油圧室55,56に所定油圧が供給されている状態で、プライマリ側の第2の油圧室57に油圧が徐々に供給され、前記ギヤニュートラル(GN)点からプライマリプーリ7の有効径が大きくなるオーバードライブ(O/D)方向に移動し、定速伝動装置16とCVT11との回転がプラネタリギヤ19で合成されて、定速回転が変速回転より高い関係で、出力ギヤ21に逆回転として取出される。
【0049】
図7は、上記ハイブリット駆動装置に適用した制御装置を示すブロック図である。制御部Uには、エンジン回転数を検出するセンサ71、プライマリ軸3即ち該軸と一体のモータジェネレータ2の回転数を検出するセンサ72、セカンダリ軸の回転数を検出するセンサ73、車速即ち無段変速機Mの出力回転数を検出するセンサ74、ドライバがアクセルペダルを踏圧操作することによる該ペダルの回動角を検出するアクセル開度センサ75及び走行用バッテリの残存容量(充電量)を検出するSOCセンサ76等の各センサからの信号を入力している。
【0050】
また、該制御部Uは、内燃エンジン1を制御する電子スロットルシステム77及びモータジェネレータ用コントローラ78にそれぞれ制御信号を出力すると共に、油圧回路の各ソレノイドバルブ(リニアソレノイドバルブを含む)からなる入力クラッチ操作手段79、ギヤニュートラルGNになるように制御する手段を含むCVT操作手段80及びLo−Hiモード切換え手段81等にそれぞれ制御信号を出力する。
【0051】
そして、該制御部(ECU)は、発進制御手段85を備えており、更に該発進制御手段は、前記SOCセンサ76に基づきバッテリ残存容量がモータジェネレータの使用に充分か否かを判断するSOC判断手段85aと、上記SOC判断手段が充分と判断した場合に機能するモータジェネレータ主体制御手段85bと、上記SOC判断手段が不充分と判断した場合に機能するエンジン主体制御手段58cと、前記CVT操作手段80及びモード切換え手段81を制御する無段変速機制御手段85dを有している。
【0052】
なお、上記モータジェネレータ2として、回転子2a(ロータ)に永久磁石を用いたブラシレスDCモータが用いられており、固定子(ステータ)2bに電機子を用いて、チョッパーとして用いられるパワーMOS・FET,IGBT,Sトランジス等のコントロール用素子により回転速度等が制御される。該ブラシレスDCモータにあっては、回転磁場の位置と回転子の位置を検出して、最適のタイミングで各極に電流を流す制御が必要であり、所定回転速度以上にあっては上記位置検出は、電流波形により検出して閉ループ制御により正確な速度制御が可能であるが、始動時等の低回転状態では、一般に、レゾルバ等の回転位置検出手段(センサ)によりロータ2aの位置を検出する必要がある。しかし、モータジェネレータ2の始動時、該モータには、補機等による軽負荷しか作用していないので、ロータ位置を正確に検出しなくとも、いわば試し廻しによりブラシレスDCモータを回転始動することができ、従って従来必要とされた高価な回転位置検出手段(センサ)を不要とすることが可能となる。
【0053】
ついで、図8ないし図16に沿って、本ハイブリット駆動装置における発進制御について説明する。
【0054】
まず、図8に示すメインフローについて説明するに、イグニションスイッチIGがONにあって(S1)、かつ車速が0即ち車輌停止状態にある場合(S2)、バッテリ残存容量(SOC)センサ76からの信号に基づきSOCが所定容量SOCL(例えば40%)と比較される(S3)。
【0055】
そして、SOCが所定容量SOCL以上の場合(YES)、モータジェネレータ2を主体とする制御により発進が可能であると判断し、後述するモータジェネレータ主体発進制御が機能し(S4)、またSOCが所定容量SOCL以下の場合(NO)、モータジェネレータ2を主体とする制御は不可と判断して、後述するエンジン主体発進制御が機能する(S5)。なお、上記メインフローは、シフトレバーがP又はNレンジでない走行レンジ(D又はR)にあり、かつロークラッチCが接続状態にあることを前提としている。また、車輌停止状態(車速0)にあっても、SOCが極めて小さい場合を除いて、モータジェネレータ2が通電されて回転しており、プライマリシャフト(入力軸)8を回転し、これによりオイルポンプ10が駆動されると共に、伝達装置42を介して補機39が駆動される。この際、入力クラッチ6は切断状態にあると共に、無限変速機構(IVT)18はギヤニュートラル(GN)状態にあって、プライマリシャフト8は、補機39及びオイルポンプ10のみを駆動するだけの軽負荷状態にある。
【0056】
なお、ハイブリット駆動装置にあっては、バッテリとしてニッカド電池、ニッケル−水素電池等が用いられるが、車輌重量及び価格等によりその最大容量は、所定量に制限される。本制御装置にあっては、該バッテリの残存容量(SOC)により、発進時にモータジェネレータ2が主体となるか内燃エンジン1が主体となるか選択される。
【0057】
図9は、前記モータジェネレータ主体発進制御を示すフローチャートであり、入力クラッチ6は切り状態にある。まず、アクセル開度センサ75によりアクセル開度θのON状態を検出すると(S10)、該アクセル開度θに基づきドライバが要求する車輌発進時の必要駆動力Fを算出し、更にマップによりエンジン又はモータの運転始点S及び運転終点Eを決定する(S11)。即ち、図10に示すように、アクセル開度及び車速に基づき必要駆動力Fが一義的に求められる。そして、車輌停止時にあっては、前記IVT18はギヤニュートラルGNにあって、入力軸8の回転は出力部材21に伝達されることはないので、図12(A)に示すように、運転始点の入力軸回転数Snは、アクセル開度θに関係なく所定アイドリング回転数(例えば800rpm)にあり、従って前記図11にて求められる各アクセル開度の必要駆動力を得るためには、CVT11の始動時プーリ比I(ギヤ21,25,26,30等のファイナルギヤ比も当然に考慮される)に基づき入力軸の始点トルクStが算出される。
【0058】
更に、図11及び図12(B)に示すように、エンジン(又はモータ)の最良効率曲線(最良燃費曲線;エンジン理想曲線)Bと等出力曲線の交点から、各アクセル開度θにおける終点回転数En及び終点トルクEtが求められる。なお、図11において、Aはエンジン最高出力(アクセル開度100%)における出力特性であり、Bは各アクセル開度における最良効率(燃費)点を結んだエンジン理想特性であり、Cはモータジェネレータの最高出力特性であり、Dは該モータの最良効率を示すモータ理想特性である(該モータの効率は、回転数が低くかつトルクが大きい発進時を対象しているため、銅損のみを考慮している)。
【0059】
そして、本モータジェネレータ発進制御にあっては、SOCが所定容量例えば40%以上、即ちモータジェネレータ2を使用することが可能なバッテリ残存容量がある場合であるので、図11及び図12(C)に示すように、SOCによりエンジン始動点Seが設定される(S12)。例えば、SOCが50%の場合、図11において該50%の等出力曲線とエンジン理想曲線Bとの交点がエンジン始動点Seとなり、即ち図12(C)に示すように、エンジン始動回転数Senは1730rpm、エンジン始動トルクSetは8.3Kgf・mとなる。
【0060】
そして、CVT操作手段79を操作して、プーリ比IがギヤニュートラルGN点(例えば0.677)から所定量前進域にずれた所定低速値(始動位置)、例えば0.7に設定され、該プーリ比I、即ち無段変速機M18の変速比を該低速値に保持した状態で、コントローラ77によりモータジェネレータ2の駆動を開始する(S13)。該モータジェネレータは、図11に示すように、アクセル開度θに基づき上記決定された所定トルクを出力するように、一定トルクに保持した状態で出力回転数Nmを増加するように制御される(図12に各アクセル開度における点線で示す横方向に制御する)。該モータジェネレータ2の回転数Nmの増加は、前記ステップS12にて決定されたエンジン始動回転数Senまで続く(S14)。該モータジェネレータ2の出力により車輌は発進する。
【0061】
ついで、モータジェネレータが、同時に変更・設定されるプーリ比Iに基づくIVT18の変速比に対応して、前記必要駆動動力Fを保持するに必要な出力トルクと、エンジン始動トルクSetに収束させる所定値αを足して、コントローラ78によりトルクを増加制御する(S15)。即ち、図11において、各アクセル開度に対応するトルクから、エンジン始動点Seに向ってモータ出力トルクを点線で示す垂直方向に上昇する。
【0062】
具体的には、プラネタリギヤ19及び定速伝動装置16等にて決められるギヤ比及び効率から求められる定数をa、b、c、モータトルクTmの上昇に拘らず入力軸回転数を一定数とするCVTのプーリ比をI(後述)、エンジン始動トルクSetに収束させるための設定値をα、前記必要駆動力をFとすると、モータジェネレータの出力トルクTmは、Tm=[F/c/{a−(b/I)]+αにて設定される。
【0063】
更に同時に、CVT11のプーリ比Iが大きくなる方向(U/D方向)に、従ってセカンダリプーリ9からプライマリプーリ7方向にトルク伝達されるL モードにあっては、IVT18全体(=無段変速機M)としてはO/D方向に、CVT操作手段80により変速制御され、車速が増速する(S16)。この際、上記モータジェネレータ2のトルク増加制御に伴い、その回転数Nmも増加しようとするが、上記IVT18の変速制御により、プライマリ軸回転数センサ72にて検出される前記モータ回転数Nmは、前記エンジン始動点Seにて設定されるエンジン始動回転数Senを維持するように、CVT11のプーリ比IがU/D側に変速される。上記ステップS15によるモータジェネレータのトルク制御とステップS16によるCVTの制御とは同時にかつ互に関連して、モータトルクTmの増加とIVT18のO/D側への変速がタイミングを合せて行なわれ、必要駆動力Fが維持されつつ、車速が増大する。
【0064】
そして、上記モータ出力トルクTmがエンジン始動トルクSetまで上昇すると(S17)、入力クラッチ操作手段79により入力クラッチ6を接続して、モータジェネレータ2の動力により内燃エンジン1を始動する(S18)。
【0065】
また、上記モータジェネレータの動力を用いずに、補機39のスタータモータにて内燃エンジン1を始動することも可能であるが、モータジェネレータ2を用いることにより、いわゆる押しかけ状態となって、スタータモータによる異音の発生等を生じることなく、滑らかにかつ良いフィーリングでエンジン始動を行うことができる。
【0066】
そして、エンジン始動後は、図11に示す各アクセル開度に応じたエンジン理想曲線により、最良効率(最良燃費)になるように、電子スロットルシステム77によりエンジン1が制御されると共に、該エンジン1が理想曲線上を運転し得るように、CVT操作手段80及びモード切換え手段81によりIVT18が制御される(S19)。なお、上述説明は、アクセル開度θが一定状態に保持される状態を述べたが、急加速の要求等でアクセル開度が発進制御中に変化する場合も、該アクセル開度に応じて、必要駆動力F、始点S及び終点Eが順次変更決定され(S11)、該変更された設定値に基づき上述フローチャートに沿って制御される。
【0067】
ついで、前記エンジン主体発進制御(S5)について、図13ないし図16に沿って説明する。該エンジン主体発進制御は、SOCがモータジェネレータを使用するに足りるだけ充分でない場合であって、まず、内燃エンジン1が始動される(S25)。この際、該エンジンの始動は、補機39のオルタネータに基づくスタータモータにより行なわれるが、前記モータジェネレータ2により行ってもよい。また、該エンジン主体発進制御にあっては、入力クラッチ6は接続状態に保持される。
【0068】
そして、車輌停止状態にあっては、IVT18はギヤニュートラル(GN)位置にあって、前記エンジン1はアイドリング状態にあり、該アイドリング回転に合せるように、モータジェネレータ2は、コントローラ79により目標速度制御される(S26)。なおこの際、図15のG点に示すように、モータジェネレータの出力は殆どなく、バッテリの消費量は僅かである。また、図15にあって、エンジンの最大出力特性、Bは最良効率(理想)特性、Cはモータジェネレータの最大出力特性、Eは等効率線、Fは等スロットル開度による特性を示し、かつ縦軸はエンジン(又はモータ)トルクTe(Tm)、横軸はエンジン(又はモータ)回転数Ne(Nm)を示す。
【0069】
そして、アクセル開度がON、即ち全閉スイッチがOFFになると(S27)、電子スロットルシステム77により所定スロットル開度θが設定される(S28)。該スロットル開度は、ドライバによるアクセル開度θとは異なる比較的大きい値に設定され、更に同時に、コントローラ78により、モータジェネレータ2が所定目標回転数になるように速度制御される(S29)。この際、前記電子スロットルシステムによるエンジン制御により、エンジン回転数は直ちに上昇しようとするが、上記モータジェネレータ2の制御により目標回転数Neoになるように制御され、かつ該エンジン出力は、モータジェネレータ2による発電として回生される。また、図15及び図16に示すように、上記エンジン及びモータジェネレータの制御により、エンジンは、始動位置S、即ち回転数Neo、トルクTeoとなる。
【0070】
更に、前記センサ75によるアクセル開度θ、即ちドライバの要求トルク及びセンサ74による車速が読込まれる(S30)。そして、コントローラによるモータジェネレータの制御が、上述した目標速度制御から、電流制御に基づくトルク制御に切換えられる(S31)。即ち、図16に示すように、ステップS29による目標速度制御を停止し、その時のモータジェネレータ出力トルク(負方向)Teoを目標値Tmoとするトルク制御に切換えられる。更に、車輌が停止している場合(S32)、IVT18がギヤニュートラル位置GN(例えば0.677)から僅かに前進方向にずれた低速位置(始動位置)Ieoになるように、IVT18の変速比IeがCVT操作手段80により制御される(S33)。なお、上述したようにLモードにあっては、IVT18は、セカンダリプーリ9からプライマリプーリ7に向けて動力伝達するため、上記IVT18の変速比IeのO/D側への変速はCVT11のプーリ比IをU/D側に変速制御することにより行なわれる。
【0071】
そして、上記IVT18の始動位置Ieo(例えばプーリ比I=0.7)に基づき、車輌が発進すると(S32のNO)、ステップS30にて読込まれる車速に対して、センサ71にて検出されるエンジン回転数Neが前記始動位置Neoに一定に保持されるように、IVT18の変速比Ieが算出され、かつCVT操作手段80により該変速比になるように制御される(S34)。更に、アクセル開度θに基づく車輌必要駆動力Fになるように、コントローラ77にてモータジェネレータの出力トルク(負方向)Tmが制御される。
【0072】
即ち、図16に示すように、エンジンは、電子スロットルシステム77による所定スロットル開度θに一定保持され、エンジン回転数Neが初期値Neoに一定保持されるように、車速vに対応してIVT18の変速比IeがO/D方向(減少する方向)に変速制御されると共に、エンジン出力トルクTeが初期値Teoに一定保持され、かつアクセル開度に対応する必要駆動力Fとなるように、モータジェネレータがトルクTmが負方向に回生制御される。これにより、入力軸8への入力トルクは、一定のエンジントルクTeoからモータジェネレータに作用する回生トルク(−Tm)の和(Teo−Tm)となり、該モータジェネレータの負方向トルク−Tmを徐々に減少して、エンジンの出力トルクの内の入力軸3に伝達するトルク分を徐々に増大し、IVT18のO/D側変速に対応する。
【0073】
そして、IVTの変速比Ieがより大きくなって所定変速比Ieになると(S36)、前記モータジェネレータのトルク制御は停止され(Tm=0)(S37)、これによりエンジンを一定出力に保持した上記発進制御が停止され、以降、前記ステップS19と同様に、エンジンを最良効率特性(理想曲線)Bに沿って制御する通常走行制御となる(S38)。
【0074】
なお、上述実施例は、無段変速機としてギヤニュートラルGNを有するIVTを用いたが、単なるCVTを用いるもの又はトライダル方式の無段変速装置を用いるものにも同様に適用することができる。
【図面の簡単な説明】
【0075】
【図1】本発明を適用し得るハイブリット駆動装置を示す概略図。
【図2】その無限変速機構(IVT)を示す正面断面図。
【図3】その速度線図。
【図4】各クラッチの係合状態を示す図。
【図5】そのベルト式無段変速装置(CVT)のトルク比に関するIVTの出力トルクの変化を示す図。
【図6】そのCVTのトルク比に関するIVTの出力回転数の変化を示す図。
【図7】本発明に係る制御装置を示すブロック図。
【図8】本発明に係る発進制御を示すメインフローチャート。
【図9】そのモータジェネレータ主体発進制御によるフローチャート。
【図10】アクセル開度と駆動力の関係を示す図。
【図11】内燃エンジン及びモータジェネレータの特性を示す図。
【図12】(A),(B),(C)は、それぞれ異なる値を設定するマップを示す図。
【図13】エンジン主体発進制御によるフローチャート。
【図14】その続きを示すフローチャート。
【図15】エンジンの特性(トルク−回転数)を示す図。
【図16】エンジン主体発進制御によるタイムチャート。
【符号の説明】
【0076】
1 内燃エンジン
1a,1b 出力軸
2 モータジェネレータ
2a ロータ
6 入力クラッチ
7 プライマリプーリ
8 プライマリシャフト(第1軸、入力軸)
9 セカンダリプーリ
10 オイルポンプ
11 (ベルト式)無段変速装置(CVT)
15 セカンダリシャフト(第2軸)
16 定速伝動装置
18 無限変速機構(IVT)
19 プラネタリギヤ
19c 第1の回転要素
19s 第2の回転要素
19r 第3の回転要素
75 アクセル開度センサ
76 バッテリ残存容量(SOC)センサ
77 電子スロットルシステム
78 モータジェネレータ用コントローラ
85 発進制御手段
85a バッテリ残存容量(SOC)制御手段
85b モータジェネレータ主体制御手段
85c エンジン主体制御手段
M 無段変速機

【特許請求の範囲】
【請求項1】
モータジェネレータと、無段変速機と、を備え、内燃エンジン及び/又はモータジェネレータの出力を前記無段変速機を介して駆動車輪に伝達し、また前記内燃エンジンの出力により前記モータジェネレータにて発電してバッテリに充電してなる、ハイブリット駆動装置において、
内燃エンジンの出力軸と前記無段変速機の入力軸との間に介在する入力クラッチと、
前記バッテリの残存容量が所定値以上かを判断するバッテリ残存容量判断手段と、
前記入力クラッチを切った状態で前記モータジェネレータの出力を直接前記無段変速機の入力軸に伝達して車輌を発進制御し、かつ該車輌の走行状態で前記入力クラッチを接続して前記内燃エンジンを始動するモータジェネレータ主体制御手段と、
前記入力クラッチを接続した状態で前記内燃エンジンの出力に基づき発進制御するエンジン主体制御手段と、を備え、
前記バッテリ残存容量判断手段が前記所定値以上と判断した場合、前記モータジェネレータ主体制御手段を機能し、また前記所定値以下と判断した場合、前記エンジン主体制御手段を機能してなる、
ことを特徴とするハイブリット駆動装置における発進制御装置。
【請求項2】
前記内燃エンジンの所定特性は、該エンジン出力が最良効率となる特性である、
請求項1記載のハイブリット駆動装置における発進制御装置。
【請求項3】
前記内燃エンジンを前記モータジェネレータにて始動してなる、
請求項1記載のハイブリット駆動装置における発進制御装置。
【請求項4】
前記モータジェネレータ主体制御手段は、ドライバの操作によるアクセル開度に基づき必要駆動力を算出して、該必要駆動力により発進開始時における始点回転数及び始点トルクを決定し、
前記内燃エンジンの所定特性及び前記バッテリの残存容量に基づき該内燃エンジン始動時における回転数及びトルクを決定し、
前記無段変速機を所定低速位置に保持した状態で、前記始点トルクにより前記モータジェネレータの回転数を増加して発進し、
該モータジェネレータの回転数が前記エンジン始動時回転数になると、該モータジェネレータの出力トルクを増加すると共に、前記始動時回転数を保持するように前記無段変速機を変速操作し、
そして前記モータジェネレータの出力トルクが前記エンジン始動時トルクになると、前記入力クラッチを接続して前記内燃エンジンを始動してなる、
請求項1記載のハイブリット駆動装置における発進制御装置。
【請求項5】
前記エンジン主体制御手段は、前記入力クラッチを接続した状態で、ドライバのアクセルオン操作により前記内燃エンジンを所定スロットル開度による所定回転数及び所定トルクにて運転すると共に、前記モータジェネレータを、前記所定回転数に合うように目標速度制御して前記エンジンの出力トルクを該モータジェネレータに吸収し、
更に前記モータジェネレータをトルク制御に切換え、前記アクセル操作によるアクセル開度及び車速に基づき前記モータジェネレータが吸収するトルクを減少するように制御して前記内燃エンジンの出力トルクを前記無段変速機に入力すると共に、該無段変速機を、前記内燃エンジンが前記所定回転数及び所定トルクを保持するように変速操作してなる、
請求項1又は4記載のハイブリット駆動装置における発進制御装置。
【請求項6】
前記無段変速機は、プライマリシャフトとセカンダリシャフトとの間に配置されこれら両シャフト間のトルク比を無段に変速する無段変速装置と、
前記無段変速装置のプライマリ側に連動する第1の回転要素、該無段変速装置のセカンダリ側に連動する第2の回転要素、前記第1の回転要素及び第2の回転要素の回転をトルク循環を生じる状態で合成して駆動車輪に出力する第3の回転要素を有するプラネタリギヤユニットと、を有し、前記無段変速装置を、前記第3の回転要素がニュートラル位置となるように自己収束するニュートラル制御と、該ニュートラル位置から無段に変速する変速制御とを行う無限変速機構と、を備えてなる、
請求項1ないし5のいずれか記載のハイブリット駆動装置における発進制御装置。
【請求項7】
前記モータジェネレータのロータを前記プライマリシャフトに直接的に連動し、かつ前記内燃エンジンの出力軸と前記プライマリシャフトとの間に前記入力クラッチを介在してなる、
請求項6記載のハイブリット駆動装置における発進制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2006−298363(P2006−298363A)
【公開日】平成18年11月2日(2006.11.2)
【国際特許分類】
【出願番号】特願2006−102594(P2006−102594)
【出願日】平成18年4月3日(2006.4.3)
【分割の表示】特願平9−336155の分割
【原出願日】平成9年12月5日(1997.12.5)
【出願人】(000100768)アイシン・エィ・ダブリュ株式会社 (3,717)
【Fターム(参考)】