説明

並列経路可変トランスミッション用のハンティング防止システムおよび方法

【課題】並列経路可変トランスミッション用のハンティング防止システムおよび方法を提供する。
【解決手段】トランスミッションギヤ比の振動をほぼ制御するためのシステムおよび方法が開示される。シフトが、実質的に、ハンティング防止ヒステリシススキームを非実用的にする同期点で行われた場合、開示される技術の任意の組み合わせにより、無効にすることができるロックアウトタイマによる振動制御が可能になり得る。振動制御について、勾配ナビゲーションおよび他の同様の負荷シナリオ中に、いくつかの作動基準が満たされた場合、トランスミッションを選択的にロックし得る。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、流体静力学的トルク制御トランスミッション、より詳しくは、並列経路可変トランスミッションのギヤトレインの振動を制御するためのハンティング防止システムおよび方法に関する。
【背景技術】
【0002】
モータ、エンジン、タービン等のような多数の回転動力源のトルクとRPMとの関係の故に、このような動力源を有用な負荷部に連結するドライブトレインによって、機械を推進させるか、器具を駆動するかまたは他の作業を行うための利用可能な異なるギヤ比が提供される。ドライブトレインは、所定のギヤ比で作動させるための出力トルクと角速度との関係(毎分回転数「RPM」における)に依存する。典型的に、動力源および/または負荷部の速度により、負荷部を駆動するための適切なギヤ比が決定される。多数のシステムにおいて、ドライブトレインまたはトランスミッション制御装置は、操作者の介入なしにこの選択を自動的に行う。
【0003】
ギヤ比の自動選択は、操作者の観点から多くの場合好都合であるが、ギヤトレインの振動を発生させることがある。このような振動は、代わりに、直前のギヤ比を選択したことを示すシフト直後の状態時に発生する。例えば、2つのギヤ比の間の適切なシフト点を決定するためにエンジン速度が用いられるシステムを考慮する。加速中にシフト点に達したときに、すなわち、エンジン速度を増加させたときに、より大きいギヤ比にシフトすることにより、エンジン速度が、シフト点よりも低い速度に減少する。次に、このことにより、制御装置が、より小さいギヤへのシフトバックを行う。しかし、ここで、エンジンは無負荷状態であり、またエンジン速度はシフト点を通過して増加し、制御装置は、より大きいギヤへのシフトバックを行う。
【0004】
このような振動は、非効率的かつ不快であることがあり、また再構成中にドライブトレインおよびエンジンの有用な寿命を短くする可能性がある。それに応じて、当該技術分野では、速度が制御されるトランスミッションのギヤトレインの振動の問題に対処するために、いくつかの改善策が作成された。典型的に、トランスミッション制御装置は、ギヤ間のシフト点がアップシフト点とダウンシフト点とに分かれ、アップシフト点が、ダウンシフト点よりも高いエンジン速度にあるヒステリシスアルゴリズムを実施する。このようにして、アップシフト後にエンジンが僅かに減速した場合、より低いダウンシフト点を通過する程度に、エンジンが負荷状態でない限り、迅速なダウンシフトは行われない。同様に、ダウンシフト後にエンジンが無負荷状態であった場合、より高いアップシフト点を通過する程度に、エンジンが無負荷状態でない限り、迅速なアップシフトは行われない。
【0005】
しかし、ヒステリシスシフトアルゴリズムを用いることは、並列経路可変トランスミッションの振動を制御するのに有効でない。これらのトランスミッションにおいて、可変方向の流体静力学的要素は、いくつかの分配トルクトランスミッションにおけるようなギヤトレインを駆動する。可変速油圧ポンプおよび油圧モータからなるハイドロスタティックトランスミッションの一例が、クラス(Kuras)らへの(特許文献1)および(特許文献2)に開示されている。
【0006】
このようなトランスミッションにおいて、シフト点により、バリエータ加速度の方向が逆になる。このようにして、任意の2つの比率の間のダウンシフト点およびアップシフト点が単一であり、すなわち、それらの点の両方が、本質的に同一のRPM(または変速比)にあるように、シフト点が必ず定められる。このことは、より広範囲の動力源速度にわたってシフトを適切に行い得る上述のような他のトランスミッションタイプとは対照的である。したがって、多数のトランスミッションタイプに用いられるハンティング防止ヒステリシスアルゴリズムは、一般に、並列経路可変トランスミッションには非実用的である。
【0007】
上述の背景技術の説明は、読者を助けるためにのみ意図される。このことは限定することを意図するものではなく、したがって、従来のシステムの任意の特定の要素が使用に不適切であることを示していると解釈すべきではなく、さらに、任意の要素が、動機付けの問題を解決することを含めて、本明細書に記載した新規な方法を実施するのに不可欠であることを示すように意図されない。本明細書に記載した新規な方法の実施および用途は、特許請求の範囲によって定義される。
【0008】
【特許文献1】米国特許第6,385,970号明細書
【特許文献2】米国特許第6,424,902号明細書
【発明の開示】
【課題を解決するための手段】
【0009】
一形態では、バリエータ入力とトランスミッション出力とを有する分配トルクトランスミッションを制御するための方法は、ドライブトレインの振動状態を少なくとも部分的に回避する。分配トルクトランスミッションは、選択可能な複数の連続作動範囲を有し、隣接する作動範囲は、同期点によって分割される。別の形態では、本方法は、第1の作動範囲でトランスミッションを作動させるステップと、トランスミッションの出力比が現在の作動範囲と第2の作動範囲との間の第1の同期点に達したことを検出するステップとを含む。次に、本方法により、トランスミッションが、実質的に同期点において、第1の作動範囲から第2の作動範囲にシフトされ、またタイマが終了するまでトランスミッションの次のシフトを防止するように、ロックアウトタイマがセットされる。さらに、本方法により、ロックアウトタイマをセットした後に、出力比が第1の同期点に向かって戻っているかどうかが決定される。そうであるならば、このような傾向が生じ、また出力比が所定のしきい値を超えた場合、本方法により、タイマが終了する前にシフトを許容するように、ロックアウトタイマが無効にされる。
【発明を実施するための最良の形態】
【0010】
本開示は、「ハンティング」としても知られている、繰り返しのおよび/または不要な連続的なアップシフトおよびダウンシフトによるトランスミッションギヤ比の振動を制御するためのシステムおよび方法に関する。本発明は、ヒステリシスシフトアルゴリズムを用いることが非実用的であるかまたは望ましくない並列経路可変トランスミッション等のシステムに特に有用である。これらのトランスミッションでは、より広範囲の作動条件にわたるよりも、同期点でシフトを行うことが望ましい。このために、簡単なハンティング防止ヒステリシススキームはほとんど非実用的である。
【0011】
本開示は、ヒステリシス限界に依存することなく振動制御を行う1つ以上の技術の組み合わせを用いて、並列経路可変トランスミッション等のハンティングを制御するためのシステムを示している。例えば、同期点で第1の作動範囲から第2の作動範囲にシフトした後に、制御装置は、タイマが終了するまでトランスミッションの次のシフトを防止するように、ロックアウトタイマをセットする。さらに、システムは、必要な場合にタイマのロックアウトを無効にするための機構を提供する。例えば、シフト後、出力比が先の同期点に向かって戻って安定し、出力比がしきい値を超えた場合、制御装置は、ロックアウトタイマを無効にし、またタイマが終了する前にシフトを許容することが可能である。追加形態および代替形態は、以下のものを考慮すれば明らかになるであろう。
【0012】
図1は、本明細書に記載した実施例と共に使用可能なバリエータ駆動要素を使用する分配トルク伝達系100の概略図である。動力伝達系100は、エンジン101、バリエータ104およびトランスミッション103等の動力源を含む複数の主要素を備える。エンジン101およびバリエータ104は、個々の入力シャフト106と107を介してトランスミッション103に連結される。エンジン101は、入力109を介してバリエータ104を駆動する。さらに、エンジン101は、バリエータ104を含む複数の要素に加圧作動油を供給する油圧ポンプ102を駆動する。バリエータ104は、トランスミッション入力速度センサ112とトランスミッション出力速度センサ113とを含む。
【0013】
バリエータの入力109と出力107とのトルク関係および速度関係は、図2を参照して簡単に説明されるように制御装置105によって制御される。図2は、図1に概略的に示されているような動力伝達系と共に使用可能なバリエータ104の詳細図である。図2を参照するに、バリエータ104はポンプ200とモータ201とを備える。ポンプ200は、斜板アクチュエータ203によって設定される可変角斜板202を備える。個々の室内の複数のピストン204は、それらのピストンの移動範囲が、斜板202の角度によって設定されるように、摺動接触によって斜板に乗る。ピストン204用の室は、ポンプ入力シャフト208を介して回転されるポンプキャリア207内に形成される。
【0014】
モータ201は、個々の室内の複数のピストン205を含む同様の装置を備える。モータ201のピストン205は固定斜板206に摺動可能に係合される。ポンプ200のピストン204の室は、室および介在導管(図示せず)を満たす作動油を介してモータ201のピストン205の室と流体連通する。ピストン205用の室は、モータ出力シャフト210を回転させるモータキャリア209に形成される。斜板202の角度が変更されたときに、モータ200のピストン204によって移動される流体量(したがって、ピストン205の室から受け入れられるかまたは引き出される流体容量)が変化する。
【0015】
これらの相関関係により、モータ201のトルクおよび/または出力速度は、斜板202の角度に対して本質的に比例して変化する。この例において差動油圧で作動する斜板アクチュエータ203は、制御装置105によって電子制御されるソレノイド弁(図示せず)、例えば、2つの圧力値のそれぞれのためのソレノイド弁を介して駆動される。このようにして、制御装置105は、斜板アクチュエータ203に関連付けられたソレノイド弁に電気信号を印加することによって、バリエータ104の出力速度(および/またはトルク)を制御する。
【0016】
再び図1を参照するに、制御装置105は、シフトしたときを決定するのに必要なトランスミッションデータ、例えば、トランスミッション入力速度信号およびトランスミッション出力速度信号を受信するための少なくとも1つの電子センサ入力110を含む。さらに、制御装置105は、例えば、クラッチソレノイドを制御することによってまたは他の方法で変速範囲を制御するための少なくとも1つの電子範囲出力111を含む。制御装置105は、本明細書に記載したステップおよび計算を実行するように適合された包含されているプロセッサによって作動される。制御装置は、プロセッサを介して、ROM、RAM、フラッシュメモリ、および光学的、磁気的または電子的である他の種類の媒体等のコンピュータ読み取り可能な媒体に記憶されたコンピュータ実行可能なコード、すなわち命令を実行することによって作動し得る。
【0017】
トランスミッション103は、負荷部を駆動するために出力パワーを出力シャフト108に供給する。当業者によって理解されるように、出力シャフト107の回転速度、例えばRPMは、入力シャフト106、107の速度および方向、ならびにトランスミッション103の現在の範囲設定を含むいくつかの要因に基づく。このようにして、所定の選択範囲について、出力シャフト108の速度は当該範囲の最小速度から当該範囲の最大速度まで変化する。現在の範囲によって許容された出力速度よりも高いかまたは低い出力速度を達成するように、変速範囲が選択的に変更される。
【0018】
この種類の変速では、範囲変更が同期であり、このことは、範囲変更の時点において、内側回転要素または外側回転要素が速度を変化させないことを意味する。しかし、範囲変更後に、入力シャフト106の速度および方向と出力シャフト107の速度との関係は、時に同期点と呼ばれるシフト点の値を除いて、これらのパラメータの全ての値に対して異なるであろう。さらに、バリエータ104のトルクはシフト点で符号(sign)を変化させる。
【0019】
この機能については、図3を参照してより良く説明する。図3は、並列経路可変(PPV)トランスミッション用の簡略化した出力比プロット300(速度図としても知られている)である。出力比プロット300は、異なる変速範囲にわたるバリエータポンプの押しのけ容積比またはモータ比に対するトランスミッション出力シャフト比(例えばシャフト107と108の速度比)に関連する。それぞれの変速範囲により、出力速度の特定の範囲301、302、303が可能になる。それぞれのシフト点304、305において、隣接する範囲の出力速度曲線は水平寸法に沿って重複する。例示した実施例では、範囲301と302の間のシフトが同期であり、一方、範囲302と303の間のシフトが非同期であることが理解される。このようにして、例えば、シフト点304において、範囲301または302のいずれが選択されても、エンジン速度、バリエータ速度および出力速度は同一である。したがって、その点304においてのみ、範囲301と302の間のシフトを円滑に行うことができる。
【0020】
図4には、トランスミッション特性曲線に重ねられた理想化された追加のバリエータ速度経過曲線(図4に破線で示されている)を有する、図3のシフト動作と同様のプロットであるPPVトランスミッション用の理想化されたシフト動作が示されている。図4から理解できるように、この例では、ゼロ出力速度から開始して、実際のバリエータ速度は負である。バリエータ速度が正方向に増加すると、トランスミッション出力速度が増加する。シフト点304に達すると、変速範囲シフトおよびバリエータ速度はゼロに向かって減少し始める。このときに、出力速度は増加し続ける。範囲302の中間において、バリエータ速度はゼロを横切って、負方向に増加し始める。この時間中も、出力速度は増加し続ける。シフト点305に達すると、変速範囲シフトおよびバリエータ速度は、その正の最大値の近くの値になり、次に、出力速度が増加し続けるとゼロに向かって減少する。
【0021】
図5に示されている理想化されたダウンシフト動作は、単に、理想的なバリエータ経過曲線を表す破線の矢印の方向で示されているように、理想化されたアップシフト動作の逆である。特に、バリエータ速度がその正限界と負限界との間で円滑に変化すると、範囲変更がシフト点で行われて、出力速度がゼロに向かって円滑に減少する。
【0022】
図6は、ドライブトレインの振動または「ハンティング」の問題を例示するために、第1のシフト点304および第2のシフト点305の近くの非理想的なバリエータ速度軌跡に重ねられた、図3の簡略化した特性出力比プロット300である。この例では、バリエータ速度が範囲301の正方向に増加すると、出力速度が増加する。出力速度がシフト点304に達した場合、シフトは自動的に行われ、システムは範囲302の特性曲線を有する。しかし、シフトに続いて、例えば、負荷の突然の増加により、出力速度が低減または「低下」される。このことは、例えば、グレーダが大きな石または小山に衝突したときに、またはドリルビットが岩または他の硬い物質の地層に衝突したときに生じる可能性がある。
【0023】
負荷が増加されて、出力速度が減速された結果として、トランスミッションは、経路部分306によって示されているように、より低い出力速度に向かって範囲302の曲線に沿って後退される。このことは、制御装置によってシフトが防止された場合に、バリエータ速度の正限界(+最大値)を超えてバリエータ速度を押し上げる可能性がある。代わりに、これらの状態下でギヤ比が段階的に変化することにより、許容されたシフトがドライブトレインの衝撃を発生させる可能性がある。同種の状態により、シフトダウン直後に負荷の突然の減少が生じることがある。
【0024】
図6のプロット300の範囲307には、シフト点の近くの不規則なおよび潜在的に有害な他の種類の動作が示されている。このことは、シフト点後にアップシフトが行われた場合に生じる。このようなシフトは、エンジンのオーバースピードまたはアンダースピードおよび/またはバリエータ内のデストローク(すなわち押しのけ容積の変化)によって非効率性をもたらす。
【0025】
したがって、別個のシフト点を有する分配トルクトランスミッション等の動力伝達系内において、一般に、適切なシフト点でシフトすることと、引き続き負荷状態または無負荷状態が生じたときにドライブトレインの過度のハンティングまたは振動を回避することが望ましい。そのために、一例において、出力速度と入力速度との比率の傾向および実際値に基づくシステム制御、ならびに指示されている所望の出力速度とバリエータ出力回転方向とに基づくシステム制御に関連して、タイマが使用される。さらに、いくつかの例において、トランスミッションを特定の範囲または比率にロックし得る。
【0026】
これらのおよび他の模範的な技術について、図8と図9の出力速度プロットと共に図7のフローチャートを参照して説明する。しかし、異なる実施方法が、記載した制御および技術の全てまたは一部のみを用いることが理解される。図7のフローチャートおよび図8と図9のプロットは、上述のような動力伝達系を想定しているが、記載した技術が複数の他の動力伝達系に対して適用可能であることが理解される。
【0027】
フローチャート700の段階701において、トランスミッションは、図8の範囲801として示されている第1の範囲にある。トランスミッション制御装置は、バリエータ斜板を作動させてバリエータ出力速度を確実に増加させ、このようにして、トランスミッション出力の速度を増加させる。段階702において、トランスミッション出力速度は第1の同期点802に達する。このようにして、段階703において、制御装置は、バリエータ出力に基づくトランスミッション出力速度のプロットが範囲803の曲線に対してシフトするように、変速範囲をシフトさせる。
【0028】
シフト後に、制御装置は段階704でロックアウトタイマをセットする。シフトとロックアウトタイマのセットとに続いて、トランスミッションの作動状態は、段階705におけるダウンシフトが望ましいことを示している。
【0029】
段階706において、制御装置は、ロックアウトタイマが終了したかどうかを決定する。ロックアウトタイマが終了したことが決定された場合、プロセスは段階707に進行し、シフトが許容される。さもなければ、プロセスは段階708に進行する。段階708において、制御装置は、バリエータ出力速度とトランスミッション出力速度との比率が、例えば、1回のみの実行のような予め規定されたシフト点に向かい、所定の第1のしきい値、例えばしきい値804を超えて戻ったかどうかを決定する。上述のように、例えば負荷の突然の増加等のいくつかの理由により、シフト点に向かって戻る傾向が生じる場合がある。比率の所定数のサンプル(例えば10個のサンプル)を取り、また予め規定されたシフト点に向かうこのようなサンプルの単調な経過を検出することによって、傾向を検出し得る。
【0030】
段階708において、トランスミッション出力速度とエンジン速度との比率が、予め規定されたシフト点に向かい、第1のしきい値を超えたことが決定された場合、プロセスは段階707に進行してシフトを許容する。さもなければ、プロセスは段階709に進行する。段階709において、制御装置は、トランスミッション出力速度とエンジン速度との比率が、シフト点を超えて所定の第2のしきい値、例えばしきい値900を超えたかどうかを決定する。段階709において、トランスミッション出力速度とエンジン速度との比率が所定の第2のしきい値を超えたことが決定された場合、プロセスは段階707に進行してシフトを許容する。
【0031】
さもなければ、プロセスは段階710に進行する。段階710において、制御装置は、所望の出力速度と実際の出力速度との比率が、所定時間、例えば4秒よりも長く、より小さかったかまたはより大きかったかどうかを決定する。段階710において、所望の出力速度と実際の出力速度との比率が、所定時間よりも長く、より小さかったかまたはより大きかったことが決定された場合、プロセスは段階707に進行してシフトを許容する。
【0032】
さもなければ、プロセスは段階711に進行する。段階711において、制御装置は、シフト後にバリエータ出力速度が逆方向になったかどうかを決定する。段階711において、バリエータ出力速度が逆方向になったことが決定された場合、プロセスは段階707に進行してシフトを許容する。さもなければ、プロセスは段階712に進行し、シフトが許容されない。
【0033】
図7〜図9を参照して説明した技術に加えて、トランスミッションが、いくつかの状態中に、例えば、グレーダで上り坂を登っている間に振動しないことを保証するために、追加の技術を用いることが可能である。一例では、プロセス700の段階707でシフトを許容する前に、制御装置は、図10のフローチャートによって示されている追加の振動防止プロセス1000を実行する。段階1001において、制御装置は、トランスミッションが、所定時間(評価時間)y(例えば2秒)において所定数xの回数(例えば2回)よりも多く、第1の範囲と第2の範囲との間でシフトされたかどうかを決定する。トランスミッションが、y秒においてx回よりも多く、第1の範囲と第2の範囲との間でシフトされたことが決定された場合、プロセスは段階1002に進行し、ここで、制御装置は、2つの範囲よりも低くトランスミッションをロックする。
【0034】
段階1003において、制御装置は、1つ以上の解除状態(exit condition)が生じたかどうかを決定する。解除状態の一例は、所定のしきい値Emaxを超えたエンジン速度である。加速器/減速器位置(操作者速度制御位置)、前進/後進セレクタ位置(操作者方向セレクタ位置)、バリエータ出力トルク、ならびに他の値およびパラメータも、解除状態を提供するために用いることが可能である。1つ以上の解除状態が生じたことが決定された(例えば所望の移動方向が変更された)場合、プロセスは段階1004に進行し、制御装置はトランスミッションをロック解除する。さもなければ、段階1003において、プロセスは解除状態の発生を待機し続ける。
【0035】
一実施形態では、それぞれのシフトの種類は、複数のシフトを伴ったプロセス決定で考慮される。この実施形態では、それぞれのハンティング防止解除の種類(anti−hunt exit type)(すなわち、ロックアウト状態の解除およびシフトの許容)は、それに関連するフラグを有し、この結果、例えば、傾向による解除は、それに関連する3つのフラグを有することが可能であり、またしきい値状態解除は、それに関連する2つのフラグを有することが可能である。この実施形態では、プロセスは、それぞれのフラグがいくつ生じたかを決定し、そして2つ以上のしきい値数が所定の時間量で生じた場合、システムは「ロックされ」、すなわち、別のシフトが防止される。この実施形態では、全ての種類の解除が計数されるとは限らない場合がある。例えば、操作者が現在の出力比の近くでまたそれ未満で操作者自身の足を振動させている場合、トランスミッション制御装置は、操作者が指示した作動を実現しようと試みることが可能である。一実施形態では、タイマについて同一のことが当てはまる。言い換えれば、操作者が指示したシフトコマンド自体が振動を発生させた場合、制御装置は、好ましくは、指示されている作動を実施しようと試みる。
【0036】
別の実施形態では、実際の変速比、および/または操作者が所望する変速比が、同期点で比率のある小さな範囲、例えば±2%内にあった場合、ロックアウトタイマが実際に無効にされる。このことは、シフト自体によって生じる機械的外乱により、出力比が、シフト直後に通常の小さな振動を発生させたときに行われるハンティング防止ステップの回避に役立つ。
【産業上の利用可能性】
【0037】
本明細書に記載したトランスミッション振動制御システムの産業上の利用可能性は、上述の説明から容易に理解されるであろう。ドライブトレインの振動を少なくとも部分的に回避するように、分配トルクトランスミッションのシフトが制御される技術が記載されている。分配トルクトランスミッションが、同期点において、隣接する作動範囲の間でシフトしたときに、タイマが終了するまでトランスミッションの次のシフトを防止するように、ロックアウトタイマがセットされる。しかし、種々のドライブトレイン構成部材のオーバースピードまたはアンダースピードによる損傷、不規則な作動等を回避するために、記載した技術により、いくつかの条件下で、ロックアウトタイマを無効にすることが許容される。例えば、シフト後に、出力比が、同期点に向かい、このようにして所定のしきい値を超え続けていた場合、トランスミッション制御装置はロックアウトタイマを無効にしてシフトを許容する。このようにして、本発明の技術は、必ずしもシフトを行わなくてもよく、いくつかの状況下で行い得るシフトを許容および拒絶できる。
【0038】
本開示は、シフトのための同期点を有するトランスミッション、例えば、重い産業機械に使用し得るようなPPVトランスミッションまたは分配トルクトランスミッションに適用できる。例えば、グレーダおよび他の重い産業機械は、本明細書の教示の適用から利益を受け得る。このような機械において、上述の教示を適用することにより、ユーザ経験を改善し、またドライブトレインの寿命を向上させることができる。記載したシステムにより、このような機械の操作者が、ドライブトレインの過度の振動を受けることなく、多様な作動条件下で機械を使用することが許容される。このようにして、例えば、凸凹のおよび/または平坦でない地面の上でグレーダを作動させることが可能であり、高負荷が発生したときにドライブトレインの振動を発生させることなく、機械の推進システムの可変負荷が提供される。同様に、重い産業機械は、勾配時に作動されることが可能であり、またドライブトレインの振動を発生させることなくシフトすることが可能である。それと同時に、第1のシフト直後に、第2のシフトが真に必要となった場合、記載したシステムにより、このようなシフトを行うことが許容される。
【0039】
上述の説明が、開示されるシステムおよび技術の実施例を示していることが理解される。しかし、本開示の他の実施が上述の実施例とは細部で異なり得ることが考えられる。本明細書の実施例に対する全ての引例は、当該箇所に記載されている特定の実施例を参照するために意図され、より一般的には、本開示の範囲またはその実施を限定することを意図するものではない。いくつかの特徴に関する、本開示の全文における相違点および欠点は、それらの特徴を選択しないことを示すために意図されているが、特に指示しない限り、特許請求の範囲からこのようなものを完全に排除しない。
【0040】
本明細書の値の範囲の列挙は、本明細書で特に指示しない限り、範囲内に含まれるそれぞれの別個の値を個々に指す略記法として用いられるために意図されているに過ぎず、またそれぞれの別個の値は、あたかも本明細書で個々に列挙されているかの如く、明細書に組み込まれている。本明細書で特に指示しない限り、または文脈により明確に否定されない限り、本明細書に記載した全ての方法を任意の適切な順序で行うことができる。
【0041】
したがって、本明細書に記載し、かつ本明細書に添付された請求項に記載した主題の修正および等価物は、適用可能な法則によって許容されると考えられる。さらに、本明細書で特に指示しない限り、または文脈により明確に否定されない限り、上述の要素の可能な全ての変更における上述の要素の任意の組み合わせが含まれる。
【図面の簡単な説明】
【0042】
【図1】記載した実施例に従ってハンティング防止方法を実施するための、シフト制御装置を含む動力伝達系の概略図である。
【図2】図1に概略的に示されているような動力伝達系と共に使用可能なバリエータの詳細図である。
【図3】並列経路可変(PPV)トランスミッション用の簡略化した出力比プロットまたは速度図である。
【図4】トランスミッション特性曲線に重ねられたバリエータ速度経過曲線を有するPPVトランスミッション用の簡略化した出力比プロットまたは速度図である。
【図5】トランスミッション特性曲線に重ねられたバリエータ速度経過曲線を有するPPVトランスミッション用の簡略化した別の出力比プロットまたは速度図である。
【図6】シフト点の近くの非理想的なバリエータ速度軌跡に重ねられた、図3のような簡略化した特性出力比プロットまたは速度図である。
【図7】図1のようなトランスミッションのハンティング動作を制御するためのプロセスを示したフローチャートである。
【図8】ドライブトレインの振動を防止するためのプロセスに従ったシフト過程に重ねられた簡略化した特性出力比プロットまたは速度図である。
【図9】ドライブトレインの振動を防止するための別のプロセスに従ったシフト過程に重ねられた簡略化した特性出力比プロットまたは速度図である。
【図10】図1のようなトランスミッションのハンティング動作を制御するための追加のプロセスを示したフローチャートである。
【符号の説明】
【0043】
100 分配トルク伝達系
101 エンジン
102 油圧ポンプ
103 トランスミッション
104 バリエータ
105 制御装置
106 入力シャフト
107 入力シャフト
107 出力シャフト
108 出力シャフト
109 入力
110 電子センサ入力
111 電子範囲出力
112 トランスミッション入力速度センサ
113 トランスミッション出力速度センサ
200 ポンプ
201 モータ
202 可変角斜板
203 斜板アクチュエータ
204 ピストン
205 複数のピストン
206 固定斜板
207 ポンプキャリア
208 ポンプ入力シャフト
209 モータキャリア
210 モータ出力シャフト
300 出力比プロット
301 特定の範囲
302 特定の範囲
303 特定の範囲
304 シフト点
305 シフト点
306 経路部分
307 範囲
700 フローチャート
701 段階
702 段階
703 段階
704 段階
705 段階
706 段階
707 段階
708 段階
709 段階
710 段階
711 段階
712 段階
801 範囲
802 第1の同期点
803 範囲
804 しきい値
900 しきい値
1000 振動防止プロセス
1001 段階
1002 段階
1003 段階
1004 段階

【特許請求の範囲】
【請求項1】
ドライブトレインの振動を低減するためにバリエータ入力と出力とを有する分配トルクトランスミッションを制御するためのトランスミッション制御装置であって、分配トルクトランスミッションが、第1の同期点によって分割された少なくとも2つの作動範囲を有するトランスミッション制御装置において、
トランスミッション入力速度信号とトランスミッション出力速度信号とを含むトランスミッションデータを受信するための少なくとも1つの電子センサ入力と、
変速範囲を制御するための少なくとも1つの電子範囲出力と、
実質的に、第1の作動範囲と第2の作動範囲との間にある第1の同期点で範囲出力を介して変速範囲をシフトし、タイマが終了するまで次のシフトを防止するようにロックアウトタイマをセットし、および、トランスミッションの作動が第1の同期点に向かって戻り、所定のしきい値を超えた場合に、タイマが終了する前に次のシフトを許容するようにロックアウトタイマを無効にすべく適合されたプロセッサと、
を備えるトランスミッション制御装置。
【請求項2】
少なくとも1つの電子センサ入力が、所望のトランスミッション出力速度を示す操作者入力信号を受信するようにさらに適合される請求項1に記載のトランスミッション制御装置。
【請求項3】
バリエータが油圧制御される請求項1または2に記載のトランスミッション制御装置。
【請求項4】
トランスミッション入力速度信号とトランスミッション出力速度信号とが周期的にサンプリングされ、そしてトランスミッション出力速度信号が所定数の連続サンプルのそれぞれの第1の同期点に向かって移動したときに、トランスミッションの作動が第1の同期点に向かって戻るとみなされる請求項1〜3のいずれか1項に記載のトランスミッション制御装置。
【請求項5】
入力速度が、第1の作動範囲にある所定の第2のしきい値に達した場合、タイマが終了する前に次のシフトを許容するために、プロセッサが、ロックアウトタイマを無効にするようにさらに適合される請求項1〜4のいずれか1項に記載のトランスミッション制御装置。
【請求項6】
操作者インターフェースで操作者から受けた入力に基づいて、所望の出力速度および所望の出力比の少なくとも一方を検出するように、また所望の出力速度および所望の出力比の一方が、実際の出力速度および実際の出力比の個々の一方と所定時間異なっていた場合、タイマが終了する前に次のシフトを許容するためにロックアウトタイマを無効にするように、プロセッサがさらに適合される請求項1〜5のいずれか1項に記載のトランスミッション制御装置。
【請求項7】
ロックアウトタイマをセットした後に、かつタイマが終了する前に、バリエータ出力速度が逆方向になった場合、タイマが終了する前に次のシフトを許容するために、プロセッサが、ロックアウトタイマを無効にするようにさらに適合される請求項1〜6のいずれか1項に記載のトランスミッション制御装置。
【請求項8】
評価時間中に第1の範囲と第2の範囲との間の複数のシフトを決定するように、また評価時間中に第1の範囲と第2の範囲との間の複数のシフトが所定の限界値を超えた場合、第1および第2の範囲よりも低くトランスミッションをロックするように、プロセッサがさらに適合される請求項1〜7のいずれか1項に記載のトランスミッション制御装置。
【請求項9】
解除状態が生じたことが決定された場合、プロセッサが、より低い範囲のトランスミッションをロック解除するようにさらに適合される請求項8に記載のトランスミッション制御装置。
【請求項10】
解除状態が、エンジン速度、操作者速度制御位置、操作者方向セレクタ位置、所望のバリエータ出力トルク、および実際のバリエータ出力トルクからなる群から選択されるパラメータに基づく請求項9に記載のトランスミッション制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−14201(P2009−14201A)
【公開日】平成21年1月22日(2009.1.22)
【国際特許分類】
【出願番号】特願2008−171136(P2008−171136)
【出願日】平成20年6月30日(2008.6.30)
【出願人】(391020193)キャタピラー インコーポレイテッド (296)
【氏名又は名称原語表記】CATERPILLAR INCORPORATED
【Fターム(参考)】