説明

中間層構造を有する厚い窒化物半導体構造、及び厚い窒化物半導体構造を製造する方法

【課題】基板上に成長されるGaN層は歪みを受ける可能性があり、歪みのレベルがある閾値を超えると、GaN層に亀裂が入る恐れがある。
【解決手段】半導体構造は、基板、前記基板上の核生成層、前記核生成層上の組成傾斜層、及び前記組成傾斜層上の窒化物半導体材料の層を含む。前記窒化物半導体材料の層は、前記窒化物半導体材料の層の中に間隔をおいて配置された複数の実質的に緩和された窒化物中間層を含む。前記実質的に緩和された窒化物中間層は、アルミニウム及びガリウムを含み、n型ドーパントで導電的にドープされ、また前記複数の窒化物中間層を含む前記窒化物半導体材料の層は、少なくとも約2.0μmの全厚を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体構造に関し、特に窒化物半導体構造及び関連する方法に関する。
【背景技術】
【0002】
半導体デバイスの製造では、基板又は下地層と整合しない格子である半導体材料を用いることができる。例えばGaNは、通常はサファイア基板、シリコン基板又は炭化ケイ素基板の上に製造される。GaNの無歪み格子定数は3.19であるが、サファイアの無歪み格子定数は4.76、炭化ケイ素は3.07である。結果として、基板上に成長されるGaN層は歪みを受ける可能性がある。そのような場合に歪みのレベルがある閾値を超えると、GaN層に亀裂が入る恐れがあり、そのため、材料を半導体デバイスに使用することが許容されなくなることがある。
【0003】
異なる材料が異なる熱膨張係数を有し、それによって温度と共に材料間の格子定数の差が変化する可能性があるため、更に問題が生じることがある。従って、ある温度で実質的に整合した格子である2つの材料が、異なる温度では整合しなくなる可能性がある。更に、下層の基板との格子不整合のために成長温度で圧縮歪みを受けるエピタキシャル層が、材料の室温での格子定数及び熱膨張係数によっては、室温で引っ張り歪みを受ける可能性があり、逆もまた同様である。
【0004】
半導体材料及びデバイスの製造に使用されるプロセス温度は、極端にすることができる。例えば、一部のエピタキシャル成長プロセスは1000℃を超える温度で実施することができるが、デバイスのアニール温度は更に高くすることができる。従って、プロセス温度と室温の間の差が1000℃以上になることがある。
【0005】
潜在的に亀裂が生じることに加えて、幾つかの他の理由のために、半導体構造内の歪みが有害となる場合がある。例えば、歪みによってウェハが湾曲する可能性がある。エピタキシャル成長中のウェハの湾曲は、基板上でのエピタキシャル層の不均一な成長をもたらす可能性があり、それによって、有用なデバイスの収量が減少する恐れがある。更に、ウェハの湾曲は、平坦化及び/又はダイシングなど半導体製造プロセスを複雑にする可能性がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国再発行特許第34,861号明細書
【特許文献2】米国特許第4,946,547号明細書
【特許文献3】米国特許第5,200,022号明細書
【特許文献4】米国特許第6,218,680号明細書
【特許文献5】米国特許第5,210,051号明細書
【特許文献6】米国特許第5,393,993号明細書
【特許文献7】米国特許第5,523,589号明細書
【特許文献8】米国特許第5,292,501号明細書
【特許文献9】米国特許第6,051,849号明細書
【特許文献10】米国特許出願第09/525,721号明細書
【特許文献11】米国特許第6,265,289号明細書
【特許文献12】米国特許第6,177,688号明細書
【特許文献13】米国特許第6,841,001号明細書
【特許文献14】米国特許第6,187,606号明細書
【発明の概要】
【課題を解決するための手段】
【0007】
本発明の幾つかの実施形態による半導体構造は、基板、基板上の核生成層、核生成層上の組成傾斜層(compositionally graded layer)、及び組成傾斜層上の窒化物半導体材料の層を含む。窒化物半導体材料の層は、窒化物半導体材料の層の中に間隔をおいて配置された複数の実質的に緩和された窒化物中間層を含む。実質的に緩和された窒化物中間層はアルミニウム及びガリウムを含み、n型ドーパントで導電的にドープされ、また複数の窒化物中間層を含む窒化物半導体材料の層は、少なくとも約2.0μmの全厚を有する。
【0008】
窒化物中間層は第1の格子定数を有することができ、窒化物半導体材料は、窒化物半導体材料の層が複数の窒化物中間層の1つの一方の側において、その複数の窒化物中間層の1つの反対側より大きい引っ張り歪みを受けるような第2の格子定数を有することができる。
【0009】
窒化物半導体材料の層は、約2.0μmから約8.0μmの全厚を有することができ、幾つかの実施形態では、実質的に亀裂をなくすことができる。
【0010】
組成傾斜層は、窒化物半導体材料の層との境界面において、窒化物半導体材料の層の材料組成と実質的に同じ材料組成を有することができる。
【0011】
更に、組成傾斜層は、核生成層との境界面において、核生成層の材料組成と実質的に同じ材料組成を有することができる。
【0012】
幾つかの実施形態では、組成傾斜層は、核生成層との境界面において、核生成層の組成とは異なる材料組成を有することができる。例えば、核生成層はAlNを含むことができ、組成傾斜層は、核生成層との境界面において、AlGa1−xN(0<x<1)の材料組成を有することができる。幾つかの実施形態では、xは約0.25より大きく、且つ1以下である。更なる実施形態では、xは約0.7以上且つ1以下である。幾つかの実施形態では、xは約0.75である。
【0013】
半導体構造は更に、実質的に緩和された窒化物中間層の1つの上に直接、不連続マスク層を含むことができる。不連続マスクは層、SiN、BN及び/又はMgNを含むことができる。窒化物半導体材料の層は、中間層より下で第1の転位密度を有することができ、中間層より上で第1の転位密度より低い第2の転位密度を有することができる。半導体構造は更に、第1の窒化物中間層の下に、第2の不連続マスク層を含むことができる。窒化物中間層は、約1×1019cm−3から約1×1021cm−3の濃度のシリコンなど、n型ドーパントでドープすることができる。
【0014】
窒化物中間層の少なくとも1つは、その内部に複数のディスクリート部を含むことができる。ディスクリート部は、その少なくとも1つの窒化物中間層の材料組成とは異なる材料組成を有することができる。その少なくとも1つの窒化物中間層は第1のバンドギャップを有することができ、ディスクリート部は、第1のバンドギャップより小さい第2のバンドギャップを有することができる。
【0015】
複数の窒化物中間層の1つは、複数の窒化物中間層の別のものの材料組成及び/又はドーピング濃度とは異なる材料組成及び/又はドーピング濃度を有することができる。幾つかの実施形態では、複数の窒化物中間層のドーピングは、基板からの距離が増大するにつれて高くなる。幾つかの実施形態では、複数の窒化物中間層のガリウム濃度は、基板からの距離が増大するにつれて高くなるようにすることができる。
【0016】
窒化物半導体材料は第1の熱膨張係数を有することができ、基板は、窒化物半導体材料の第2の層が高い成長温度より室温でより大きい引っ張り歪みを受ける傾向になるように、第1の熱膨張係数より小さい第2の熱膨張係数を有することができる。
【0017】
窒化物半導体材料の層は、窒化物半導体材料の層の成長温度より室温でより緩和することができる。窒化物半導体材料の層は、室温で実質的に歪みがないようにすることができる。
【0018】
ウェハは、窒化物層の成長温度より約700から800℃の温度でより小さい湾曲を有することができる。
【0019】
本発明の更なる実施形態による半導体構造は、窒化物半導体の層であって、その窒化物半導体材料の層の中に間隔をおいて配置された、複数の実質的に緩和された窒化物中間層を含む窒化物半導体の層を含む。実質的に緩和された窒化物中間層はアルミニウム及びガリウムを含み、n型ドーパントで導電的にドープされ、また複数の窒化物中間層を含む窒化物半導体材料の層は、少なくとも約2.0μmの全厚を有する。
【0020】
窒化物半導体材料の層は、約2.0μmから約8.0μmの全厚を有することができ、且つ/又は幾つかの実施形態では、実質的に亀裂をなくすことができる。
【0021】
本発明の幾つかの実施形態による半導体構造を形成する方法は、基板の上に核生成層を形成するステップと、核生成層の上に組成傾斜層を形成するステップと、組成傾斜層の上に窒化物半導体材料の第1の層を形成するステップとを含む。組成傾斜層は、窒化物半導体材料の第1の層との境界面において、窒化物半導体材料の第1の層の材料組成と実質的に同じ材料組成を有する。この方法は更に、窒化物半導体材料の第1の層の上に、実質的に歪みのない窒化物中間層を形成するステップを含む。実質的に歪みのない窒化物中間層は第1の格子定数を有し、窒化物中間層はアルミニウム及びホウ素を含むこと、並びにn型ドーパントで導電的にドープすることができる。
【0022】
この方法は更に、窒化物半導体材料の第2の層を形成するステップを含む。窒化物半導体材料の第1の層、窒化物中間層、及び窒化物半導体材料の第2の層は、少なくとも約0.5μmの合わさった厚さを有することができる。窒化物半導体材料は、窒化物半導体材料の第1の層が実質的に歪みのない窒化物中間層の一方の側において、窒化物半導体材料の第2の層が実質的に歪みのない窒化物中間層の他方の側で受けるより小さい引っ張り歪みを受けるような、第2の格子定数を有することができる。
【0023】
窒化物半導体材料の第2の層は、実質的に歪みのない窒化物中間層の一方の側で圧縮歪みを受けるように形成することができ、窒化物半導体材料の第1の層は、実質的に歪みのない窒化物中間層の他方の側で引っ張り歪みを受けるように形成することができる。
【0024】
この方法は更に、窒化物半導体材料の第2の層を形成するステップの前に、実質的に歪みのない窒化物中間層の上に直接、不連続マスク層を形成するステップを含むことができる。
【0025】
更なる実施形態による半導体構造を形成する方法は、シリコン基板をHを含む反応器チャンバの中で加熱するステップと、反応器チャンバの中にシリコン含有ガスを供給するステップと、その後、基板の上に核生成層を形成するステップとを含む。核生成層はAlNを含むことができる。
【0026】
この方法は更に、基板全体にシリコン含有ガスを流すステップの前に、フッ化水素酸及び/又は緩衝酸化物エッチング溶液を用いて基板を清浄化するステップを含むことができる。
【0027】
核生成層を形成するステップは、核生成層を約1000℃から約1100℃の温度で形成するステップを含むことができる。
【0028】
シリコン含有ガスは、SiH、Si、SiCl、SiBr及び/又はSiを含むことができる。シリコン含有ガスを供給するステップは、約1000℃の温度及び約0.2気圧の圧力で、基板全体にシリコン含有ガスを流すステップを含むことができる。シリコン含有ガスは、反応器の1つ若しくは複数の部分の被覆物、又は反応器内の基板から上流に配置された固体シリコンを含むシリコンソースから生成することができる。幾つかの実施形態では、シリコン含有ガスとHの比は、約10−7:1である。
【図面の簡単な説明】
【0029】
【図1】本発明の実施形態による半導体構造の横断面図である。
【図1A】本発明の実施形態による、傾斜層に対するアルミニウム濃度と厚さのグラフである。
【図2】本発明の更なる実施形態による半導体構造の横断面図である。
【図3】本発明の更なる実施形態による半導体構造の横断面図である。
【図4】本発明の更なる実施形態による半導体構造の横断面図である。
【図5】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図6A】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図6B】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図7A】本発明の実施形態による窒化物層の表面形態を示す写真である。
【図7B】本発明の実施形態による窒化物層の表面形態を示す写真である。
【図8A】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図8B】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図9A】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図9B】本発明の実施形態による構造に対する曲率及び反射率のグラフである。
【図10A】本発明の実施形態による窒化物層の表面形態を示す写真である。
【図10B】本発明の実施形態による窒化物層の表面形態を示す写真である。
【図10C】本発明の実施形態による窒化物層の表面形態を示す写真である。
【発明を実施するための形態】
【0030】
次に以下では、本発明の好ましい実施形態を示す添付図面を参照して、本発明を更に詳しく説明する。しかしながら、本発明は多くの異なる形で具体化することが可能であり、本明細書で述べる実施形態に限定されると解釈すべきではなく、むしろこうした実施形態は、この開示が十分且つ完全なものとなり、当業者に対して本発明の範囲を十分に伝えるために提供される。全体を通して、類似の番号は類似の要素を指す。更に、図面に示す様々な層及び領域は、概略的に示される。従って本発明は、添付図面に示された相対的なサイズ及び間隔に限定されない。また当業者には理解されるように、本明細書において基板若しくは他の層の「上に」形成された層への言及は、その基板若しくは他の層の上に直接、又は介在する層の上に形成された層、あるいはその基板若しくは他の層の上に形成された複数の層を指す場合がある。
【0031】
本発明の実施形態は、平均的な歪みを低減させた、比較的厚く高品質の窒化物半導体構造を提供することが可能である。窒化物半導体材料の厚いエピタキシャル層は、基板なしの半導体デバイスを形成するための基板除去技術と共に使用するのに特に適したものとなり得る。加えて、本発明の実施形態は、半導体基板を製造するために基板及び/又は種結晶を設ける際に利用可能な窒化物半導体構造を提供することができる。窒化物半導体構造は、半導体の中間層、又は構造内の歪みの蓄積を低減するように働く層を含み、その結果、所望の温度における構造の平均的な歪みが低減される。例えば中間層の構造は、室温又は活性層の成長温度などの他の重要な温度において、構造内の平均的な歪みを最小化するように設計することができる。
【0032】
以下では、本発明の実施形態をIII族窒化物ベースの半導体構造に関して説明する。しかしながら、本開示に照らすと当業者には明らかになるように、有利には、本発明の実施形態を他の半導体材料と共に利用することができる。本明細書で使用されるとき、「III族窒化物」という用語は、窒素と周期表のIII族の元素、通常はアルミニウム(Al)、ガリウム(Ga)、ホウ素(B)及び/又はインジウム(In)との間で形成された半導体性化合物を指す。その用語は、AlGaN及びAlInGaNなどの三元又は四元化合物も指す。当業者には適切に理解されるように、III族元素は窒素と結合して、二元(例えばGaN)、三元(例えばAlGaN、AlInN)、及び四元(例えばAlInGaN)化合物を形成することが可能である。こうした化合物はすべて、1モルの窒素を合計で1モルのIII族元素と結合させた実験式を有する。従って、それらを記述するために、AlGa1−xN(式中、0≦x≦1)などの式がしばしば用いられる。
【0033】
本発明の幾つかの実施形態を、図1の断面図に概略的に示す。本発明のある特定の実施形態における半導体構造10Aは、例えばシリコン、炭化ケイ素及び/又はサファイアなどを含むことができる基板12を含む。
【0034】
基板12の上には、窒化アルミニウム層などの核生成層14が存在し、基板と構造の残りの部分との間の結晶構造の遷移をもたらす。炭化ケイ素は、III族窒化物デバイス用のきわめて一般的な基板材料であるサファイア(Al)又はシリコンよりも、III族窒化物にずっと近い結晶格子整合を有する。格子整合が近くなると、サファイア又はシリコン上で一般的に入手可能なものより高い品質のIII族窒化物の薄膜を生じることができる。また炭化ケイ素はきわめて高い熱伝導性を有し、従って、炭化ケイ素上でのIII族窒化物デバイスの全出力は通常、同じデバイスがサファイア上に形成された場合ほど基板の熱散逸による制限を受けない。また半絶縁性炭化ケイ素基板が利用可能であることは、デバイスの絶縁及び低減された寄生容量をもたらす。基板12が除去される実施形態では、大きい直径のシリコンウェハが一般に利用可能であり、またシリコンは炭化ケイ素若しくはサファイアより除去しやすくすることができるため、シリコン基板が適切である場合がある。
【0035】
本明細書では、本発明の幾つかの実施形態をシリコン基板又は炭化ケイ素基板に関して説明するが、本発明の実施形態は、サファイア、窒化アルミニウム、アルミニウムガリウム窒化物、ガリウム窒化物、GaAs、LGO、ZnO、LAO、InPなど任意の適切な基板を利用することが可能である。幾つかの実施形態では、基板上に適切な核生成層を形成することもできる。
【0036】
本発明の実施形態での使用に適したSiC基板は、例えば本発明の譲受人であるノースカロライナ州ダラムのCree、Inc.によって製造され、SiC基板を製造する方法が文献に記載されている(例えば特許文献1、特許文献2、特許文献3及び特許文献4参照。これらの内容は全体として参照によって本明細書に組み込まれる)。同様に、III族窒化物のエピタキシャル成長に関する技術が文献に記載されている(例えば特許文献5、特許文献6、特許文献7及び特許文献8参照。これらの内容も全体として参照によって本明細書に組み込まれる)。
【0037】
本発明の追加の実施形態では、基板は、例えばエピタキシャル横方向過成長(ELOG)又はペンデオ(pendeo)−エピタキシャル成長技術を利用して製造される、GaNベースの基板とすることができる。そうした技術の例が、特許文献9(名称「GALLIUM NITRIDE SEMICONDUCTOR STRUCTURES INCLUDING A LATERAL GALLIUM NITRIDE LAYER THAT EXTENDS FROM AN UNDERLYING GALLIUM NITRIDE LAYER」)、1988年2月27日出願の特許文献10(名称「GALLIUM NITRIDE SEMICONDUCTOR STRUCTURES INCLUDING LATERALLY OFFSET PATTERNED LAYERS」)、特許文献11(名称「METHODS OF FABRICATING GALLIUM NITRIDE SEMICONDUCTOR LAYERS BY LATERAL GROWTH FROM SIDEWALLS INTO TRENCHES, AND GALLIUM NITRIDE SEMICONDUCTOR STRUCTURES FABRICATED THEREBY」)、及び特許文献12(名称「PENDEOEPITAXIAL GALLIUM NITRIDE SEMICONDUCTOR LAYERS ON SILICON CARBIDE SUBSTRATES」)に記載されている(これらの文献の開示は、全体として記載されるかのように本明細書に組み込まれる)。更にそうした成長技術の前に、後続のガリウム窒化物ベースの複数の層がその上に設けられるガリウム窒化物ベースの層を備えるために、本発明の実施形態を利用することができる。
【0038】
更に、本発明の幾つかの実施形態と共に、特許文献13(名称「STRAIN COMPENSATED SEMICONDUCTOR STRUCTURES AND METHODS OF FABRICATING STRAIN COMPENSATED SEMICONDUCTOR STRUCTURES」、その開示は全体として記載されるかのように本明細書に組み込まれる)に記載される歪み補償技術を使用することができる。
【0039】
先に言及したように、本発明の幾つかの実施形態は、シリコン基板を使用することができる。シリコン基板を使用するときには、最初に基板を水素及びシラン(SiH)、又は他の反応性のシリコンソースの雰囲気の中で加熱することができるが、それらはどちらも、基板上でのSiNの形成を防止する/妨げること、また基板からSiOを除去することもできる。基板上のSiN及び/又はSiOの存在は、基板上に成長させる層の形態に悪影響を及ぼす恐れがあるため、一般に基板上のSiN及び/又はSiOを除去する、あるいはその形成を防止する/妨げることが望ましい。
【0040】
シランによって供給される反応性シリコンは、他の方法では加熱及び脱離中にシリコン基板と反応して非晶質/多結晶質のSiO及び/又はSiNを形成する可能性がある、酸素又は窒素を消費することができる。少量のシランの流れを加えることによって、シリコン基板の腐食/分解を防止する、又は遅らせることもできる。それによって、実質的に汚れのないシリコン基板表面を保つことが可能になり、他の方法に比べてより小さい引っ張り(より大きい圧縮)ひずみを有する、より高い品質のIII族窒化物材料の成長を可能にする。
【0041】
前述のシランの前処理は、前の作業からのある程度の残りのIII族窒化物の堆積物、又はあまり清浄ではない環境を許容することによって、製造工程の収量及び/又は処理量を高めることができる。更に前述のシランの前処理によって、反応器チャンバ内で一部の石英部分を悪影響を伴わずに使用することが可能になる。
【0042】
シリコン基板上にシランを流すことを、基板から残りのSiOを除去するためにシリコン基板を清浄なH環境で加熱する、従来型のシリコンによる前処理工程と対比させることができる。高温のHガスは、残りのSiOに加えて、SiO部分及び/又は前の作業からの残りの窒化物の堆積物など、他の酸素又は窒素を含有する化合物を腐食する可能性がある。Hガスによって解放された酸素及び/又は窒素が基板に運ばれ、そこで新しい堆積物を形成する可能性がある。更に、Hガスによって基板からシリコン原子が除去され、それがシリコン表面の粗面化を引き起こす恐れがある。更に、HFエッチング及び/又は緩衝酸化物エッチング(BOE)を用いて、基板から残りのSiOを除去することができる。
【0043】
幾つかの実施形態では、少量のシランをシリコン基板全体に流し、脱離温度においてSiの上で平衡蒸気圧にほぼ等しい蒸気圧を得るようにする。例えば0.2気圧の圧力及び約1000℃の温度では、約10−7:1のSiHと水素キャリヤガスの比を用いることができる。シランを多く流しすぎるとシリコンの堆積物が生じ、その結果、堆積したIII族窒化物のエピタキシャル層の表面がより粗くなる恐れがある。シランの代わりに又はシランに加えて、Si、SiCl、SiBr、Si、反応器部分の被覆物、又は上流に配置された固体シリコンなど、他のシリコンソースを用いることができる。
【0044】
再び図1を参照すると、シリコン基板の上にAlN核生成層を成長させるために、最初はトリメチルアルミニウム(TMA)などのアルミニウムソースガスのみを流し、次いで窒素ソースガスを流してAlNを形成することが望ましいことがある。最初に窒素ソースガスを含まないアルミニウムソースガスを流すことによって、シリコン基板上でのSiNの形成を妨げる、低減する又は防止することができる。AlN層は、例えば約1000℃から約1100℃の範囲の比較的高い成長温度で成長させることができる。核生成層が過度に高温で成長された場合、核生成層が劣った形態を有する恐れがある。結果として生じるシリコン基板上のAlN層は、シリコン基板を内部に封じ込め、後続のステップでSiNを形成する基板中のシリコンと窒素の反応を低減させる、又は妨げることができる。後続の処理ステップでSiNが堆積されることがあるが、SiNはシリコン基板との反応ではなく、ソースガスの反応によって形成される可能性がある。
【0045】
AlN層は、後続の窒化物半導体材料の成長のためのテンプレートを提供する、核生成層14として働くこともできる。核生成層は、約0.1から約0.6μmの厚さを有することができる。幾つかの実施形態では、核生成層14は複数の副層を含むことができる。
【0046】
引き続き図1を参照すると、半導体構造10は、核生成層14の上に傾斜層20を含む。傾斜層20は、核生成層14の結晶構造から異なる結晶構造への遷移部を提供することができる。例えば、核生成層は窒化アルミニウムを含むことができるが、その構造の上に最終的にGaNの層を成長させることが望ましいことがある。それに応じて、傾斜層20は、AlNからGaNへの比較的滑らかな遷移部を提供することができる。例えば傾斜層20は、核生成層14との境界面におけるAlGa1−xNを含む組成からGaNへ傾斜させることができる。幾つかの実施形態では、漸進的な変化は、x=1から(即ちAlNから)始まることができる。他の実施形態では、漸進的な変化は、約30%のGaN(x=0.7)を含む合金から始まることができる。
【0047】
幾つかの実施可能なアルミニウム分布を、図1Aに示す。図1Aに示すように、層14におけるアルミニウム濃度は100%(x=1)である。幾つかの実施形態では、曲線501に示すように、傾斜層20におけるアルミニウム濃度を100%から0%まで傾斜させることができる。他の実施形態では、曲線502に示すように、アルミニウム濃度を70%(x=0.7)などのより低い割合から0%まで傾斜させることができる。
【0048】
傾斜層20の開始のアルミニウム組成は、構造内の歪みに影響を及ぼす可能性がある。例えば傾斜層20の漸進的な変化がx=1で(即ちAlNから)始まる場合、所与の温度で結果として生じる構造において圧縮歪みが大きくなりすぎることがあり、それがウェハの亀裂及び/又は破損を引き起こす恐れがある。漸進的な変化をより低いアルミニウム組成(例えばx=0.7)から始めると、構造により釣り合いのとれた歪みを持たせることができる。一般に、傾斜層20における開始のアルミニウムの割合を、InGaNの成長温度(約700℃から約800℃の範囲)などの所与の温度でウェハの湾曲がより小さくなると同時に、室温で過大な引っ張り歪みが生じないように、構造全体の歪みを釣り合わせるレベルに選択することが望ましいことがある。
【0049】
図1を参照すると、本発明の幾つかの実施形態では、高温(例えば>1000℃)でシリコン基板の上に半絶縁性のAlN核生成層14を堆積させる。次に、高温(例えば>1000℃)でAlN核生成層の上に半絶縁性のAlGa1−xN層を堆積させて、傾斜層20を設ける。成長条件(温度、圧力、V/III比、成長速度、厚さなど)は、傾斜層20がAlN層14にコヒーレント(coherently)歪みを受けないように調節して設けることができる。好ましくは、傾斜層20は、最初に比較的低い核密度(例えば<10cm−2)で3次元的に成長を始める。本開示に照らすと当業者には理解されるように、詳しい成長条件は反応器の形状によって異なる可能性があり、従って、それに応じて所望の特性を有するAlGaNを得るように調節することができる。傾斜層20の上に、GaN及び/又はAlGa1−xN(x≒0.1)の窒化物層24を設けることができる。結果として生じる窒化物層24の歪んだ格子定数は、X線回折結晶学を用いて決めることができる。結果として得られる窒化物層24が所望の歪んだ面内格子定数を有していない場合には、窒化物層24の組成及び/又は成長条件を、所望の歪んだ面内格子定数を与えるように調節することができる。
【0050】
一般に、核生成層14がAlNを含むときには、GaNのa面格子定数がAlNのa面格子定数より大きいため、窒化物層24は圧縮歪みを受けた状態から始まる可能性がある(一般にa面格子定数とは、(0001)方向の材料の成長に対する材料の原子間の横方向距離を指す)。しかしながら、窒化物層24が成長して厚くなるにつれて、より大きい引っ張り歪みを受けるようになりがちな可能性がある。
【0051】
構造10Aにおける全体的な歪みを低減するために、窒化物層24の中に1つ又は複数の実質的に緩和された中間層30を設けることができる。中間層30は、窒化物層24の無歪み格子定数とは整合しない無歪み格子定数を有する。具体的には、中間層30は、成長温度において窒化物層24の無歪み格子定数より小さい無歪み格子定数を有することができる。緩和された中間層30は、その上に成長させた窒化物材料の初期の歪みを実際には圧縮がより大きい(引っ張りがより小さい)状態になるように戻す、後続のエピタキシャル成長用の準理想的な基板層として働くことができる。窒化物層24をかなりの厚さ(例えば約0.5μm以上)まで成長させると、層の材料組成物は成長温度でより大きい引っ張り歪みを受けるようになる傾向がある。材料がより低い温度(例えば、室温又はより低い材料の成長温度など)まで冷却されると、窒化物層24と基板12の間の熱膨張係数(CTE)の差によって、窒化物層24が更に大きい引っ張り歪みを受けるようになり、最終的には、ウェハの湾曲及び/又は亀裂の望ましくないレベルに至る恐れがある。
【0052】
しかしながら、窒化物層24の中に中間層30を緩和された層として成長させるため、中間層30の上に成長した窒化物層24の一部は、少なくとも初めは、窒化物層24の中間層30のすぐ下の部分より大きい圧縮歪みを受けることができる。従って、構造全体の平均的な歪みは、中間層30がない場合より圧縮された状態になる。それに応じて、構造10Aをより低い温度まで冷却したときに、構造10は低減した引っ張り歪みのレベルを有することが可能になり、それによって、ウェハの湾曲及び/又は亀裂を低減することができる。
【0053】
中間層30がその上に成長する窒化物層24の下層部分に対して擬似形態的に(pseudomorphically)歪みを受けないように、適切な材料組成、厚さ及び成長温度を選択することによって、中間層30を緩和された層として成長させることができる。例えば、中間層30の無歪み格子定数を、中間層30がその上に形成される窒化物層24の格子定数と十分に不整合になるようにして、中間層30が約150nmの厚さなどある一定の厚さに達したときに、中間層30が割れる傾向があるようにすることができる。中間層30の亀裂は層内の歪みを解放し、中間層30を緩和された状態にすることができる。緩和を生じさせるために十分に不整合な無歪み格子定数を有するように、中間層30は約50%以上のアルミニウム濃度を含むことができる。更に、約700℃から約800℃の成長温度が、中間層30の緩和に寄与することができる。
【0054】
しかしながら、中間層30を形成するため用いられる成長条件によっては、緩和させるために中間層30に亀裂を入れる必要がないことが理解されるであろう。例えば、中間層30を、高密度の転位欠陥を有する緩和層として形成することが可能である。幾つかの実施形態では、緩和層を設けるために、中間層30又はその一部を、結晶質、多結晶質、非晶質、きわめて不規則な状態、及び/又はこれらの組合せとすることができる。
【0055】
幾つかの実施形態では、中間層30が複数の副層を含むこと、及び/又は1つ又は複数の傾斜層を含むことが可能であることが理解されるであろう。中間層30は、1つ又は複数のInAlGaBNの層を含むことができる。更に、中間層30の中にSiN及び/又はMgNの層を組み込むことができる。場合によっては、Nの代わりに少量のP又はAsを用いることができる。
【0056】
窒化物層24の中に少なくとも1つの中間層30を設けることによって、構造10Aの表面形態を改善することができる。しかしながら、構造10Aの表面形態は、含まれる中間層30が増えるにつれて悪化する可能性がある。
【0057】
幾つかの実施形態では、中間層30は複数のInAlN:Si/GaN:Siの対、又はInAlGaN:Si/GaN:Siの対を含むことができる。中間層30の形成の間、インジウム(又は低い組み込み率を有するSnなどの他の材料)を、界面活性剤、転位の動きの調節剤及び/又は点欠陥の調節剤として使用することができる。更に、中間層30を、AlGaNに対して大きい格子不整合を有するInNなどの材料と合金化することができる。そうした合金化によって、層をよりコンプライアント(compliant)にすること、及び/又は層内の応力を低減することが可能になる。
【0058】
(1つ又は複数の)中間層30の半導体材料は、続いて成長させるエピタキシャル層の(1つ又は複数の)半導体材料と同様の構造上の特性(例えば同様の結晶構造及び方位)を有するが、窒化物層24の格子定数とは十分に不整合な無歪み格子定数を有し、従って、(1つ又は複数の)中間層30の上に形成される窒化物層24の一部が、少なくとも最初は圧縮歪みを受けるようになる。窒化物層24が圧縮歪みを受ける状態にするために、(1つ又は複数の)中間層30は成長温度において、窒化物層24の成長温度での無歪み格子定数より小さい無歪み格子定数を有することができる。本発明のある特定の実施形態では、(1つ又は複数の)中間層30を約800℃の成長温度で、実質的に歪みのない層として成長させることが可能であり、構造を成長温度から冷却したときに、(1つ又は複数の)中間層30に歪みを生じさせることができる。
【0059】
本発明の幾つかの実施形態では、(1つ又は複数の)中間層30は、AlGaN又はAlInGaNなどのIII族窒化物を含むことができる。しかしながら、本発明の他の実施形態では、(1つ又は複数の)中間層30は、SiGe、GaAsなど他の半導体材料を含むこともできる。本発明のある特定の実施形態では、(1つ又は複数の)中間層30は、Si、Ge及び/又はMgなどのドーパントで導電的にドープすることができる。(1つ又は複数の)中間層30の厚さは、特定の半導体構造に応じて変えることができる。例えば(1つ又は複数の)AlGaNベースの中間層では、(1つ又は複数の)中間層30の厚さを約1nmから約1μmに形成することができる。(1つ又は複数の)中間層30は、(1つ又は複数の)中間層30の周りの更に厚い層の中に亀裂及び/又は本質的な欠陥の形成を生じさせるほど厚くすべきではない。(1つ又は複数の)中間層30は、緩和されるのに十分な大きさであるが、構造を介した縦方向の導電性の望ましくない大幅な低下を引き起こすほど大きくはない厚さを有することができる。それに応じて、幾つかの実施形態では、(1つ又は複数の)中間層30は、約10nmから約20nmの範囲の厚さを有することができる。特定の実施形態では、(1つ又は複数の)中間層30は、約15nmの厚さを有するAlNを含むことができる。
【0060】
幾つかの実施形態では、(1つ又は複数の)中間層30は、実質的に均質なアルミニウム濃度を有するAlGaNを含むことができる。更なる実施形態では、(1つ又は複数の)中間層30は、基板からの距離が増大するにつれてアルミニウム濃度を低減させるために、成長中に低下する組成xと共に傾斜されるAlGa1−xN層とすることができる。組成の変化は、線形、非線形及び/又は段階的にすることができる。更に、(1つ又は複数の)中間層30は、AlN及びGaN、又はAlGaN及びAlGaNからなる短周期の超格子とすることができる。
【0061】
幾つかの実施形態では、(1つ又は複数の)中間層30はホウ素(B)を含むことができる。(1つ又は複数の)中間層30の中のホウ素の存在は、(1つ又は複数の)中間層30の格子定数を小さくすることができる。しかしながら、(1つ又は複数の)中間層30の中のホウ素の濃度は、中間層が多結晶質になる濃度より低く保つことができる。
【0062】
更に、窒化物層24が成長温度より低い温度でより緩和された状態に近づくことができるように、例えばAlの組成などの組成、又は(1つ又は複数の)中間層30の成長条件を調節することによって、窒化物層24の(1つ又は複数の)中間層30のすぐ上の部分が、窒化物層24の熱膨張係数(「CTE」)が基板(例えばGaN/SiC又はGaN/Si)の熱膨張係数より大きい場合には成長温度で圧縮歪みを受け、あるいは窒化物層24のCTEが基板(例えばGaN/Al)のCTEより小さい場合には成長温度で引っ張り歪みを受けるように、(1つ又は複数の)中間層30を成長させることができる。単一体構造の基板から窒化物層24を除去しやすくするために、窒化物層24が実質的に歪まない温度が基板を除去する温度になるように選択することができる。あるいは、窒化物層24が実質的に歪まない温度がバルクの再成長温度になるように選択することも可能であり、そうすることによって、窒化物層24を依然として元の基板に付着したシードとして使用することを容易にすることができる。
【0063】
更に、窒化物層24が実質的に歪まない温度を、デバイスの動作温度に基づいて選択することが可能である。窒化物層24が実質的に歪まない温度は、構造がその耐用年数の間に遭遇するすべての温度範囲にわたって歪みが危険な値を超えないように、中程度の温度に基づいて選択することも可能である。窒化物層24が実質的に歪まない温度は、窒化物層24を用いて製造された最終的なデバイスの活性層として働くことができるInGaN量子井戸のエピタキシャル成長など、重要なプロセスステップが行われるプロセス温度に基づいて選択することも可能である。
【0064】
例えば、窒化物半導体材料は一般に、GaNの典型的な成長温度より低くすることが可能な、典型的には約700℃から約800℃の範囲の成長温度で形成される薄い(例えば<50Å)InGaN量子井戸層を含む、発光デバイスを形成するために用いられる。InGaN量子井戸層の品質及び組成がLEDによって放出される光の明るさ及び/又は波長に強い影響を及ぼす可能性があるため、InGaN量子井戸層は発光デバイスの重要な特徴となり得る。ウェハの湾曲及び/又は反りによって、薄いInGaN層がウェハ上に不均一に形成されることがあり、そのために、ウェハからのデバイスの使用可能な収量が減少する恐れがある。それに応じて、InGaNの成長温度における全体的な歪みのレベルができるだけ低減されるように、且つ/又はウェハがInGaNの成長温度でより小さい湾曲を有するように、半導体構造10A内の歪みのレベルをカスタマイズすることが望ましいことがある。
【0065】
他の実施形態では、例えばウェハのダイシングを容易にするために、室温における半導体構造内の全体的な歪みのレベルをできるだけ低減することが望ましいことがある。一般に、かなり曲がった/反ったウェハをダイシングする(即ち、のこ引きしてチップにする)ことが難しい場合がある。
【0066】
(1つ又は複数の)中間層30は、例えばSi及び/又はGeドーパントで導電的にドープすることができる。一般に、窒化物層24内の縦方向の電流の伝導を容易にするために、(1つ又は複数の)中間層が導電性であることが望ましいことがある。縦方向の伝導は、縦型発光ダイオードなどある特定のタイプの電子デバイスにとって望ましい場合がある。場合によっては、(1つ又は複数の)中間層が、結果として生じるデバイスの順方向の全動作電圧に対して約0.1V未満の寄与になることが望ましいことがある。即ち、(1つ又は複数の)中間層が約5オーム未満の抵抗を有することが望ましいことがある。(1つ又は複数の)中間層30の電圧降下は層の抵抗(R)によって決まり、それは以下の式による層の抵抗率(ρ)の関数である。
【0067】
【数1】

【0068】
上式において、Aは(1つ又は複数の)中間層30の面積、Lは(1つ又は複数の)中間層30の厚さである。従って、約20mAで動作する250μm×250μmの寸法を有するデバイスでは、(1つ又は複数の)中間層30が約0.015μmの厚さを有する場合、(1つ又は複数の)中間層30の抵抗率は約2000オームcm未満とすることができる。
【0069】
縦方向の伝導を与えることに加えて、(1つ又は複数の)中間層30をシリコン及び/又はゲルマニウムなどのn型ドーパントでドープすると、(1つ又は複数の)中間層の格子定数を低くすることが可能になり、それは、窒化物層24の(1つ又は複数の)中間層30の上に形成された部分を、最初により大きい圧縮歪みを受けた状態にするのに寄与することができる。それに応じて、(1つ又は複数の)中間層30を、約1×1018cm−3から約1×1021cm−3の範囲の濃度のシリコンでドープすることが望ましいことがある。デバイスの動作温度でより高いレベルの電子密度を得るために、(1つ又は複数の)中間層30が約10%から約90%の範囲のガリウムを含むことが望ましいことがある。
【0070】
幾つかの実施形態では、(1つ又は複数の)中間層30はその内部に、(1つ又は複数の)中間層30の導電性を高めることが可能なディスクリート部30Aを含むことができる。ディスクリート部30Aは、例えば(1つ又は複数の)中間層30を形成する材料のバンドギャップより小さいバンドギャップを有する、且つ/又は(1つ又は複数の)中間層30の材料より高い電子密度を有することができる、GaN及び/又はInGaNなどの材料の不連続なアイランド(「ドット」)を含むことが可能である。縦方向の導電性のためにディスクリートな結晶部を使用することが、Edmondらの特許文献14、名称「Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlayer structure」に更に詳しく記載されている(その開示は参照によって本明細書に組み込まれる)。幾つかの実施形態では、ディスクリート部30Aは、結晶質、多結晶質、非晶質、きわめて不規則な状態、及び/又はこれらの組合せとすることができる。
【0071】
幾つかの実施形態では、ディスクリート部30Aは、中間層30の縦方向の導電性を高めるのに十分な量であるが、(1つ又は複数の)中間層30の歪みを低減する効果、及び/又は窒化物層24の結晶の品質に悪影響を及ぼす量より少ない量で存在することができる。幾つかの実施形態では、ディスクリート部30Aは、約0.1/μmから約100/μmの間の量で存在することが可能であり、また場合によっては、約40/μmから約60/μmの間で存在することができる。
【0072】
更にディスクリート部30Aのサイズは、(1つ又は複数の)中間層30の縦方向の導電性を高めるのに十分な大きさであるが、(1つ又は複数の)中間層30の歪みを低減する効果、及び/又は窒化物層24の結晶品質に悪影響を及ぼすサイズより小さくなるようにすることができる。幾つかの実施形態では、ディスクリート部30Aは、直径において、0.01と0.1μmとの間であることができる。
【0073】
幾つかの実施形態では、例えば基板のエッチング除去のために、(1つ又は複数の)中間層30をエッチストップ層として用いることができる。従って、(1つ又は複数の)中間層30が、それが内部に形成される窒化物層24に対してエッチング選択性を有することが望ましい場合がある。例えばAlN、AlGaN、又はAlInGaNなど、(1つ又は複数の)Alを含有する中間層30を、GaN又はInGaN窒化物層24の中のエッチストップ層として用いることができる。例えば適切な条件の下でフッ素ベースの化学作用を用いてアルミニウム含有層をドライエッチングすると、AlFが形成され、それ以上のエッチングを妨げることができる。
【0074】
本発明の更なる実施形態を図2に示し、図2には半導体構造10Bが示してある。半導体構造10Bは、図1を参照して前述した基板12、核生成層14及び傾斜層20を含む。半導体構造10Bは更に、傾斜層20の上に第1の窒化物層34を含む。第1の窒化物層34はGaNを含むことができる。一般に、第1の窒化物層34を成長させるときには、GaNのa面格子定数がAlNのa面格子定数より大きいため、第1の窒化物層34は圧縮歪みを受けた状態から始まる可能性がある。しかしながら、第1の窒化物層34が厚く成長するにつれて、より大きい引っ張り歪みを受けるようになる可能性がある。構造内の歪みを初期状態に戻し、全体的な引っ張り歪みのレベルを低下させるために、第1の窒化物層34の上に実質的に歪みのない中間層40を形成することができる。中間層40は、図1に関して前述した(1つ又は複数の)中間層30と同様のものとすることができる。
【0075】
中間層40を形成する前に、第1の窒化物層34の上に第1の任意選択の不連続マスク層41を成長させることができる。第1の不連続マスク層41は、SiN、MgN、及び/又はBNを含み、約900℃の温度で成長させることができる。第1の不連続マスク層41は、本来の場所で(in situ)又は本来の場所以外で(ex situ)、約20℃から約1100℃の範囲の温度にわたって堆積させることが可能である。温度は、成長速度を制御する(具体的には遅くする)、従って不連続層41の品質及び厚さを制御するのを助けるように十分低くすべきである。約700℃の温度を用いることができる。
【0076】
同様に、中間層40の上に第2の任意選択の不連続マスク層42を形成することができる。第2の不連続マスク層42は、SiN、MgN、及び/又はBNを含み、約900℃の温度で成長させることができる。第2の不連続マスク層42は、本来の場所で又は本来の場所以外で、約20℃から約1100℃の範囲の温度にわたって堆積させることが可能である。
【0077】
中間層40、並びに任意選択の第1及び第2の不連続マスク層41、42の成長後に、第2の窒化物層44を成長させる。第1及び/又は第2の不連続マスク層42を含む実施形態では、第2の窒化物層44の材料はまず、マスク層42の上ではなく中間層40の表面の上で成長することができる。中間層40から上方への成長が不連続マスク層部分の近くで進行可能であると、その後、窒化物材料は、マスク層部分全体にわたって横方向に成長することができるようになる。欠陥は水平方向より縦方向に容易に伝わる傾向があるため、成長する窒化物材料内の欠陥の一部をマスク層42によって遮ることが可能になり、それによって、第2の窒化物層44の欠陥密度を低下させることができる。
【0078】
第2の窒化物層44は最初に、横方向により速く成長することを促す、従って欠陥の低減を容易にする温度で成長させることができる。例えば、第2の窒化物層44の成長を、約1090℃の温度で開始させることができる。第2の窒化物層44が不連続マスク層部分の上で合体した後、成長温度を縦方向の成長を促すように調節することができる。
【0079】
図3を参照すると、厚い窒化物層70を含む構造10Cが示してある。具体的には、厚い窒化物層70は、厚さ1mm、直径3インチ(7.62cm)の(111)シリコン基板12の上に成長させることができる。一般に、基板12は、直径が更に大きい場合には更に厚くすることができる。基板12は、フロートゾーン(float−zone、FZ)法又はチョクラルスキー(Czochralski、CZ)法によって形成された基板を含むことができる。基板12の上に厚さ0.1μmのAlN核生成層14が設けられ、核生成層14の上に厚さ1.7μmの傾斜層20が形成される。幾つかの実施形態では、III族窒化物層内の穿孔によって下層のSi基板が露出及び攻撃され、その結果、潜在的にSi基板内に空洞の形成を引き起こす(即ち、SiがIII族窒化物層を貫通して「噴出する」)領域を指す「ボルケーノ(volcano)」の発生を低減するために、核生成層14及び傾斜層20の合計の厚さを約1μm超に保つことができる。
【0080】
ウェハの曲率は、成長反応器内の温度分布による影響を受ける可能性がある。例えば、より暖かい天井部で核生成層14の成長を開始することが望ましいことがあり、それによって、核生成層の成長中により平坦なウェハに導くことができる。
【0081】
幾つかの実施形態では、傾斜層20をAlNからGaNへ連続的に傾斜させることができる。他の実施形態では、傾斜層20をAlGaNからGaNへ傾斜させることができる。例えば傾斜層20を、核生成層14との境界面におけるAl0.7Ga0.3NからGaNへ傾斜させることができる。傾斜層20の組成は、構造全体における総歪みに影響を及ぼす可能性がある。それに応じて、傾斜層20の組成は、構造10Cの後続の層の材料組成を考慮して選択することができる。
【0082】
傾斜層20の上に、窒化物層52、54A〜C及び中間層60A〜Cの交互スタックが形成される。具体的には、傾斜層20の上に約0.6μmの厚さを有する第1の窒化物層52が形成され、次いで第1の窒化物層52の上に、中間層60A〜C及び窒化物層54A〜Cの交互スタックが形成される。第1の窒化物層52及び/又は窒化物層54A〜Cは、GaNを含むことができる。
【0083】
中間層60A〜Cの各々が、約15nmの厚さを有することができる一方、窒化物層54A〜Cの各々は、約0.5μmの厚さを有することができる。幾つかの実施形態では、約8μmの全厚に対して、合計で16対の中間層/窒化物層を形成することができる。窒化物層54A〜Cは、約4×1018cm−3のドーパント濃度のシリコンで導電的にドープされ、中間層60A〜Cは、約1×1019cm−3から約1×1021cm−3のドーパント濃度のシリコンで導電的にドープされる。
【0084】
構造10Cの各窒化物層54は、圧縮歪みを受けた状態から始まる。しかしながら、各窒化物層54が成長するにつれて、より大きい引っ張り歪みを受けるようになる可能性がある。構造の全体的な歪みを低減する、且つ/又は構造10Cの全体的な歪みをより小さく引っ張るために、窒化物層54A〜Cの間に複数の実質的に緩和された中間層60A〜Cを周期的に形成して、構造10C内の歪みレベルを初期状態に戻す。即ち、実質的に緩和された中間層60A〜Cの各々が形成された後、中間層60A〜Cの上に成長させる次の窒化物層54A〜Cは、中間層60A〜Cのすぐ下の材料より圧縮歪みを受けた(又は、より小さい引っ張り歪みを受けた)状態から始まる。従って、半導体構造10C全体が形成されるとき、その全体的な歪みを、中間層60A〜Cを含まない対応する構造と比べて引っ張りが小さい状態にすることができる。
【0085】
構造10Cの上部における縦方向の導電性を高めるために、又は歪みの修正などの他の目的のために、中間層60A〜Cの材料組成、ドーピング、及び/また他の特性を層から層へ変えることができる。例えば幾つかの実施形態では、構造10Cの底部に近い(即ち、第1のGaN層52又は基板12に近い)中間層60は、第1のガリウム濃度を有することができる一方、構造の頂部に近い(即ち基板12の反対側の)中間層60A〜Cは、第1のガリウム濃度より大きい第2のガリウム濃度を有することができる。幾つかの実施形態では、第1の中間層60Aは約20%のガリウム濃度を有することができる一方、第3の中間層60Cは約50%のガリウム濃度を有することができる。
【0086】
中間層60A〜Cのガリウム濃度は、構造内の歪み、並びに中間層の縦方向の導電性に影響を及ぼす可能性がある。例えば、より大きいガリウム濃度を有する中間層は、構造全体がより大きい引っ張り歪みを受けるようになる可能性あるが、より優れた縦方向の導電性を与えることができる。それに対して、より小さいガリウム濃度を有する中間層60A〜Cは、縦方向の導電性が低下する可能性があるが、構造全体がより小さい引っ張り歪みを受けるようにすることができる。一般に、構造の頂部は、構造の中でLED及び/又はレーザダイオードなどのデバイスを形成することが可能な部分であるため、その近くにより大きい縦方向の導電性を与えることが望ましいことがある。
【0087】
同様に、幾つかの実施形態では、構造の頂部に近い中間層60A〜Cに、より高いドーピング濃度を与えることが望ましいことがある。
【0088】
それに応じて、幾つかの実施形態では、中間層60A〜Cの基板12からの距離が増大するにつれて、中間層60A〜Cのガリウム濃度が高くなることがある。
【0089】
幾つかの実施形態では、ウェハの湾曲が10μm未満である場合、窒化物層70として厚さ4μmのGaN層を成長させることができる。更に、厚い窒化物層では、1時間あたり約12μmという速い成長速度を得ることができる。
【0090】
本発明の更なる実施形態では、低減された又は引っ張りがより小さい全体的な歪みを有する厚い窒化物層70から、基板12を除去することができる。研削及び/又はエッチングを含む基板除去技術は、当分野では一般に知られている。そうした実施形態は、例えば追加の半導体構造を成長させる際の種結晶として用いるのに適している場合がある。こうした独立した低歪み層は、より厚い大量の結晶ブールを成長させるための種結晶として用いることが可能であり、結晶ブールは順にスライスしてウェハとし、デバイスの成長用の基板として使用することができる。例えばそうした半導体構造は、ELOG及び/又はペンデオ−エピタキシャル製造技術を利用して製造する場合に、GaN層を設けるために利用することが可能である。
【0091】
前述の構造を形成する際には、幾つかの成長パラメータがデバイス内の歪みに影響を及ぼす可能性がある。例えば傾斜層20の厚さが、歪みに影響を及ぼす可能性がある。傾斜層20を薄くすることは、結果として生じる窒化物層70の増大された亀裂を導く恐れがある。窒化物層54の成長温度も、デバイス内の歪みに影響を及ぼす可能性がある。構造の頂部付近の歪みは、個々の窒化物層54の厚さ、並びに中間層60及び窒化物層54の成長温度の関数になる可能性がある。一般に、より低い初期の成長温度は、改善された形態に導くことができる。
【0092】
図4を参照すると、厚い窒化物層70Dを含む構造10Dが示してある。具体的には、厚い窒化物層70Dは、厚さ1mm、直径3インチ(7.62cm)の(111)シリコン基板12の上に成長させることができる。前述のように、基板12の上に厚さ0.4μmのAlN核生成層14が形成され、核生成層14の上に、1から1.5μmの厚さのAlGa1−xN傾斜層20Dが形成される。傾斜層20Dの厚さ及び/又は変化の割合は、構造10Dが亀裂に耐える能力に影響を及ぼす可能性がある。例えば傾斜層の厚さを3分の1に減らすと、亀裂が生じることがある。しかし、傾斜層の厚さを約1.7μm超に増やすと、他の方法で生じることがある亀裂の低減に対して有効でなくなる可能性がある。
【0093】
AlGa1−xN傾斜層20Dは、例えば約75%など比較的高いアルミニウム濃度から傾斜させた組成を有することができる。従って、幾つかの実施形態では、傾斜層20Dは、核生成層14との境界面においてAl0.75Ga0.25Nで始まり、Al0.2Ga0.8Nの組成まで傾斜させることができる。傾斜層の開始時のアルミニウム濃度を例えば33%まで低下させると、亀裂が生じる恐れがある。更に開始時のアルミニウム濃度を67%まで低下させると、劣った形態になる恐れがある。
【0094】
傾斜層20Dの上に、窒化物層54D及び中間層60Dの交互スタックが形成される。具体的には、傾斜層120の上に約0.4μmの厚さを有する第1のGaN層52Dが形成され、次いで、第1のGaN層52Dの上に中間層60D及び窒化物層54Dが形成される。中間層60Dは約15nmの厚さを有すること、及び約800℃の温度で成長させることができ、窒化物層54Dは約0.5μmの厚さを有することができる。GaN層は、例えば約12μm/時など比較的高い成長速度で成長させることができる。中間層60D及び窒化物層54Dを含むスタックを、例えば8回繰り返して、亀裂を生じることなく約4μmを超える全厚を有する構造を形成することができる。中間層60Dは、約2×1019cm−3の濃度のシリコンでドープすることができ、窒化物層54Dは、約4×1018cm−3の濃度のシリコンでドープすることができる。
【0095】
幾つかの実施形態では、中間層60D及び厚さ0.5μmの窒化物層54Dを含むスタックを、例えば16回繰り返して、亀裂を生じることなく約8μmを超える全厚を有する構造を形成することができる。
【0096】
エピタキシャル成長の開始前に、高圧における温度のオーバーシュートをなくすことによって、亀裂を低減させることもできる。
【0097】
中間層60の厚さは、結果として生じる構造の亀裂にも影響を及ぼす可能性がある。例えば20nmの中間層60を形成すると、中心に亀裂のない負(圧縮)の湾曲を有するエピウェハを得ることができるが、10nmの中間層を形成すると、中心に亀裂のない正(引っ張り)の湾曲を有するエピウェハを得ることができる。
【0098】
一番上の窒化物層54Dの頂部に、より高い温度(例えば+40℃)で追加のGaN層を形成すると、亀裂が生じる可能性がある。
【0099】
前述した半導体構造の様々な成長及び/又は構造のパラメータは、結果として生じる一番上の窒化物層の歪みに影響を及ぼす可能性がある。例えば窒化物層70の全厚、中間層60/窒化物層54の対の周期、窒化物層54の成長温度、及び中間層60の成長温度は、結果として生じる構造内の歪みに影響を及ぼす可能性がある。
【0100】
一般に、(エピウェハにおける歪みの結果である)結果として生じるエピウェハの曲率は、構造の全厚と窒化物層54の成長温度の強い関数になる可能性がある。
【0101】
エピ層の頂部の歪みは、中間層間の周期、中間層60の成長温度、及び窒化物層54の成長温度の強い関数になる可能性がある。
【0102】
具体的には、中間層の成長温度を高めると(例えば700℃から800℃)、構造の一番上の窒化物層がより大きい引っ張り歪みを受けるようにすることができる一方で、窒化物層54の成長温度を高めると(例えば965℃から985℃)、構造の一番上の窒化物層がより大きい圧縮歪みを受けるようにすることができる。更に、0.5μmから1μmの中間層60/窒化物層54の対の周期を大きくすると、構造の一番上の窒化物層がより大きい引っ張り歪みを受けるようにすることができる。
【0103】
窒化物層54における転位密度は、例えば原子間力顕微鏡(AFM)によって測定することができる。AFMによれば、窒化物層54の厚さを増大させると転位密度を低下させることができる一方で、中間層の成長温度を高めると(約700℃から約800℃)転位密度を増加させることができる。転位欠陥は、例えばウェハのサンプルに対してAFMを実施し、ウェハの所定の領域内の欠陥の数を数えることによって測定することができる。
【0104】
材料のPL強度も、様々な成長及び/又は構造の特性による影響を受ける可能性がある。例えば窒化物層70の全厚を増大させること、及び/又は窒化物層54の厚さを増大させることによって、材料の青色PL強度を高めることができる一方、窒化物層54及び/又は中間層60の成長温度を高めることによって、青色PL強度を低下させることができる。一般に、青色PL強度は材料における構造上の欠陥を示すものである。従って一般的には、青色PL強度のピークを低下させることが望ましい。
【0105】
一方、一般的には窒化物材料が強いバンド間(GaN)のPL発光を有することが望ましい。バンド間のPL発光は、中間層60の成長温度による影響を最も強く受ける可能性がある。具体的には、中間層の成長温度を高めると、材料のバンド間のPL発光を低減させることがある。
【0106】
図5は、核生成層が0.1μmの厚さであること、第1のGaN層52Dが0.6μmの厚さであること、並びに中間層60D及び窒化物層54Dが16回繰り返され、約8μmを超える全厚を有する構造を形成することを除いて、図4に示した構造と同様の構造の曲率のグラフである。具体的には、図5は、シリコン上でのGaNの成長中に本来の場所で得られた、ウェハの曲率及び反射率と成長時間とに関するプロットを含む。図5では、曲率は右端の縦軸で測られる一方、反射率は左端の縦軸で測られる。より大きい負値である曲率は、材料が圧縮応力を受けていることを示す一方、より大きい正値である曲率は引っ張り応力を示す。図5に示すように、構造は実質的に圧縮の応力を示した。
【0107】
先に言及したように、シランを流すことによって、他の方法より高い圧縮性の層の成長を促すことができる。例えば図6A及び6Bは、シランの前処理を用いた場合及び用いない場合について、成長する窒化物層のウェハの曲率に対する影響を示している。図6Aの曲線505は、シランのプリフローを用いずに成長させたウェハの曲率を示す。図6Aに示すように、シランのプリフローを用いない場合のウェハ内の応力は、きわめて高い引っ張りになる傾向がある。一方、図6Bの曲線507は、1×のシランのプリフローを用いて(即ち、約10−7:1の比のSiHと水素キャリヤガスを用いて)成長させたウェハの曲率を示す。図6Bから理解されるように、シランのプリフローを用いた場合のウェハ内の応力は、成長後の引っ張り歪みが小さくなり、実際には、成長プロセスのかなりの部分にわたって圧縮歪みを受けた。
【0108】
しかし、シランを多く流しすぎると、結果として生じる構造の形態が劣化する可能性がある。例えば1×のシランの流れによって、図7Aに示すような滑らかな表面形態を得ることができるが、20×の流れでは、図7Bに示すように不均一な表面が生じる可能性がある。
【0109】
図8A及び8Bは、成長温度の変化の歪みに対する影響を示している。具体的には、図8A及び8Bは、中間層60D及び窒化物層54Dが1μmの周期で4回繰り返され、約4μmの全厚を有する構造を形成することを除いて、図4に示した構造と同様の構造の曲率のグラフである。図8Aに対応する構造では、AlN核生成層114を約700℃の温度で成長させる一方、窒化物層54Dを約955℃の温度で成長させた。図8Bに対応する構造では、AlN中間層60Dを約800℃の温度で成長させる一方、窒化物層54Dを985℃の温度で成長させた。図8A及び8Bに示すように、各層をより低い温度で成長させた図8Aに対応する構造は、わずかに小さい圧縮歪みを受けた。
【0110】
図9A及び9Bは、中間層の厚さの変化の歪みに対する影響を示している。具体的には、図9A及び9Bは、図9Aに対応する構造では中間層60Dが20nmの厚さである一方、図9Bに対応する構造では中間層60Dが10nmの厚さであることを除いて、図4に示した構造と同様の構造の曲率のグラフである。図9A及び9Bに示すように、中間層が20nmの厚さである図9Aに対応する構造は、大きい圧縮歪みを示す強い負の曲率を示したが、中間層が10nmの厚さである図9Bに対応する構造における歪みは、より小さい湾曲となり、成長中により小さい最大歪みを有した。
【0111】
図10A〜10Cは、構造の形態に対する中間層の存在の影響を示している。図10Aから10Cは、図10Aに対応する構造では中間層を含まず、図10Bに対応する構造では、ただ1つの中間層60が厚さ2μmのGaN層24に含まれ、図10Cに対応する構造では、3つの中間層60が厚さ2μmのGaN層24に含まれることを除いて、図1に示した構造と同様の構造のノマルスキー(Nomarski)顕微鏡写真である。図10Aから10Cに示すように、ただ1つの中間層60が存在すると構造の表面がより滑らかになるが、3つの中間層60が存在すると表面が粗くなり始める。
【0112】
図5、6A、6B、8A、8B、9A及び9Bのグラフなどの曲率のグラフは、本発明の幾つかの実施形態に従って成長させたエピウェハ内の応力を理解する助けとなり得るが、ランダムなウェハの亀裂、非鏡面性の(non−specular)表面形態、及び/又は非対称のウェハの反りなどの理由によって、曲率のグラフに変則的な又は予期しない影響が生じる可能性があること、また同一条件の下で成長させたウェハが異なる且つ/又は予期しない結果をもたらす可能性があることが、当業者には理解される。従って、本明細書に示した曲率のグラフは、例示のためのみに提供されるものである。
【0113】
図面及び明細書では、本発明の典型的な実施形態を開示してきた。また特定の用語を使用してきたが、それらは一般的且つ記述的な意味に用いたものにすぎず、限定の目的のためではない。本発明の範囲は、以下の特許請求の範囲において示される。

【特許請求の範囲】
【請求項1】
シリコン基板をHを含む反応器チャンバの中で加熱するステップと、
前記反応器チャンバの中にシリコン含有ガスを供給するステップと、
その後、前記基板の上に核生成層を形成するステップと
を備えることを特徴とする半導体構造を形成する方法。
【請求項2】
請求項1に記載の方法において、前記基板全体に前記シリコン含有ガスを流すステップの前に、フッ化水素酸及び/又は緩衝酸化物エッチング溶液を用いて前記基板を清浄化するステップを更に備えることを特徴とする方法。
【請求項3】
請求項1に記載の方法において、前記核生成層を形成するステップは、前記核生成層を1000℃から1100℃の温度で形成するステップを備えること特徴とする方法。
【請求項4】
請求項1に記載の方法において、前記シリコン含有ガスは、SiH、Si、SiCl、SiBr及び/又はSiを含むことを特徴とする方法。
【請求項5】
請求項1に記載の方法において、前記シリコン含有ガスを供給するステップは、1000℃の温度及び0.2気圧の圧力で、前記基板全体に前記シリコン含有ガスを流すステップを備えることを特徴とする方法。
【請求項6】
請求項1に記載の方法において、前記核生成層は、AlNを含むことを特徴とする方法。
【請求項7】
請求項1に記載の方法において、前記シリコン含有ガスとHの比は、10−7:1であることを特徴とする方法。
【請求項8】
請求項1に記載の方法において、前記シリコン含有ガスを供給するステップは、前記反応器の1つ又は複数の部分の上にシリコン被覆物を設けること、あるいは前記反応器内の前記基板から上流に固体シリコンを配置するステップを備えることを特徴とする方法。

【図1】
image rotate

【図1A】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate


【公開番号】特開2012−94905(P2012−94905A)
【公開日】平成24年5月17日(2012.5.17)
【国際特許分類】
【出願番号】特願2012−16826(P2012−16826)
【出願日】平成24年1月30日(2012.1.30)
【分割の表示】特願2009−552706(P2009−552706)の分割
【原出願日】平成20年3月4日(2008.3.4)
【出願人】(592054856)クリー インコーポレイテッド (468)
【氏名又は名称原語表記】CREE INC.
【Fターム(参考)】