説明

冷却層付プリント配線板の製造方法

【課題】水等の冷媒を通流させることの可能な冷却回路を備えたプリント配線板の製造方法を提供する。
【解決手段】冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって、第1行程として、冷媒流路内蔵板の表面をハーフエッチング加工して、冷却回路を形成する冷却回路形成工程、次に、前記冷却回路を形成した冷媒流路内蔵板の表面を、絶縁層構成材に当接するように積層し、張り合わせ積層体とするラミネート工程、最後に冷媒流路内蔵板の表面をエッチング加工して、導体回路を形成し冷却層付プリント配線板とする導体回路形成工程からなることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本件出願に係る発明は、水等の冷媒を通流させることの可能な冷却層若しくは冷却用回路を備えたプリント配線板の製造方法に関する。
【背景技術】
【0002】
近年、コンピュータ機器を始めとする種々の電子機器が、世界的に普及を見せており、その供給速度には、目を見張るものがある。そして、そのようなコンピュータに代表される電子機器は、先進国の中でも都市部に集中的に存在するのが通常である。
【0003】
そして、その都市部では、高層ビルディングの出現もあり、物理的な意味でも風の通りにくい地域となり、その地域の平均気温を上昇させるヒートアイランド現象の要因の一つといわれる。そして、一方では、大量のコンピュータ等のOA機器から発生する熱もヒートアイランド現象を加速し、引いては地球規模での温暖化を助長する要因となっているとも言われる。
【0004】
また、コンピュータ等のOA機器から発生する熱は、プリント配線板に通電したときの、回路抵抗により発生する熱、プリント配線板に実装したICチップ等の搭載部品から発生する熱等が考えられ、かなりの高温になることが指摘されている。そして、近年のコンピュータの演算速度の高速化により、クロック周波数は3GHzを超えるのも一般的となり、発生熱量も増加する傾向にある。プリント配線板を構成する材料を端的に捉えれば金属材とプラスチック材とのコンポジット材であり、その耐熱性を向上させるためにも一定の限界があることは明らかである。
【0005】
そこで、殆どの電子機器では、その発生熱量を外部に排出するために、特許文献1の図面に見られるように、電子機器等のケースにフラットファンを取り付けて、ケース内部の温度を下げるという手段を採用しているのが通常である。
【0006】
そして、近年では、プリント配線板からの発熱熱量を、発生熱をフラットファンを用いて外部に排出するのではなく、非特許文献1で発表されているように水冷式でプリント配線板を冷却しようとする試みがなされてきた。
【0007】
【特許文献1】特開2001−115993号公報
【非特許文献1】日経産業新聞(2005年1月29日発行)
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、現段階に於いて、プリント配線板のいずれかの層に冷媒を用いての冷却可能な層を設けるとしても、プリント配線板としての層構成及び設計として最も適した層構成は明らかになっていない。
【0009】
そして、プリント配線板を製造する過程において、工業的レベルでの生産において如何に効率よく、冷却層付プリント配線板の製造を行えるかに関して研究もなされていなかった。
【0010】
以上のことから、市場では、冷却効果に優れた設計を備え、且つ、従来のプリント配線板製造プロセスをそのまま使用出来き、量産性に優れた冷却層付プリント配線板の製造方法が求められてきた。
【課題を解決するための手段】
【0011】
第1製造方法: 本件発明に係る冷却層付プリント配線板の製造方法であって、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって以下の工程a〜工程eを経ることを特徴とする。かかる冷却層付プリント配線板は、片面に導体回路層及び冷媒流路内蔵層を含む。
【0012】
工程a: 冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第1エッチングレジストパターン形成工程。
工程b: 冷媒流路内蔵板をハーフエッチング加工して、エッチングレジストパターンを剥離し冷却回路を形成する冷却回路形成工程。
工程c: 前記冷却回路を形成した冷媒流路内蔵板の表面を、絶縁層構成材に当接するように積層し、張り合わせ積層体とするラミネート工程。
工程d: 前記積層体の冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第2エッチングレジストパターン形成工程。
工程e: 冷媒流路内蔵板の表面をエッチング加工して、エッチングレジストパターンを剥離し導体回路を形成し冷却層付プリント配線板とする導体回路形成工程。
【0013】
第2製造方法: 本件発明に係る冷却層付プリント配線板の製造方法であって、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって以下の工程a〜工程eを経ることを特徴とする。かかる冷却層付プリント配線板は、片面に導体回路層及び冷媒流路内蔵層を含む。
【0014】
工程a: 冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第1エッチングレジストパターン形成工程。
工程b: 冷媒流路内蔵板をハーフエッチング加工して、エッチングレジストパターンを剥離し導体回路を形成する導体回路形成工程。
工程c: 前記導体回路を形成した冷媒流路内蔵板の表面を、絶縁層構成材に当接するように積層し、張り合わせ積層体とするラミネート工程。
工程d: 前記積層体の冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第2エッチングレジストパターン形成工程。
工程e: 冷媒流路内蔵板の表面をエッチング加工して、エッチングレジストパターンを剥離し冷却回路を形成し冷却層付プリント配線板とする冷却回路形成工程。
【0015】
第3製造方法: 本件発明に係る冷却層付プリント配線板の製造方法であって、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって以下の工程a〜工程cを経ることを特徴とする。かかる冷却層付プリント配線板は、片面に導体回路層、反対面に冷媒流路内蔵層を含むことを特徴としたものである。
【0016】
工程a: 冷媒流路内蔵板と絶縁層構成材と導体層とを順次積層配置して張り合わせるラミネート工程。
工程b: 導体層の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像するエッチングレジストパターン形成工程。
工程c: 導体層をエッチング加工して、エッチングレジストパターンを剥離する回路形成工程。
【0017】
第4製造方法: 本件発明に係る冷却層付プリント配線板の製造方法であって、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって以下の工程a〜工程cを経ることを特徴とする。かかる冷却層付プリント配線板は、片面に導体回路層、反対面に冷媒流路内蔵層を含むことを特徴としたものである
【0018】
工程a: 冷媒流路内蔵板と絶縁層構成材と導体層とを順次積層配置して張り合わせるラミネート工程。
工程b: 導体層及び冷媒流路内蔵板の各表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像するエッチングレジストパターン形成工程。
工程c: 導体層をエッチング加工して回路形状を形成し、同時に冷媒流路内蔵板をエッチング加工して冷却回路を形成し、エッチングレジストパターンを剥離する回路形成工程。
【0019】
以上に述べてきた各製造方法において用いる冷媒流路内蔵板は、一面側に複数の凹部を備える凹部形成面を備える第1金属板と、両面が平滑な第2金属板とを用い、第1金属板の凹部形成面に第2金属板を張り合わせて得られるものを用いることが好ましい。
【0020】
また、本件発明にかかる冷却層付プリント配線板の製造方法で用いる冷媒流路内蔵板は、両面が平滑な第1金属板と第2金属板との間に、複数のスリット孔を加工した第3金属板を挟み込んで張り合わせて得られるものを用いることも好ましい。
【0021】
そして、上記本件発明にかかる冷却層付プリント配線板の製造方法で用いる冷媒流路内蔵板は、その片面をハーフエッチングして、事前に放熱フィン形状を形成したものとして用いることも好ましい。
【0022】
本件発明にかかる冷却層付プリント配線板の製造方法で用いる冷媒流路内蔵板は、その層内にニッケル、スズ、アルミニウム、チタン及びこれらの合金からなる異種金属層を備えるものを用いることが好ましい。放熱フィン形状等を製造することが容易となる。
【0023】
更に、冷媒流路内蔵層が内蔵する流路の内壁面には、防錆処理層を備えるものとして用いることが好ましい。
【0024】
以上に述べてきた冷却層付プリント配線板の製造方法は、基本的に両面張積層板を基準として、プリント配線板に加工する製造方法として記載している。これらの製造方法により得られる冷却層付プリント配線板は、従来にない冷却層若しくは冷却回路を備えたものであり、プリント配線板の水冷方式による冷却を可能とする。
【0025】
そして、上述の技術的思想を用いて、多層プリント配線板を製造することも容易である。例えば、一般的な多層プリント配線板の製造手法を採用し、本件発明に係る製造方法により得られた冷却層付プリント配線板の絶縁層の内に内層コア材を含む構成とすれば、冷却層付多層プリント配線板を得ることが出来る。また、一般的な多層プリント配線板の製造手法を採用し、本件発明に係る冷却層付プリント配線板を内層コア材として用いて、その外層に回路形成を行った冷却層付多層プリント配線板を得ることも可能である。
【0026】
そして、多層プリント配線板の場合には、当該内層回路と外層に位置する回路とを電気的に連結した層間導通手段、若しくは、放熱路としての層間導通手段を、従来のスルーホール、ビアホール等の形成方法を適用して形成することも可能である。
【発明の効果】
【0027】
本件発明に係る冷却層付プリント配線板は、従来のプリント配線板製造プロセスを用いて、プリント配線板の層内に冷媒を用いて冷却可能な層を設けることが容易である。そして、プリント配線板自体の冷媒による直接冷却が可能となるために、更なる高密度実装化を行っても発生熱量を効率よく除去することが可能で、電子機器等の小型化に大きく寄与出来る。また、単一の電源回路から発生する熱量が大きくても、その発生熱量を迅速に排除出来るため、電源回路の幅を小さくすることも可能とする。
【発明を実施するための最良の形態】
【0028】
以下に本件発明に係る冷却層付プリント配線板の製造方法に関する実施形態を説明するが、説明の都合上、最初に当該製造方法で用いる冷媒流路内蔵層を構成する事になる冷媒流路内蔵板の製造方法及び種類に関して説明する。
【0029】
冷媒流路内蔵板: ここでは説明の都合上、本件発明に係る冷却層付プリント配線板の冷媒流路内蔵層を構成するために用いる板状材を冷媒流路内蔵板と称している。この冷媒流路内蔵板の製造方法は、大別して2種類のものがある。そして、最終的な冷媒流路内蔵板としての形態を、厳密に言えば4種類の形態がある。そこで、これらを冷媒流路内蔵板(I)〜冷媒流路内蔵板(IV)として、各々を説明することとする。
【0030】
冷媒流路内蔵板(I): この冷媒流路内蔵板(I)は、図1に示すように、一面側に複数の凹部を備える凹部形成面のある第1金属板11と、両面が平滑な第2金属板12とを用い、これらを図1(a−1)及び図(a−2)のように積層した状態で圧延する。その結果、第1金属板11の凹部形成面に第2金属板12がクラッドされ、図1(b−1)及び図(b−2)に示す通流路2を備える冷媒流路内蔵板(I)10が得られる。
【0031】
このときの第1金属板11の凹部形成面は、第1金属板11の表面にエッチングレジスト層を形成し、所望のエッチングレジストパターンを露光、現像し、ハーフエッチング加工することにより形成する事が望ましい。なお、第1金属板11の凹部形成面とする反対面には、全面にエッチングレジスト層を形成し、反対面からのエッチングを防止することが望ましい。ここで言うハーフエッチング加工とは、エッチングレジストの無い第1金属板の部位を完全溶解させ、貫通孔を形成するのではなく、凹部を形成するエッチングのことを言う。ここで言う凹部の断面形状に特に限定はなく、第1金属板11の平面内における凹部の走り方も、ストレート形状、蛇行形状、ヘリンボーン形状等任意の形状を採用することが可能である。このときの凹部の深さは、20μm以上であることが好ましい。より好ましくは、200μm〜1000μmの範囲とする。20μm未満では、以下に述べる圧延法による張り合わせにより形成される通流路の断面形状にバラツキが生じる。凹部の深さが、1000μmを超えても実用上の支障はないが、冷媒流路内蔵板のトータル厚さが厚くなり重量負荷が大きくなり、凹部の加工費用も高くなる。
【0032】
そして、以上のようにして製造した第1金属板11の凹部形成面に、第2金属板12を圧延法でクラッドするのであるが、このときのクラッド圧延条件には、以下の述べる条件を用いることが好ましい。第1金属板と第2金属板には、銅若しくは銅合金を主体的に用いることが好ましい。熱伝導性に優れ価格的にも安価だからである。従って、銅合金としては、JIS H 3100に示す合金番号として、C1000番台やC2000番台の銅合金、および黄銅、快削黄銅、すず入り黄銅、アドミラルティ黄銅、ネーバル黄銅、アルミニウム青銅、白銅等が利用できる。
【0033】
そして、第1金属板及び第2金属板の厚さは、35μm〜1100μmの範囲とすることが好ましい。35μm未満では充分な強度や耐食性が得られず、1100μmを超えた厚みになれば重くなり、ハンドリング時の労働負荷が増し、最終製品である電子機器等の重量増にも繋がるのである。そして、第2金属板は、通流路を形成するための凹部を形成したものである。従って、第1金属板と第2金属板とを張り合わせて得られる冷媒流路内蔵板(I)は、そのトータル厚さが70μm〜2.2mmの範囲となる。
【0034】
第1金属板と第2金属板とを圧延して張り合わせるに際して、第1金属板又は第2金属板の少なくとも一方に活性化処理を施すことが好ましい。この活性化処理は、第1金属板及び第2金属板の少なくとも一方を真空槽内に装填し、これら金属板をアース接地した電極とし、他の絶縁支持された電極との間に10〜1×10−3Paの極低圧不活性ガス雰囲気で、1〜50MHzの交流を印加してグロー放電を行わせ、かつ、グロー放電によって生じたプラズマ中で当該金属板表面をスパッタエッチング処理する事が好ましい。
【0035】
その後、両金属板を圧延法で接合して張り合わせる。係る場合の圧延は、低温度且つ低圧延率で行うことができ、熱間圧接や高圧延率の圧接によって起こる金属板及び接合界面の近傍に発生する組織変化や合金化、破断等といった悪影響を軽減または排除することが可能である。また、第2金属板の凹部の変形を軽減させることが可能であり、通流路を精度よく加工することができる。この圧延接合時の第1金属板及び第2金属板の加工温度は、300℃以下を採用することが好ましい。より好ましくは、0℃を超える温度であって、300℃以下の範囲である。0℃以下の温度での圧延張り合わせが可能であるが、冷却装置等の大幅な設備投資が必要である。一方、300℃を超えると接合部が脆化し接合強度が低下する。圧延率は、30%以下であることが好ましい。より好ましくは、0.1%〜30%の圧延率を採用する。圧延率が0.1%未満では充分な接合強度が得られず、圧延率が30%を超えると変形が大きくなり好ましくない。
【0036】
この冷媒流路内蔵板(I)を構成するために用いた第1金属板又は第2金属板のいずれか一方若しくは両方に異種金属層を備えるものを用いることも好ましい。即ち、冷媒流路内蔵板の層内に異種金属層13が、図2に示す断面構成のように存在する。そして、この異種金属層は、第1金属板及び第2金属板を構成する金属成分と選択エッチング可能な材質で構成する事が好ましい。例えば、第1金属板及び第2金属板を構成する主要金属成分が銅であるとすると、異種金属層を構成する成分としては、ニッケル、スズ、アルミニウム、チタン及びこれらの合金からなるものであることが好ましい。異種金属の形状として板材、箔材、めっき、ドライ成膜のいずれでも適用できる。銅をアルカリ系エッチング液でエッチング除去しようとすると、図1(a−2)に示すように異種金属層は全くエッチングを受けず残留させることができ、しかも異種金属層のみを残留させて銅のみをエッチングすることも可能だからである。この選択エッチング特性は、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む積層体をエッチング加工して、放熱フィン形状等を形成する際に極めて有効となる。これらに関しては、後述する事とする。図2には、この冷媒流路内蔵板(I)のバリエーションとして、異種金属層のない冷媒流路内蔵板(I)と異種金属層13を備える冷媒流路内蔵板(I)のいくつかを例示した。
【0037】
冷媒流路内蔵板(II): この冷媒流路内蔵板(II)10は、図3(a)に示すように、両面が平滑な第1金属板11’と第2金属板12との間に、複数のスリット孔を加工した第3金属板14を挟み込んで、圧延法によりクラッドして張り合わせ、図3(b)に断面模式図として示す通流路2を備えるものとして得られる。このような製造方法を採用すると、第1金属板11’、第2金属板12、第3金属板14のそれぞれの材質を変更することも可能となる。従って、第1金属板11’及び第2金属板12のみを軽量なアルミニウム系の素材を用いて、最終製品であるプリント配線板の軽量化も可能となる。
【0038】
このときの第3金属板14に設ける複数のスリット孔は、第3金属板14の表面にエッチングレジスト層を形成し、所望のエッチングレジストパターンを露光、現像し、ハーフエッチング加工することにより貫通したスリット孔を形成する事が望ましい。このスリット孔を形成する場合、第3金属板の縁端部にはスリット孔が形成されないようにする必要がある。なお、貫通したスリット孔を形成するためには、第3金属板14の一面側からエッチングしても、両面から同時にエッチング加工しても良い。なお、第3金属板13の一面側からエッチングする場合には、その反対面には、全面にエッチングレジスト層を形成し、反対面からのエッチングを防止することが望ましい。そして、第3金属板13の平面内におけるスリット孔の走り方も、ストレート形状、蛇行形状、ヘリンボーン形状等任意の形状を採用することが可能である。更に、貫通孔であるスリット孔を形成する場合に、形成するスリット孔の幅が100μm以上であれば、打ち抜き法で加工しても良い。100μm未満の幅のスリット孔を打ち抜き法で形成しようとすると、加工が困難となり第3金属板14に歪みが生じたり、抜き打ち精度が劣る等の不具合が発生するのである。
【0039】
そして、以上のようにして製造した第1金属板11/第3金属板13/第2金属板12を圧延法でクラッドするのであるが、このときのクラッド圧延条件には、上記と同様の条件を採用することが好ましい。更に、圧延法による張り合わせが終了すると、縁端部を切断除去して冷媒流路内蔵板(II)10が得られる。
【0040】
この冷媒流路内蔵板(II)を構成するために用いた第1金属板又は第2金属板のいずれか一方若しくは両方に異種金属層を備えるものを用いることも好ましい。即ち、冷媒流路内蔵板の層内に異種金属層13が、図4に示す断面構成のように存在する。そして、この異種金属層の構成等に関しては、冷媒流路内蔵板(I)の場合と同様であるため、ここでの説明は省略する。図4には、この冷媒流路内蔵板(II)のバリエーションとして、異種金属層のない冷媒流路内蔵板(II)と異種金属層13を備える冷媒流路内蔵板(II)のいくつかを例示した。
【0041】
冷媒流路内蔵板(III): この冷媒流路内蔵板(III)は、図1(b)及び図3(b)に示す冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)の一面側に放熱フィン形状を備えるものである。
【0042】
この冷媒流路内蔵板(III)は、一面側に複数の凹部を備える凹部形成面を備え、且つ、通流路2を形成する凹部を備える第1金属板11と、両面が平滑な第2金属板12とを用い、これらを積層した状態で圧延し、張り合わせる方法で得ることができる。
【0043】
また、図5(a)に示すように当該冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)の一面側の表面にエッチングレジスト層を形成し、露光、現像し、所望のエッチングレジストパターン15を形成し、ハーフエッチング加工することにより、放熱フィン16の形状を形成することで、図5(b)に模式断面を示した冷媒流路内蔵板(III)10を得るのである。なお、冷媒流路内蔵板(I)の片面をハーフエッチングする際には、その反対面は、全面にエッチングレジスト層を形成し、反対面からのエッチングを防止することが望ましい。ここで言う放熱フィン形状に特に限定はなく、冷媒流路内蔵板(I)の平面内における走り方も、ストレート形状、蛇行形状、ヘリンボーン形状等任意の形状を採用することが可能である。なお、図5では、前記冷媒流路内蔵板(I)を用いた場合を例示した。
【0044】
冷媒流路内蔵板(IV): この冷媒流路内蔵板(IV)は、冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)のいずれかであって、第1金属板11と第2金属板12との少なくとも一方の層内に、前記異種金属層が存在するものを用いて、図6(a)に示すように、当該冷媒流路内蔵板(I)10の一面側の表面にエッチングレジスト層を形成し、所望のエッチングレジストパターン15を露光、現像して形成し、異種金属層13までを選択エッチング加工することにより、放熱フィン16の形状を形成できる。しかも、このときの選択エッチング時間に関しては厳密に管理する必要が無くなる。異種金属層13が存在するため、それ以上のエッチング進行を阻止するからである。図7には、この冷媒流路内蔵板(IV)のバリエーションとして、異種金属層13及び放熱フィン16を備える冷媒流路内蔵板(IV)のいくつかを例示した。
【0045】
そして、上記冷媒流路内蔵板(I)〜冷媒流路内蔵板(IV)は、その冷媒流路の内壁面には、防錆処理層を備えるものとして用いることが好ましい。このときの防錆処理層には、無機防錆及び有機防錆のいずれを用いても良い。そして、防錆処理層の形成方法に関しても、特段の限定はない。例えば、無機防錆を行う場合には、冷媒流路内に触媒か溶液を流入させ、当該内壁面にパラジウム等の触媒金属を吸着させ、その後亜鉛、錫等の無電解メッキ液を流入させ、当該内壁面に無機防錆処理層を形成する方法を採用することも可能である。また、ここで言う有機防錆処理とは、当該冷媒流路の内壁面にベンゾトリアゾール系の有機防錆被膜を形成したり、飲料用缶の内面に設ける樹脂コート層を形成したりする場合を想定したものであり、やはり当該流路内に有機剤若しくはコート剤を流入させることにより、党外内壁面の表面に防錆処理層を設けるのである。このときの防錆処理のレベルは、用途により変更することが可能であり、適宜設計品質に応じての処理が選択使用される。なお、図面中に於いては、この防錆処理層の記述は省略している。以下、上述の冷媒流路内蔵板を用いての本件発明に係る冷却層付プリント配線板の製造方法に関して説明する。
【0046】
(第1製造方法)
本件発明に係る冷却層付プリント配線板であって、片面に導体回路層及び冷媒流路内蔵層を含むものを製造する場合には、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む積層体をエッチング加工して冷却層若しくは冷却回路層を含むプリント配線板の製造方法であって、以下の工程a〜工程eを含むことを特徴とする。この製造方法は、上述の冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いることを想定している。以下、この第1製造方法の工程を、工程ごとに説明するが、図8〜図10に異種金属層の無い冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いた場合を、図11〜図13には異種金属層を備える冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いた場合を示している。
【0047】
工程a: この第1エッチングレジストパターン形成工程では、冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する。即ち、図8(a)に示す冷媒流路内蔵板(I)10の表面に、図8(b)に示すようにエッチングレジストパターン15を設けるためのレジストレーション工程である。この工程に関しては、冷媒流路内蔵板の内部に異種金属層を含む場合の図11(a)及び図11(b)においても同様である。ここで言うエッチングレジストには、特段の限定はなく、ドライフィルム、液体レジスト等を用いることができる。また、露光及び現像する際の方法に関しても任意である。なお、冷媒流路内蔵板の反対面にもエッチングレジスト層を設け、全面のエッチングレジスト層を残留させることで、冷媒流路内蔵板の反対面からのエッチング液による損傷を防止出来る。
【0048】
工程b: そして、この冷却回路形成工程では、冷媒流路内蔵板(I)10をハーフエッチング加工して、エッチングレジストパターンを剥離し、図8(c)に示すように冷却回路3を形成する。従って、このときのハーフエッチングは、冷却回路3の内部に通流路2が内包される状態となるようなレベルでのエッチング加工となる。そして、片面に異種金属層を備えるパターンの冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)を用いると、図11(c)に示すように、通流路2を挟んで異種金属層13の存在しない側からハーフエッチングすることで、異種金属層の高さまでの冷却回路形状を容易に製造することが可能となる。なお、異種金属層が存在する場合には、異種金属層の溶解の無きよう、エッチング液を選択使用すべきである。例えば、冷媒流路内蔵板が銅バルクの中に異種金属層としてのニッケルが存在する場合には、アルカリ系銅エッチング液を用いる等である。これらの図から分かるように、冷却回路3とは、回路の発熱の多い領域又は発熱の多い回路に対応する部位に関してのみ設ける事も可能で、その内部に通流路2を備えた回路を言うのである。
【0049】
工程c: そして、このラミネート工程では、図9(d)及び図12(d)に示すように、前記冷却回路3を形成した冷媒流路内蔵板(I)10の表面を、絶縁層構成材4に当接するように積層し、熱間プレス加工することにより、図9(e)及び図12(e)に示すように、銅張積層板を製造する要領で積層体5とする。このとき絶縁層の構成に用いるのは、プリプレグ、樹脂フィルム等のプリント配線板の絶縁層の構成に用いることの出来るものであればよい。また、この熱間プレス加工する前の前記冷却回路3を形成した冷媒流路内蔵板の表面には、所謂黒化処理、粗化エッチング処理等の粗化処理を予め施し、絶縁層との密着性の向上を図ることも好ましい。
【0050】
工程d: この第2エッチングレジストパターン形成工程では、前記積層体5の冷媒流路内蔵層10Aの表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターン15を露光し、現像して形成し、図9(f)及び図12(f)に示す状態とする。このときのエッチングレジスト層に関する概念は、上述と同様であるため、ここでの説明は省略する。
【0051】
工程e: そして、導体回路形成工程では、図10(g)及び図13(g)に示すように、当該冷媒流路内蔵板(I)10の表面をエッチング加工して、エッチングレジストパターン15を剥離し、導体回路7を形成する。異種金属層13の無い冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)を用いる場合、この段階で導体回路7が基板表面から突出した冷却層付プリント配線板1が得られる。
【0052】
しかしながら、片面に異種金属層を備えるパターンの冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)を用いた場合には、回路間に露出した異種金属層を除去するための異種金属除去工程を付加的に設けることで図13(h)に示すように、導体回路7基板表面から突出した冷却層付プリント配線板1が得られる。
【0053】
(第2製造方法)
本件発明に係る冷却層付プリント配線板であって、片面に導体回路層及び冷媒流路内蔵層を含むものを製造する場合には、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む積層体をエッチング加工して冷却層若しくは冷却回路層を含むプリント配線板の製造方法であって、以下の工程a〜工程eを含むことを特徴とする。この製造方法は、上述の冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いることを想定している。以下、この第1製造方法の工程を、工程ごとに説明するが、図14〜図16に異種金属層の無い冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いた場合を、図17〜図19には異種金属層を備える冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いた場合を示している。第1製造方法との最も大きな違いは、冷媒流路内蔵板を絶縁層へ張り合わせる際の張り合わせ方法が異なる点にある。
【0054】
工程a: この第1エッチングレジストパターン形成工程では、図14(a)及び図17(a)に示した冷媒流路内蔵板(I)10の表面に、エッチングレジスト層を設け、当該エッチングレジスト層に、図14(b)及び図17(b)に示すようにエッチングレジストパターン15を露光し、現像形成する。但し、この第2製造方法では、導体回路形状を先に形成するため、ここで形成するエッチングレジストパターン15は、導体回路を形成するためのものである。なお、エッチングレジスト等に関する概念は上述と同様であるため、ここでの説明は省略する。
【0055】
工程b: この導体回路形成工程では、冷媒流路内蔵板(I)10をハーフエッチング加工して、エッチングレジストパターン15を剥離し、図14(c)及び図17(c)に示すように導体回路7を形成する。なお、ハーフエッチングに関する概念は、上述と同様であるため、ここでの説明は省略する。
【0056】
工程c: このラミネート工程では、前記導体回路7を形成した冷媒流路内蔵板(I)10の表面を、図15(d)及び図18(d)のように絶縁層構成材4に当接するように、熱間プレス加工することにより、銅張積層板を製造する要領で図15(e)及び図18(e)に示す積層体5とする。このとき絶縁層の構成に用いるのは、材料の概念は上述のとおりである。また、この熱間プレス加工する前の前記導体回路7を形成した冷媒流路内蔵板(I)10の表面には、所謂黒化処理、粗化エッチング処理等の粗化処理を予め施し、絶縁層との密着性の向上を図ることも好ましい。
【0057】
工程d: この第2エッチングレジストパターン形成工程では、前記積層体5の冷媒流路内蔵板(I)10の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図15(f)及び図18(f)に示す状態とする。このときのエッチングレジスト層に関する概念は、上述と同様であるため、ここでの説明は省略する。
【0058】
工程e: そして、冷却回路形成工程では、図16(g)及び図19(g)に示すように、当該冷媒流路内蔵板(I)10の表面をエッチング加工して、エッチングレジストパターン15を剥離し、冷却回路3を形成する。異種金属層の無い冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)を用いるこの場合、この段階で冷却回路3が基板表面から突出した冷却層付プリント配線板1が得られる。
【0059】
しかしながら、片面に異種金属層を備えるパターンの冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)を用いた場合には、回路間に露出した異種金属層を除去するための異種金属除去工程を付加的に設けることで図19(h)に示すように、冷却回路3が基板表面から突出した冷却層付プリント配線板1が得られる。以上のように、冷却回路が表面から突出した状態の冷却回路は、放熱フィンとしての機能を果たし、熱の放散性優れるものとなる。
【0060】
(第3製造方法)
本件発明に係る冷却層付プリント配線板の製造方法は、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む積層体をエッチング加工して冷却回路層を含むプリント配線板を得るための製造方法であって、以下の工程a〜工程cを経て、片面に導体回路層、反対面に冷媒流路内蔵層を含むことを特徴としたものである。以下、冷媒流路内蔵板(I)を用いた場合を例示的に使用して、図20〜図22を主に用いて、工程ごとに説明する。
【0061】
工程a: このラミネート工程では、冷媒流路内蔵板と絶縁層構成材と導体層とを順次積層配置して張り合わせる。即ち、図20(a)に示したように冷媒流路内蔵板(I)10と絶縁層構成材4と導体層8とを重ね合わせて、熱間プレス加工することとにより、銅張積層板を製造する要領で、図20(b)に示す積層体5とする。このとき絶縁層6の構成に用いるのは、プリプレグ、樹脂フィルム等のプリント配線板の絶縁層の構成に用いることの出来る絶縁層構成材であればよい。そして、導体層8には銅箔、ニッケル箔等の金属箔を用いるのであり、特に限定はない。更に、ここで用いる冷媒流路内蔵層の構成に用いる冷媒流路内蔵板には、上述の冷媒流路内蔵板(I)〜冷媒流路内蔵板(IV)のいずれを用いても構わない。図面中では、冷媒流路内蔵板(I)を用いて説明している。
【0062】
工程b: 第1製造方法におけるエッチングレジストパターン形成工程では、導体層8の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図21(c)に示すようにエッチングレジストパターン15を形成する。ここで言うエッチングレジストには、特段の限定はなく、ドライフィルム、液体レジスト等を用いることができる。また、露光及び現像する際の方法に関しても任意である。なお、冷媒流路内蔵層の表面にもエッチングレジスト層を設け、全面のエッチングレジスト層を残留させることで、冷媒流路内蔵層のエッチング液による損傷を防止出来る。
【0063】
工程c: この回路形成工程では、導体層8のみをエッチング加工して、エッチングレジストパターンを剥離することで、図21(d)に示すように製品設計に応じた導体回路7を形成し、基礎的な構造要件を満たした冷却層付プリント配線板1となる。このときの冷媒流路内蔵層は平板状である。
【0064】
ここで、冷媒流路内蔵層の構成に冷媒流路内蔵板(I)〜冷媒流路内蔵板(IV)のいずれを用いるかにより、断面形状の異なる冷却層付プリント配線板となる。例えば、冷媒流路内蔵板(II)を用いると、図22(a)に示す冷却層付プリント配線板1となる。冷媒流路内蔵板(III)を用いると、図22(b)に示す放熱フィン16として機能する突起形状を備えた冷却層付プリント配線板となる。冷媒流路内蔵板(IV)を用いると、図22(c)に示すように、異種金属層13、放熱フィン16として機能する突起形状を備えた冷却層付プリント配線板1となる。これら各種の層構成を持つ冷却層付プリント配線板は、このままの状態でもプリント配線板としての使用が可能である。
【0065】
(第4製造方法)
本件発明に係る冷却層付プリント配線板の製造方法は、冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む積層体をエッチング加工して冷却回路層を含むプリント配線板の製造方法であって、以下の工程a〜工程cを経て、片面に導体回路層、反対面に冷媒流路内蔵層を含むことを特徴としたものである。以下、工程ごとに説明する。なお、この第4製造方法においては、冷媒流路内蔵層の構成に、上記冷媒流路内蔵板(I)又は冷媒流路内蔵板(II)を用いる。以下、この第4製造方法の工程を、工程ごとに説明するが、図23及び図24に異種金属層の無い冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いた場合を、図25及び図26には異種金属層を備える冷媒流路内蔵板(I)及び冷媒流路内蔵板(II)を用いた場合を示している。なお、図面中では、冷媒流路内蔵板(I)を用いて説明している。
【0066】
工程a: このラミネート工程は、第3製造方法と同様に、図23(a)又は図25(a)に示すように、冷媒流路内蔵板(I)10と絶縁層構成材4と導体層8とを順次積層配置して熱間プレス加工して張り合わせ、図23(b)又は図25(b)に示す積層体5の状態とする。このラミネート工程は第3製造方法の図20(a)及び図20(b)と同様であるため、ここでの詳細な説明は省略する。
【0067】
工程b: この第4製造方法のエッチングレジストパターン形成工程では導体層8及び冷媒流路内蔵層10Aの各表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図24(c−1)、図24(c−2)又は図26(c)に示すように、エッチングレジストパターン15を形成する。即ち、この第2製造方法に於いては、冷媒流路内蔵板に関しても積極的にエッチング処理を行うためのエッチングレジストパターン15を形成するのである。エッチングレジストパターンについての概念は上述のとおりである。そして、図24(c−1)は導体回路と同時に冷却回路を形成するためのエッチングレジストパターンを示し、図24(c−2)は導体回路と同時に放熱フィンを形成するためのエッチングレジストパターンを示している。
【0068】
工程c: このエッチング工程では、図24(d−1)、図24(d−2)又は図26(d)に示すように、導体層をエッチング加工して回路形状を形成し、同時に冷媒流路内蔵板(I)10をエッチング加工して冷却回路3又は放熱フィン16を形成し、エッチングレジストパターンを剥離する。ここで、分かるように図24(d−1)は冷却回路3を形成たものであり、図24(d−2)は放熱フィン16を形成したものである。従って、導体回路形成を行うエッチング時間で、冷却回路形成を行うのか、放熱フィン形状を形成するのかにより、導体層の厚さ、導体層の材質、冷媒流路内蔵層の厚さ等を設計する必要がある。例えば、図24(d−1)の冷却層付プリント配線板1を得ようとして、冷媒流路内蔵板全体の材質が銅であり、導体層も銅であれば、冷媒流路内蔵板と銅との厚さを同じく設計しなければならない。なお、導体層を構成する金属成分を銅よりもエッチング速度の遅いものを採用すれば、薄い導体層を形成することも可能である。しかしながら、図24(d−2)の冷却層付プリント配線板1を得ようとすると、形成するのは放熱フィン形状のみであり、冷媒流路内蔵板の厚さ全体をエッチングする必要がないために、放熱フィンの高さ分の薄い導体層8を設けることになる。また、図26(d)に示す冷却層付プリント配線板1を得ようとするときには、冷媒流路内蔵板の表面から異種金属層までの厚さが、導体層8よりも薄いという関係が成立していればよい。冷媒流路内蔵板(I)10の異種金属層を超えてエッチングされることが無いからである。以上のようにして、冷却層付プリント配線板1が得られる。
【0069】
(多層プリント配線板の製造方法)
以上に述べてきた冷却層付プリント配線板の製造方法で得られたものは、所謂片面若しくは両面プリント配線板であるが、これらを用いて多層プリント配線板を製造することができる。例えば、本件発明に係る製造方法で得られた冷却層付プリント配線板を多層プリント配線板の内層コア材として用いたり、絶縁層構成材を介して他のプリント配線板と当該冷却層付プリント配線板を張り合わせて多層プリント配線板とする方法が考えられる。
【0070】
また、上記第3製造方法及び第4製造方法を採用する場合、その絶縁層内に内層コア材を含ませることで、多層プリント配線板を容易に製造することが出来る。そして、上記第3製造方法及び第4製造方法のいずれかの製造方法における工程aと工程bとの間に層間導通形成工程を設けたことを特徴とする冷却層付プリント配線板の製造方法を採用することが好ましい。ここで言う層間導通工程とは、スルーホール、ビアホール等の層間導通手段を設ける工程の事であり、既に知られた方法を広く採用することが可能である。この多層板の製造に関しては、以下の実施例を通じて詳細に説明する。
【実施例1】
【0071】
この実施例では、上述の第1製造方法を用いて、上述の冷媒流路内蔵板(I)を用いて冷却層付プリント配線板を製造した。以下、図8〜図10を主に参照して説明する。
【0072】
工程a: この第1エッチングレジストパターン形成工程では、図8(a)に示す冷媒流路内蔵板(I)10の表面に、図8(b)に示すようにドライフィルムをラミネートして、エッチングパターンを露光し、現像し、エッチングレジストパターン15を設けた。なお、冷媒流路内蔵板(I)10の反対面にもドライフィルムによるエッチングレジスト層を設け、全面のエッチングレジスト層を残留させることで、冷媒流路内蔵板の反対面からのエッチング液による損傷を防止出来るようにした。
【0073】
ここで用いた冷媒流路内蔵板(I)10は、次のようにして製造した。第1金属板として厚さ200μmの銅板を用い。第2金属板とする厚さ400μmの銅板を用いた。そして、400μm厚さの銅板の両面にエッチングレジスト層を設けた。その後、片面の当該エッチングレジスト層に凹部19を形成する為のエッチングパターンを露光し、現像した。他面側のエッチングレジスト層は全面を硬化させ、全面をエッチング液から保護するための、全面レジスト層とした。そして、塩化銅エッチング液を用いて、片面からハーフエッチングして、150μm深さ、幅50μm〜250μmの直線状の凹部を形成し第2金属板とした。
【0074】
次に、第1金属板の接合に用いる表面と、第2金属板の凹部形成面に対して、3×10−3Paの極低圧アルゴンガス雰囲気で、13.56MHzの交流を印加してグロー放電を行わせ、
双方の接合面の活性化処理を行った。そして、接合面を活性化処理した第1金属板12と第2金属板11を図1(a)に示すように積層圧延し、図1(b)に示すように張り合わせた。このときの圧延率は、1%の低圧下率及び室温の条件を採用した。この結果、冷媒流路内蔵板(I)10は、トータル厚さ600μmであり、内蔵した通流路150μ×50μm〜250μmの開口面積を備えるものであった。そして、この通流路の内壁面に防錆処理層として無電解ニッケル層を設けた。この防錆処理層の形成にあたり、初めに通流路内にパラジウム触媒溶液を通流路内に流入させ、通流路内の内壁に触媒吸着を行わせた。その後、その通流路内に無電解ニッケルメッキ液を流入させ、約3μm厚さの無電解ニッケルメッキ層を防錆処理層として形成した。
【0075】
工程b: そして、この冷却回路形成工程では、工程aでエッチングレジストパターンをを形成した冷媒流路内蔵板(I)10を、塩化銅エッチング液を用いて、ハーフエッチング加工して、エッチングレジストパターンを剥離し、図8(c)に示すように冷却回路3を形成した。このハーフエッチングを行った結果、冷却回路3の内部に通流路2が内包される状態とした。
【0076】
工程c: そして、このラミネート工程では、図9(d)に示すように、前記冷却回路3を形成した冷媒流路内蔵板(I)10の冷却回路3の形成面を、絶縁層構成材4(厚さ210μmのFR−4プリプレグを3枚使用)に当接するように積層し、180℃×60分程度の熱間プレス加工することにより、図9(e)に示すように、銅張積層板を製造する要領で積層体5とした。また、この実施例では、熱間プレス加工する前の前記冷却回路3を形成した冷媒流路内蔵板の表面には、定法により黒化処理を予め施し、絶縁層との密着性の向上を図った。
【0077】
工程d: この第2エッチングレジストパターン形成工程では、前記積層体5の最外層にある冷媒流路内蔵層10Aの表面に、ドライフィルムを用いてエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターン15を露光し、現像して形成し、図9(f)に示す状態とした。
【0078】
工程e: そして、導体回路形成工程では、図10(g)に示すように、当該冷媒流路内蔵板(I)10の表面を、塩化銅エッチング液を用いてエッチング加工して、エッチングレジストパターン15を剥離し、導体回路7を形成し、導体回路7が基板表面から突出した冷却層付プリント配線板1を得た。
【実施例2】
【0079】
この実施例では、上述の第2製造方法を用いて、上述の異種金属層を備える冷媒流路内蔵板(II)を用いて冷却層付プリント配線板を製造した。以下、図17〜図19を主に参照して説明する。
【0080】
工程a: この第1エッチングレジストパターン形成工程では、図14(a)及び図17(a)に示した冷媒流路内蔵板の表面に、エッチングレジスト層を設け、当該エッチングレジスト層に、図14(b)及び図17(b)に示すようにエッチングレジストパターン15を露光し、現像する。但し、この第2製造方法では、導体回路形状を先に形成するため、ここで形成するエッチングレジストパターン15は、導体回路を形成するためのものである。なお、エッチングレジスト等に関する概念は上述と同様であるため、ここでの説明は省略する。
【0081】
ここで用いた冷媒流路内蔵板(II)10は、次のようにして製造した。第1金属板として厚さ150μmの銅板、第2金属板として厚さ200μm銅層の中間に異種金属層として10μm厚さのニッケル層をそなえる複合板、第3金属板に100μm厚さの銅板を用いた。そして、第3金属板は、その両面にエッチングレジスト層を設けた。その後、両面の当該エッチングレジスト層に貫通溝18を形成する為のエッチングパターンを、露光し、現像した。そして、塩化銅エッチング液を用いて、片面からエッチングして、幅150μmの冷却媒体が蛇行走行し循環する事の出来る形状を形成し第3金属板とした。
【0082】
次に、第1金属板、第2金属板及び第3金属板の接合に用いる表面を、3×10−3Paの極低圧アルゴンガス雰囲気で、25MHzの交流を印加してグロー放電を行わせ、双方の接合面の活性化処理を行った。そして、接合面を活性化処理した第1金属板12/第3金属板14/第2金属板11を、図2(a)に示すように積層し圧延して、図2(b)に示すように張り合わせた。このときの圧延率は、1%の低圧下率及び室温の条件を採用した。この結果、冷媒流路内蔵板(I)10は、トータル厚さ450μmであり、内蔵した通流路100μ×150μmの開口面積を備えるものであった。そして、この通流路の内壁面には、実施例1と同様にして防錆処理層を設けた。
【0083】
工程b: この導体回路形成工程では、冷媒流路内蔵板(II)10を、アルカリ銅エッチング液でハーフエッチング加工して、エッチングレジストパターン15を剥離し、図17(c)に示すように異種金属層(ニッケル層)13までをエッチングして導体回路7を形成する。このとき異種金属層13が存在するため、それ以上のエッチング加工がされないために、過剰なエッチングは発生していなかった。
【0084】
工程c: このラミネート工程では、前記導体回路7を形成した冷媒流路内蔵板(II)10の表面を、図18(d)のように絶縁層構成材4(210μm厚さのFR−4プリプレグ)に当接するようにして、180℃×60程度の熱間プレス加工により、図18(e)に示す積層体5とした。また、この熱間プレス加工する前の、前記導体回路7を形成した冷媒流路内蔵板(II)10の表面には、定法により黒化処理を施し、絶縁層との密着性の向上を図った。
【0085】
工程d: この第2エッチングレジストパターン形成工程では、前記積層体5の冷媒流路内蔵板(II)10の表面に、ドライフィルムを用いてエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図18(f)に示す状態とした。
【0086】
工程e: そして、冷却回路形成工程では、図16(g)及び図19(g)に示すように、当該冷媒流路内蔵板(I)10の表面を、アルカリ銅エッチング液でエッチング加工して、エッチングレジストパターン15を剥離し、冷却回路3を形成した。
【0087】
更に、この実施例で用いた冷媒流路内蔵板(II)は異種金属層を備えるため、回路間に露出した異種金属層を除去するための異種金属除去工程を付加的に設けた。この異種金属工程では、ニッケルを溶解させ、銅を溶解させない選択エッチング液を用いて選択エッチングすることで、図19(h)に示すように、冷却回路3が基板表面から突出した冷却層付プリント配線板1を得た。係る場合の冷却層付プリント配線板は、冷却回路が表面から突出した状態であり、この形状自体が放熱フィンとしての機能を果たし、熱の放散性優れるものとなる。
【実施例3】
【0088】
この実施例では、上述の第3製造方法において、上述の冷媒流路内蔵板(I)を用いて冷却層付プリント配線板を製造した。以下、図20〜図22を主に参照して説明する。
【0089】
工程a: このラミネート工程では、図20(a)に示したように冷媒流路内蔵板(I)10と絶縁層構成材4と導体層8とを重ね合わせて、180℃×60分程度の熱間プレス加工をすることで、図20(b)に示す積層体5とした。このときの冷媒流路内蔵板(I)10には、実施例1で用いたと同様のものを用いた。即ち、当該冷媒流路内蔵板(I)10は、トータル厚さ600μmであり、内蔵した通流路150μ×50μm〜250μmの開口面積を備え、所定の通流路の内壁面には無電解ニッケルメッキによる防錆処理層を備える。更に、冷媒流路内蔵板(I)10の絶縁層構成材との張り合わせ面には、定法により黒化処理を施し、絶縁層との密着性の向上を図った。そして、絶縁層構成材は、210μm厚さのFR−4プリプレグ1枚を用い、導体層8には70μm厚さの銅箔を用いた。
【0090】
工程b: このエッチングレジストパターン形成工程では、導体層8の表面に、ドライフィルムを用いてエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図21(c)に示すようにエッチングレジストパターン15を形成した。なお、冷媒流路内蔵板の表面にもエッチングレジスト層を設け、全面のエッチングレジスト層を残留させることで、冷媒流路内蔵層のエッチング液による損傷を防止することにした。
【0091】
工程c: この回路形成工程では、導体層8のみを塩化銅エッチング液を用いてエッチング加工して、エッチングレジストパターンを剥離することで、図21(d)に示すように所定の導体回路8を形成し、冷却層付プリント配線板1を得た。
【0092】
更に、本件発明者等は、この実施例で用いた冷媒流路内蔵板(I)に代えて、実施例2で用いた冷媒流路内蔵板(II)を使用して図22(a)に示す冷却層付プリント配線板1、冷媒流路内蔵板(III)を用い図22(b)に示す放熱フィン16(高さ80μ×幅50μm)として機能する突起形状を備えた冷却層付プリント配線板、冷媒流路内蔵板(IV)を用い図22(c)に示すように、異種金属層13(10μm厚さのニッケル層)、放熱フィン16(高さ80μ×幅50μm)として機能する突起形状を備えた冷却層付プリント配線板1を製造したが、いずれも良好なプリント配線板として製造出来た。
【実施例4】
【0093】
この実施例では、上述の第4製造方法において、上述の冷媒流路内蔵板(I)を用いて冷却層付プリント配線板を製造した。以下、図25及び図26を主に参照して説明する。図25及び図26には異種金属層を備える冷媒流路内蔵板(I)を用いた場合を示している。
【0094】
ここで用いた冷媒流路内蔵板(I)10は、次のようにして製造した。第1金属板として厚さ200μmの銅板の片面に100μm厚さのニッケル層を備える複合板を用い。第2金属板とする厚さ400μmの銅板を用いた。そして、400μm厚さの銅板の両面にエッチングレジスト層を設けた。その後、片面の当該エッチングレジスト層に凹部19を形成する為のエッチングパターンを露光し、現像した。他面側のエッチングレジスト層は全面を硬化させ、全面をエッチング液から保護するための、全面レジスト層とした。そして、塩化銅エッチング液を用いて、片面からハーフエッチングして、150μm深さ、幅50μm〜250μmの直線状の凹部を形成し第2金属板とした。
【0095】
次に、第1金属板の接合に用いる表面(ニッケル層側)と、第2金属板の凹部形成面に対して、3×10−3Paの極低圧アルゴンガス雰囲気で、13.56MHzの交流を印加してグロー放電を行わせ、双方の接合面の活性化処理を行った。そして、接合面を活性化処理した第1金属板12と第2金属板11を図1(a)に示すように積層圧延し、図1(b)に示すように張り合わせた。このときの圧延率は、1%の低圧下率及び室温の条件を採用した。この結果、冷媒流路内蔵板(I)10は、トータル厚さ600μm(内部に100μm厚さの異種金属層としてのニッケル層が存在)であり、内蔵した通流路150μ×50μm〜250μmの開口面積を備えるものであった。そして、そして、この通流路の内壁面には、実施例1と同様にして防錆処理層を設けた。
【0096】
工程a: このラミネート工程は、図25(a)に示すように、上記冷媒流路内蔵板(I)10と絶縁構成材4と導体層8とを順次積層配置して、180℃×60分程度の熱間プレス加工により張り合わせ、図25(b)に示す積層体5の状態とした。更に、冷媒流路内蔵板(I)10の絶縁層構成材との張り合わせ面には、定法により黒化処理を施し、絶縁層との密着性の向上を図った。そして、絶縁層構成材は、210μm厚さのFR−4プリプレグ1枚を用い、導体層8には200μm厚さの銅箔を用いた。
【0097】
工程b: このエッチングレジストパターン形成工程では、導体層8及び冷媒流路内蔵層10Aの各表面にドライフィルムを用いてエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図26(c)に示すように、エッチングレジストパターン15を形成した。
【0098】
工程c: このエッチング工程では、図26(d)に示すように、導体層をアルカリ銅エッチング液を用いてエッチング加工して回路形状を形成し、同時に冷媒流路内蔵板(I)10をエッチング加工して放熱フィン16を形成し、エッチングレジストパターンを剥離した。ここで、分かるように、図26(d)に示す冷却層付プリント配線板1を得ようとするときには、冷媒流路内蔵板(I)10の表面から異種金属層までの厚さと、導体層8と同じであり、エッチング後には溶解されない異種金属層が露出した状態となり、冷却層付プリント配線板1を得た。
【実施例5】
【0099】
この実施例では、実施例3で得られた、冷却層付プリント配線板1を内層コア材として用いて、冷却層付多層プリント配線板30を製造した。以下、図27〜図29を主に用いて説明する。
【0100】
工程a: この積層工程では、図27(a)に示すように、内層コア材として用いる実施例3で得られた冷却層付プリント配線板1の両面に、絶縁層構成材4及び導体層8を配置して積層する。そして、180℃×60分程度の熱間プレス加工により張り合わせ、図27(b)に示す積層体5の状態とした。このときの絶縁層構成材は、150μm厚さのFR−4プリプレグ1枚を用い、導体層8には18μm厚さの銅箔を用いた
【0101】
工程b: この工程では、冷却層付プリント配線板1の導体回路7の面の外層に位置する導体層8に、炭酸ガスレーザーを用いて80μm径のバイアホール形状を形成し、パラジウム触媒処理を行い、無電解銅メッキ、電解銅メッキにより約10μm厚さの銅メッキ層17を形成し、図28(c)に示す状態とした。
【0102】
工程c: このエッチングレジストパターン形成工程では、外層の導体層8(厳密には、その表面に銅メッキ層17が存在するが、説明上言及しない。)の表面に、ドライフィルムを用いてエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図28(d)に示すように、エッチングレジストパターン15を形成した
【0103】
工程d: このエッチング工程では、導体層を塩化銅エッチング液を用いてエッチング加工して外層回路22の形状を形成し、エッチングレジストパターンを剥離し、図29(e)に示す冷却層付多層プリント配線板30を得た。
【実施例6】
【0104】
この実施例では、実施例4で用いた冷媒流路内蔵板(I)10を用いて、冷媒流路内蔵層が外層に位置する冷却層付多層プリント配線板30を製造した。以下、図30〜図32を主に用いて説明する。
【0105】
工程a: この積層工程では、内層コア材20(100μm厚さのFR−4グレードの絶縁層の両面に内層回路21を備える両面プリント配線板)の片面側に、絶縁層構成材4及び導体層8を配置する。そして、当該内層コア材の他面側には、絶縁層構成材4と冷媒流路内蔵板(I)10とを、図30(a)に示すように重ねて積層した。そして、180℃×60分程度の熱間プレス加工により張り合わせ、図30(b)に示す積層体5の状態とした。このときの絶縁層構成材は、150μm厚さのFR−4プリプレグ1枚を用い、導体層8には200μm厚さの銅箔を用いた
【0106】
工程b: この工程では、導体層8の表面と内層回路21との電気的導通を確保するため、外層に位置する導体層8から炭酸ガスレーザーを用いて80μm径のバイアホール形状を形成し、パラジウム触媒処理を行い、無電解銅メッキ、電解銅メッキにより約10μm厚さの銅メッキ層17を形成し、図31(c)に示す状態とした。
【0107】
工程c: このエッチングレジストパターン形成工程では、外層の導体層8(厳密には、その表面に銅メッキ層17が存在するが、説明上言及しない。)及び冷媒流路内蔵板(I)10の外表面に、ドライフィルムを用いてエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像し、図31(d)に示すように、エッチングレジストパターン15を形成した
【0108】
工程d: このエッチング工程では、導体層8を塩化銅エッチング液を用いてエッチング加工して外層回路22の形状を形成し、エッチングレジストパターンを剥離した。一方、導体層8と同時に冷媒流路内蔵板(I)10の外表面から異種金属層までも放熱フィン16の形状に加工し、図32(e)に示す冷却層付多層プリント配線板30を得た。
【産業上の利用可能性】
【0109】
本件発明に係る冷却層付プリント配線板は、従来のフラットモータを用いたファン冷却方式に比べ、プリント配線板自体を直接冷却するため、冷却効率が高くプリント配線板の長寿命化が期待出来る。しかも、本件発明に係る冷却層付プリント配線板は、従来のプリント配線板製造プロセスを用いて、プリント配線板の層内に冷媒を用いて冷却可能な層を設けることが容易であるために、新たな設備投資を要するものではない。そして、得られる冷却層付プリント配線板は、それ自体を冷媒で直接冷却することが可能となるために、電子機器等の更なる小型化を容易に達成することも可能となる。
【図面の簡単な説明】
【0110】
【図1】冷媒流路内蔵基板Aの製造フローを断面として捉えた模式図である。
【図2】冷媒流路内蔵板(I)のバリエーションを例示した断面模式図である。
【図3】冷媒流路内蔵基板Bの製造フローを断面として捉えた模式図である。
【図4】冷媒流路内蔵板(II)のバリエーションを例示した断面模式図である。
【図5】冷媒流路内蔵基板Cの製造フローを断面として捉えた模式図である。
【図6】冷媒流路内蔵基板Dの製造フローを断面として捉えた模式図である。
【図7】冷媒流路内蔵板(IV)のバリエーションを例示した断面模式図である。
【図8】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図9】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図10】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図11】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図12】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図13】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図14】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図15】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図16】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図17】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図18】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図19】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図20】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図21】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図22】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図23】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図24】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図25】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図26】本件発明に係る冷却流路付プリント配線板の製造フローを示した断面模式図である。
【図27】本件発明に係る冷却流路付多層プリント配線板の製造フローを示した断面模式図である。
【図28】本件発明に係る冷却流路付多層プリント配線板の製造フローを示した断面模式図である。
【図29】本件発明に係る冷却流路付多層プリント配線板の製造フローを示した断面模式図である。
【図30】本件発明に係る冷却流路付多層プリント配線板の製造フローを示した断面模式図である。
【図31】本件発明に係る冷却流路付多層プリント配線板の製造フローを示した断面模式図である。
【図32】本件発明に係る冷却流路付多層プリント配線板の製造フローを示した断面模式図である。
【符号の説明】
【0111】
1 冷却層付プリント配線板
2 通流路
3 冷却回路
4 絶縁層構成材
5 積層体
6 絶縁層
7 導体回路
8 導体層
10 冷媒流路内蔵板
11 第1金属板
12 第2金属板
13 異種金属層
14 第3金属板
15 エッチングレジストパターン
16 放熱フィン
17 銅メッキ層
18 貫通溝
19 凹部
20 内層コア材
21 内層回路
22 外層回路
30 冷却層付多層プリント配線板

【特許請求の範囲】
【請求項1】
冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって、
以下の工程a〜工程eを経て得られることを特徴とした冷却層付プリント配線板の製造方法。
工程a: 冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第1エッチングレジストパターン形成工程。
工程b: 冷媒流路内蔵板をハーフエッチング加工して、エッチングレジストパターンを剥離し冷却回路を形成する冷却回路形成工程。
工程c: 前記冷却回路を形成した冷媒流路内蔵板の表面を、絶縁層構成材に当接するように積層し、張り合わせ積層体とするラミネート工程。
工程d: 前記積層体の冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第2エッチングレジストパターン形成工程。
工程e: 冷媒流路内蔵板の表面をエッチング加工して、エッチングレジストパターンを剥離し導体回路を形成し冷却層付プリント配線板とする導体回路形成工程。
【請求項2】
冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって、
以下の工程a〜工程eを経て得られることを特徴とした冷却層付プリント配線板の製造方法。
工程a: 冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第1エッチングレジストパターン形成工程。
工程b: 冷媒流路内蔵板をハーフエッチング加工して、エッチングレジストパターンを剥離し導体回路を形成する導体回路形成工程。
工程c: 前記導体回路を形成した冷媒流路内蔵板の表面を、絶縁層構成材に当接するように積層し、張り合わせ積層体とするラミネート工程。
工程d: 前記積層体の冷媒流路内蔵板の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像する第2エッチングレジストパターン形成工程。
工程e: 冷媒流路内蔵板の表面をエッチング加工して、エッチングレジストパターンを剥離し冷却回路を形成し冷却層付プリント配線板とする冷却回路形成工程。
【請求項3】
冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって、
以下の工程a〜工程cを経て得られることを特徴とした冷却層付プリント配線板の製造方法。
工程a: 冷媒流路内蔵板と絶縁構成材と導体層とを順次積層配置して張り合わせるラミネート工程。
工程b: 導体層の表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像するエッチングレジストパターン形成工程。
工程c: 導体層をエッチング加工して、エッチングレジストパターンを剥離する回路形成工程。
【請求項4】
冷媒の通流可能な流路を内蔵した冷媒流路内蔵層を含む冷却層付プリント配線板の製造方法であって、
以下の工程a〜工程cを経て得られることを特徴とした冷却層付プリント配線板の製造方法。
工程a: 冷媒流路内蔵板と絶縁層構成材と導体層とを順次積層配置して張り合わせるラミネート工程。
工程b: 導体層及び冷媒流路内蔵板の各表面にエッチングレジスト層を設け、当該エッチングレジスト層にエッチングパターンを露光し、現像するエッチングレジストパターン形成工程。
工程c: 導体層をエッチング加工して回路形状を形成し、同時に冷媒流路内蔵板をエッチング加工して冷却回路を形成し、エッチングレジストパターンを剥離する回路形成工程。
【請求項5】
冷媒流路内蔵板は、一面側に凹部形成面を備える第1金属板と、両面が平滑な第2金属板とを用い、第1金属板の凹部形成面に第2金属板を張り合わせて得られるものである請求項1〜請求項4のいずれかに記載の冷却層付プリント配線板の製造方法。
【請求項6】
冷媒流路内蔵板は、両面が平滑な第1金属板と第2金属板との間に、複数のスリット孔を加工した第3金属板を挟み込んで張り合わせて得られるものである請求項1〜請求項4のいずれかに記載の冷却層付プリント配線板の製造方法。
【請求項7】
冷媒流路内蔵板は、その片面をハーフエッチングして、放熱フィン形状を形成したものを用いる請求項5又は請求項6に記載の冷却層付プリント配線板の製造方法。
【請求項8】
冷媒流路内蔵板は、その層内にニッケル、スズ、アルミニウム、チタン及びこれらの合金からなる異種金属層を備えるものである請求項1〜請求項7のいずれかに記載の冷却層付プリント配線板の製造方法。
【請求項9】
冷媒流路内蔵板が内蔵する通流路は、その内壁面に防錆処理層を備えるものである請求項1〜請求項8のいずれかに記載の冷却層付プリント配線板の製造方法。
【請求項10】
請求項1〜請求項9のいずれかに記載の製造方法により得られる冷却層付プリント配線板。
【請求項11】
請求項1〜請求項9に記載の製造方法により得られた冷却層付プリント配線板の絶縁層内に内層コア材を含む冷却層付多層プリント配線板。
【請求項12】
請求項1〜請求項9のいずれかに記載の冷却層付プリント配線板を内層コア材として用いて、その外層に回路形成を行った冷却層付多層プリント配線板。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate


【公開番号】特開2006−261239(P2006−261239A)
【公開日】平成18年9月28日(2006.9.28)
【国際特許分類】
【出願番号】特願2005−73831(P2005−73831)
【出願日】平成17年3月15日(2005.3.15)
【出願人】(390003193)東洋鋼鈑株式会社 (265)
【出願人】(596091004)株式会社マルチ (18)
【Fターム(参考)】