説明

受光素子アレイ、その製造方法および検出装置

【課題】 近赤外の長波長領域まで受光でき、かつ画素ピッチを密にしても受光感度を確保できる、受光素子アレイ等を提供する。
【解決手段】 この受光素子アレイ10は、近赤外波長領域に対応するバンドギャップエネルギを有する受光部Pが、複数、配列され、受光部は、選択拡散によって形成されたp型領域6の先端部にpn接合15を有し、受光部Pを区分けするように、n型領域7が該受光部の間に位置することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、受光素子アレイ、その製造方法、および検出装置であって、より具体的には、複数の画素が密に配列され、近赤外の長波長領域にまで高い感度を持つ受光素子アレイ、その製造方法、および検出装置に関するものである。
【背景技術】
【0002】
InP基板を用いたIII−V族化合物半導体は、バンドギャップエネルギが近赤外波長領域に対応することから、通信用、夜間撮像用などの受光素子の研究開発が行われている。
このなかで、InP基板上にInGaAs/GaAsSbのタイプ2の多重量子井戸構造(MQW:Multi Quantum Well)の受光層を備え、選択拡散によって画素を形成するフォトダイオードが提案されている(特許文献1)。また、同じ積層構造を用いて、画素を一次元または二次元に配列して撮像装置等とした利用発明の提案もなされている(特許文献2)。
また、メサ側壁に起因する表面リーク電流を抑制するために、InGaAs受光層に形成されたp型領域の画素をバンドギャップの大きい半導体層で取り囲むフォトダイオードの提案もなされている(特許文献3)。このフォトダイオードでは、メサ側壁の内側において上記の画素をFe−InPブロック層で取り囲むことで、表面リーク電流を低くする。
上記のフォトダイオードでは、いずれも、暗電流に重大な関心が払われ暗電流を小さくしようとしている。しかし、複数の画素が高密度に配列されたカメラ等に使用される受光素子アレイにおいては、暗電流の抑制と並んで、または暗電流の抑制よりも重要な事項として、隣り合う受光素子の間の独立性を保ちながら個々の受光素子の感度を確保する課題がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−206499号公報
【特許文献2】特開2009−283603号公報
【特許文献3】特開2010−147158号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
近赤外の長波長領域を対象とするフォトダイオード、例えば波長1.5μm〜3μmを対象とするフォトダイオードでは、高密度に受光素子(受光部)が配列されると、実生産レベルで問題ない程度にまで十分な感度を確保することが難しくなる。本発明者らは次のような考察から、高密度に画素が配列された受光素子アレイにおいて十分高い感度を確保しうる構造について示唆を得た。すなわち、受光部の径が大きく、たとえば200μm程度に大きい場合、受光待機中に逆バイアス電圧下で生じる空乏層が画素間で干渉を起こす問題は生じない。しかし、実用の撮像装置等のように、受光部の直径およびピッチが数十μmレベル、あるいはそれよりも小さいレベルとなると、隣り合う空乏層間の干渉を無視することができなくなる。すなわち空乏層は受光層の縦方向(深さ方向)に広がるとともに、受光層の上の層から横方向にも広がる。このため受光部の直径およびピッチが数十μmレベル、あるいはそれよりも小さいレベルとなると、高密度の画素配列では、空乏層の縦方向(深さ方向)の広がりだけでなく、その空乏層の横方向の広がりをも確実に制御することが、感度を低下させない上で非常に重要になる。感度低下を生じないことは、実用の撮像装置等の製造において高い製造歩留を得る上でも不可欠である。
【0005】
本発明は、近赤外の長波長領域まで受光でき、かつ画素ピッチを密にしても受光感度を確保できる受光素子アレイ、その製造方法、および検出装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の受光素子アレイは、近赤外波長領域に受光感度を有し、III−V族半導体の積層体に形成される。この受光素子アレイは、近赤外波長領域に対応するバンドギャップエネルギを有する受光部が、複数、配列され、受光部は、選択拡散によって形成された第1導電型領域の先端部にpn接合を有し、受光部を区分けするように、第2導電型領域が該受光部の間に位置することを特徴とする。
上記の構成によれば、第1導電型領域を有する画素が高密度に配列されても、画素を区分けするように第2導電型領域が配置されるので、逆バイアス下、空乏層が横方向に張り出しても第2導電型領域で止められる。このため、隣り合う空乏層が接触するなどして干渉することはなくなる。
その上で、受光層より表面側または基板と反対側に位置する層内に位置するpn接合から空乏層を横方向に十分張り出させて、その層のバンドギャップに対応する波長(受光層より短波長)の受光感度をバックアップすることができる。さらに空乏層の干渉のおそれなく縦方向にも。十分、空乏層を張り出させて、受光層が対象とする近赤外の長波長側の感度を確保することができる。
この結果、どのような高密度配列がなされても、各受光素子は、近赤外域の長波長〜短波長にわたって高い感度を保持することができる。
なお、上記のpn接合は、次のように、広く解釈されるべきである。受光層内において、不純物元素が選択拡散で導入される側と反対の面側の領域の不純物濃度が、真性半導体とみなせるほど低い不純物領域(i領域と呼ばれる)であり、上記拡散導入された不純物領域と当該i領域との間に形成される接合をも含むものである。すなわち上記のpn接合は、pi接合またはni接合などであってもよく、さらに、これらpi接合またはni接合におけるp濃度またはn濃度が非常に低い場合も含むものである。第1導電型はp型でもn型でもよく、また第2導電型がn型でもp型でもよい。
また、第1導電型領域の先端部は、上記の説明からも分かるように、深さ方向(縦方向)の先端部だけでなく横方向の先端部も含んでいる。本発明では、空乏層の横方向への広がりを確実に制御できる構造を備えた受光素子アレイを目標とするので、この点を明確にしておく必要がある。
【0007】
選択拡散マスクパターンがIII−V族半導体の積層体の表面に位置し、第2導電型領域は、選択拡散マスクパターンのマスク部において表面から受光部の底部と同じ深さにまで延びている構成をとることができる。
プレーナ型フォトダイオードを形成するために選択拡散に用いたマスクパターンは、第1導電型領域を形成したあと、保護膜として機能させることができる。また、第1導電型領域を形成した後、マスクパターンを除去するとエピタキシャル積層体の表面性状を劣化させて暗電流増大の要因となる。選択拡散マスクパターンを保護膜として残存させることで、暗電流の抑制などに役立てることができる。第1導電型領域はマスクパターンの開口部に形成されるが、第2導電型領域は、受光部を区分けするように、受光部間に配置される。このため、第2導電型領域は、マスク部に覆われるような位置に配置される。
【0008】
平面的にみて、受光部は20μm以上30μm以下のピッチで配列され、第1導電型領域の径は7.5μm〜20μmであり、第2導電型領域は1μm〜7.5μmの幅を有する構成をとるのがよい。
これによれば、pn接合から空乏層を縦方向にも横方向にも張り出させて、受光を待機させることができる。このとき、画素を微細にして高密度で配列しても、隣り合う画素の空乏層が接触などして干渉することが防止される。この第2導電型領域による空乏層の阻止作用によって、干渉のおそれなく、縦方向にも横方向にも十分空乏層を張り出すことができる。これにより受光層が対象とする波長域の感度を確保しながら、受光層の上層から張り出す空乏層によってそれより短い波長域の光の受光感度をバックアップすることができる。
この結果、各受光素子の感度を損なうことなく、受光層が対象とする波長域より短い波長側の感度を保ちながら、全体的に高い感度を得ることができる。
【0009】
第2導電型領域を、III−V族半導体基板、III−V族半導体基板上に形成された埋め込み用III−V族半導体層、およびIII−V族半導体層に導入された第2導電型不純物の領域、のうちのいずれかとすることができる。
これによって、画素を区分けする第2導電型領域の形成方法の選択肢が多くあり、経済性、性能などを考慮して適切なものを選ぶことができる。
【0010】
受光部を、InGaAs層を備えたものとするのがよい。また、受光部を、タイプ2のInGaAs/GaAsSb多重量子井戸構造とすることもできる。
InGaAs層はバンドギャップが小さいため単独でも近赤外域の光を受光できる。また、他の種類のIII−V族半導体、たとえばGaAsSbと多重量子井戸構造を組むことで、受光の際、電子はGaAsSbの価電子帯からInGaAsの伝導帯へのタイプ2の遷移が可能になるので、より長波長域の受光が可能になる。またInGaAsは、In組成に応じて格子定数を容易に変えることができるので、格子整合度を高めることもできるし、また逆に歪補償量子井戸構造などを形成することもできる。
【0011】
III−V族半導体の積層体の表層をInP窓層で形成し、受光部の底部からInP窓層まで再成長界面を持たないようにできる。
これによって、一貫して同じ成長室において受光部を形成することができる。この結果、再成長界面における高濃度のO、Cなどによる汚染を防止することができる。この結果、暗電流を低くすることができる。また、一貫して同じ成長室で成長できるので、高い製造能率を得ることができる。
【0012】
本発明の検出装置は、上記のいずれかの受光素子アレイと、読み出し回路とを備えることを特徴とする。
上記の構成によって、感度良好で、暗電流が低い、高品質の受光信号を得て、精度の高い検出を遂行することができる。検出装置としては、何でもよい。一例をあげれば、撮像装置(カメラ)、近赤外波長領域に位置する油分の吸収スペクトルなどを利用した食品成分分析装置、近赤外波長領域に位置する水分の吸収スペクトルなどを利用した食品中の水分量の検査装置、夜間における近赤外光などを利用した夜間の視覚装置、など多様な分野がある。
【0013】
本発明の受光素子アレイの製造方法は、近赤外波長領域に受光感度を有し、III−V族半導体による受光素子アレイを製造する。この製造方法は、近赤外波長領域に対応するバンドギャップエネルギを有する受光層を形成する工程と、受光層の上に窓層を形成する工程と、受光素子アレイにおける受光部間の区分け壁になるように、第2導電型領域を窓層の表面から受光層の底部にまで形成する工程と、窓層の表面に選択拡散マスクパターンを形成して、第2導電型領域の区分け壁で囲まれた中に第1導電型領域を形成する工程と、を備えることを特徴とする。
上記の方法によって、受光素子の間に第2導電型領域の区分け壁を形成することで、高密度の画素配列であっても隣り合う画素のpn接合から横方向に張り出す空乏層どうし干渉することが無くなる。この結果、十分高い感度を確保することができる。
なお、上記の第2導電型領域の形成の方法は、イオン注入でも、選択拡散でもよい。
【0014】
本発明の受光素子アレイの別の製造方法は、近赤外波長領域に受光感度を有し、III−V族半導体による受光素子アレイを製造する。この製造方法は、第2導電型のIII−V族半導体基板を準備する工程と、III−V族半導体基板に、受光部に対応する位置に凹部を開口する工程と、凹部に、近赤外波長領域に対応するバンドギャップを有する受光層、および窓層、を形成する工程と、窓層上に前記凹部に合わせた開口部を有する選択拡散マスクパターンを形成し、該凹部内に第1導電型不純物を選択拡散することで第1導電型領域を窓層から受光層内に届くように形成する工程とを備えることを特徴とする。
この方法によって、InP基板を埋め込み層に用いて、簡単な工程により、InP基板の凹部内に受光部を形成することで、感度が高く、かつ暗電流が低い受光素子アレイを得ることができる。
【0015】
本発明の受光素子アレイのさらに他の製造方法は、近赤外波長領域に受光感度を有し、III−V族半導体による受光素子アレイを製造する。この製造方法は、半導体基板上に、第2導電型の埋め込み用半導体層を形成する工程と、第2導電型埋め込み用半導体層に、受光部に対応する位置に凹部を開口する工程と、凹部に、近赤外波長領域に対応するバンドギャップを有する受光層、および窓層を形成する工程と、窓層上に凹部に合わせた開口部を有する選択拡散マスクパターンを形成し、該凹部内に第1導電型不純物を選択拡散することで第1導電型領域を窓層から受光層内に届くように形成する工程とを備えることを特徴とする。
この方法によれば、半導体基板に形成した埋め込み用半導体層の凹部内に受光部を形成することで、感度が十分高く、かつ暗電流の低い受光素子を得ることができる。
【0016】
窓層をInP層で形成し、受光層および該InP窓層を含むエピタキシャル積層体を形成する工程において、エピタキシャル層の成長開始からInP窓層の成長を終了するまで、全有機金属気相成長法によって、一貫して同じ成膜室で成長させるのがよい。
これによって、一貫して全有機金属気相成長(MOVPE)による成長方法により受光素子の心臓部である半導体エピタキシャル層を形成することができる。この結果、再成長界面における高濃度のO、Cなどによる汚染を防止することができる。また、再成長界面における結晶欠陥発生を抑制することができ、再成長界面の結晶品質の劣化を防止することができる。この結果、感度を確保しながら暗電流を低くすることができる。また、一貫して同じ成長槽で成長できるので、高い製造能率を得ることができる。
【発明の効果】
【0017】
本発明の受光素子等によれば、近赤外の長波長領域まで受光でき、かつ画素ピッチを密にしても受光感度を確保できる。
【図面の簡単な説明】
【0018】
【図1】本発明の実施の形態1における受光素子アレイを示す図である。
【図2】(a)は図1の受光素子アレイの平面図、(b)はその中の画素の拡大図である。
【図3】図1の受光素子アレイでの空乏層を示す図である。
【図4】図1の受光素子アレイの製造方法を説明するフローチャートである。
【図5】本発明の実施の形態2における受光素子アレイを示す図である。
【図6】図5の受光素子アレイの製造において、n型InP基板に凹部を設けた状態を示す図である。
【図7】凹部内にエピタキシャル積層体を形成した後、選択拡散マスクパターンを設けた状態を示す図である。
【図8】本発明の実施の形態2に属する、図5の受光素子アレイの変形例を示す図である。
【発明を実施するための形態】
【0019】
(実施の形態1)
図1は、本発明の実施の形態1における受光素子アレイ10を示す図である。受光素子アレイ10は、InP基板1上にエピタキシャル成長した積層体に形成されている。その積層体は、n型InP基板1/n型InPバッファ層2/InGaAs−GaAsSbによるタイプ2のMQW受光層3/InGaAs拡散濃度分布調整層4/InP窓層5、から構成される。
InP窓層5の表面からMQW受光層3内にまで延在するp型領域6は、SiN膜の選択拡散マスクパターン36の開口部36hから、p型不純物であるZnが選択拡散されることで形成される。p型領域6の端(フロント)にpn接合またはpi接合が形成される。
p型領域6にはAuZnによるp側電極または画素電極11がオーミック接触するように形成されている。InPバッファ層2にはn型不純物がドープされ、所定レベルの導電性を確保されている。バッファ層2は、InPではなくInGaAsで形成してもよい。InP基板1の裏面にグランド電極を設ける場合にはInP基板1もn導電型とする。図1には示していないがInP基板1の裏面には各受光部Pに共通にAuGeNiのグランド電極(n側電極)が、オーミック接触するように設ける。
また、図1では、InP基板1の裏面にSiONの反射防止膜35を設け、InP基板の裏面側から光を入射するようにして使用するようになっている。二次元アレイの場合は読み出し回路の読み出し電極との接続のために基板裏面入射がほぼ必然となる。
【0020】
InP窓層5の表面には、上記の選択拡散マスクパターン36がそのまま残される。さらに図示しないSiON等の保護膜が被覆される。選択拡散マスクパターン36をそのまま残すのは、p型領域6を形成したあと、これを除いて大気中に暴露すると、コンタクト層表面のp型領域との境界に表面準位が形成され、暗電流が増大するからである。
また、(InPバッファ層2/MQW受光層3)の界面、および(MQW受光層3/InGaAs拡散濃度分布調整層4/InP窓層5)の界面はいずれも再成長界面ではない。このためこれら界面では、酸素および炭素の濃度がいずれも所定レベル以下であり、各界面おいても格子欠陥密度は低く抑えられる。このため暗電流を抑制することができる。
【0021】
InGaAs−GaAsSbによるタイプ2のMQW受光層3は、アンドープであり、意図して不純物をドープはしていない。このため真性半導体(イントリンシック:i型)といえるが、意図しないで微量のn型不純物が含まれることが通例である。意図せずにn型不純物が含まれる場合にも、微量であることから真性もしくはi型、またはアンドープである。p型領域6の先端のp型キャリア濃度と、受光層3における低濃度のn型キャリアのバックグランド濃度とが交差する面がpn接合またはpi接合15となる。すなわち濃度勾配がついたp型キャリア濃度値が、n型キャリアのバックグランド濃度値と一致する面がpn接合またはpi接合15を形成する。したがってpn接合であるが、pi接合といってもよい。pin型フォトダイオードの由来である。なお、図1では、第1導電型をp型、第2導電型をn型としているが、広くは、p型とn型とを入れ替えてもよい。
MQW受光層3におけるn型キャリアのバックグラウンドは、n型キャリア濃度で5E15cm−3程度またはそれ以下である。p型領域6は受光層3に少し入るように形成されるが、その受光層3内では、Zn濃度は5E16cm−3程度以下にするのがよい。
上記のpn接合15の近傍におけるZn濃度分布は、傾斜型接合を示すような分布になっている。このため、pn接合またはpi接合15に逆バイアス電圧を印加すると、低濃度のn型領域またはi型領域である受光層3側に空乏層はより大きく張り出す。空乏層を受光層3の側に大きく張り出すことで、感度を所定以上に高めて受光層3での受光にそなえる。
MQW受光層3は、たとえばInGaAs厚み5nm−GaAsSb厚み5nmを一対として、250対〜500対積層される。この結果、受光層3の厚みは合計2.5μm〜5μm程度となる。空乏層は、受光層3の厚み全体にわたって張り出すことで、受光層3としての機能を目一杯発揮して高い感度を確保することができる。
【0022】
本実施の形態の受光素子アレイ10の特徴は、隣り合う画素または受光部Pの境目に、これら受光部Pを区分けするようにn型領域7が設けられている点にある。このn型領域7は、InP窓層1の表面から受光層3の底面にまで届いている。すなわち図2(a)、(b)に示すように、p型領域7は、隣り合う画素Pの境界に位置して、画素を縦横に区分けしている。本実施の形態の受光素子アレイ10では、画素Pは微小なサイズで高密度に配列されることを前提にしている。たとえば、画素または受光部Pの正方形の一辺の長さ(または画素ピッチ)は20μm〜30μmであり、選択拡散マスクパターン36の開口部36hの直径は15μm程度である。画素ピッチをより短くすることで画像の鮮鋭度を向上することができるので、より短くすることが常に求められる。
【0023】
図3に示すように、受光待機のとき、空乏層Kが、pn接合15から受光層3のInP基板1側へと張り出される。光がInP基板1側から入射されると、近赤外域の光は受光層3で受光され、受光によって生じた電子/正孔対は、逆バイアス電界によって電子と正孔とに分離されるように互いに逆方向に誘導される。
空乏層Kは、pn接合15からInP基板1側へと縦方向に張り出すだけでなく、横方向にも張り出す。上述のように、画素Pの正方形の一辺の長さが20μm〜30μm程度の場合は、横方向へたとえば2.5μm〜7μm程度張り出すと、隣り合う画素Pの空乏層Kと接触することになる。したがって、受光層3の厚み全体に空乏層Kを張り出させるとき、大きい場合には5μm程度の張り出し長さとなる。このような場合には、仮にn型領域7がない場合、隣り合う画素の空乏層Kは接触することになり、感度低下をきたす。
また、たとえば受光層3の厚みが5μm未満であっても逆バイアス電圧を大きくしてしまう場合、または製造時のばらつきなどによって、横方向への空乏層Kの張り出し長さが過大になるおそれは除去しきれない。このため、仮にn型領域7がない場合には、隣り合う空乏層Kが接触し合って感度低下が生じるおそれがある。
【0024】
横方向への空乏層Kの張り出し長さは、基本的に縦方向への空乏層Kの張り出し長さと同じである。空乏層が横方向に張り出すことは、たとえばInGaAs拡散濃度分布調整層4内で空乏層Kが横方向に張り出すことを意味する。InGaAsのバンドギャップは近赤外域よりも少し短波長側に対応する。このためInGaAs拡散濃度分布調整層4内の横方向に張り出した空乏層において、この少し短波長側の光を受光することができる。この結果、近赤外域の受光感度はタイプ2MQWが確保し、それより短い波長域の光の受光感度をInGaAs拡散濃度分布調整層4がバックアップすることができる。InP窓層5についても同様の議論が成り立ち、InP窓層5は、InGaAs層4よりも短い波長域の受光感度のバックアップをすることができる。
【0025】
図1または図3に示すように、画素Pの境目にp型領域7があれば、そのp型領域7は、上記逆バイアス下での空乏層Kの横方向への張り出しを確実に止めることができる。これによって横方向での隣り合う画素どうしの空乏層Kの接触を確実に防止することができる。この結果、現状における画素ピッチにおいて十分高い感度を確保できる。さらに将来、画素ピッチがさらに小さく密になったとき、感度の確保に貢献することができる。
それに加えて、上記のように、近赤外域より短い波長域の受光感度を、InGaAs拡散濃度分布調整層4およびInP窓層5が、横方向に張り出した空乏層Kによってバックアップすることができる。
【0026】
図4は、図1に示す受光素子アレイ10の製造方法を示すフローチャートである。受光素子アレイ10は、基板の裏面にグランド電極を設けるタイプとする。まずn型InP基板1を準備する。n型不純物はとくに限定しないが、たとえば5E18cm−3程度のSがドープされたInP基板を用いるのがよい。量産性を考慮して、たとえば2インチ径を用いるのがよい。
次いで、全有機金属気相成長(MOVPE)法などを用いて、上述のエピタキシャル積層体を成長する。たとえばInPバッファ層2を厚み1μm程度に成長する。このときアンドープであるが、全有機金属気相成長法では、通常、n型不純物が1E15cm−3程度混入する。次いで、タイプ2のInGaAs厚み5nm/GaAsSb厚み5nm、を300対積層したMQW受光層3を成長する。このMQW受光層3もアンドープとするが、n型不純物が1E15cm−3程度混入する。このあとアンドープ(n型不純物が1E15cm−3程度)InGaAs拡散濃度分布調整層4を厚み1μm、およびその上のInP窓層5を厚み1.5μmにエピタキシャル成長する。これによってエピタキシャルウエハが完成する。
【0027】
上記のエピタキシャル積層体の形成のとき、再成長界面を形成しない。すなわち、InPバッファ層2を形成したあと、InP窓層5の形成まで、全有機金属気相成長法によって同じ成膜室の中で成長を続けることが、重要である。InP窓層5の形成の前に、成膜室からウエハを取り出して、別の成膜法によってInP窓層5を形成することがないために、再成長界面を持たない点が一つのポイントである。エピタキシャル積層体は連続して形成されるので、(InPバッファ層2/MQW受光層3)の界面、および(MQW受光層3/InGaAs拡散濃度分布調整層4/InP窓層5)の界面はいずれも再成長界面ではない。このため、酸素および炭素の濃度がいずれも所定レベル以下であり、各界面おいても格子欠陥密度は低く抑えられる。このため暗電流を抑制することができる。
【0028】
このエピタキシャルウエハを用いて受光素子アレイを作製する。まずSiNの選択拡散マスクパターン36を形成する。選択拡散マスクパターン36は開口部36hを持つ。この開口部36hからp型不純物の亜鉛(Zn)をInGaAs/GaAsSbタイプ2MQW受光層3に届くように選択拡散することで、図1に示すように、p型領域6を形成する。このあと、図1に示すように、p型領域6にはAuZnによるp側電極11を、また図示しないInP基板1の裏面には、各受光部Pに共通にAuGeNiのグランド電極(n側電極)を、それぞれオーミック接触するように形成する。
【0029】
本実施の形態における受光素子アレイ10の利点をまとめると次のとおりである。
(1)受光部Pに生成する空乏層の横方向の張り出しが、隣り合う受光部どうして干渉することを確実に防止することができる。
(2)InGaAs拡散濃度分布調整層4およびInP窓層5での横方向への空乏層の張り出しによって、MQW受光層が受光対象とする波長域より短い波長域の光の受光感度がバックアップされる。
【0030】
(実施の形態2)
図5は、本発明の実施の形態2における受光素子アレイ10を示す図である。受光素子アレイ10は、InP基板1に設けた凹部Sの中に、次のエピタキシャル積層体の受光部または画素Pを有する。:(n型InPバッファ層2/InGaAs受光層3/InP窓層5)
本実施の形態の受光素子アレイ10は、画素Pの境界にp型領域7が位置する点で実施の形態1と共通するが、そのp型領域7がInP基板1で形成されている点で相違する。すなわち、画素または受光部は、n型InP基板1の凹部S内に埋め込まれるように形成されている。埋め込まれた受光素子がアレイ化された点を除けば、空乏層の形成などについては実施の形態1と同じである。
【0031】
InP窓層5の表面から受光層3内に延在するp型領域6は、SiN膜の選択拡散マスクパターン36の開口部36hから、p型不純物のZnが選択拡散されることで形成される。開口部36hの径は、凹部Sの径よりも小さくする。p型領域の端(フロント)にpn接合またはpi接合が形成される。p型領域6にはAuZnによるp側電極11が、またInP基板1の裏面には各受光部10に共通にAuGeNiのグランド電極(n側電極)12が、それぞれオーミック接触するように設けられている。InP基板1にはn型不純物がドープされ、所定レベルの導電性を確保されている。
【0032】
受光層3は、アンドープであり、意図して不純物をドープはしていない。このため真性半導体(イントリンシック:i型)といえるが、意図しないで微量のn型不純物が含まれることが通例である。p型領域6の先端のp型キャリア濃度と、受光層3における低濃度のn型キャリアのバックグランド濃度とが交差する面がpn接合またはpi接合15となる。すなわち濃度勾配がついたp型キャリア濃度値が、n型キャリアのバックグランド濃度値と一致する面がpn接合またはpi接合15を形成する。本実施の形態のpn接合またはpi接合については、実施の形態1における説明がそのまま適用される。
InGaAs受光層3におけるn型キャリアのバックグラウンドは、n型キャリア濃度で5E15cm−3程度またはそれ以下である。p型領域6は受光層3に少し入るように形成されるが、その受光層3内では、Zn濃度は5E16cm−3程度以下にするのがよい。
上記のpn接合15の近傍におけるZn濃度分布は、傾斜型接合を示すような分布になっている。このため、pn接合またはpi接合15に逆バイアス電圧を印加すると、低濃度のn型領域またはi型領域である受光層3側に空乏層はより大きく張り出す。空乏層を受光層3の側に大きく張り出すことで、感度を所定以上に高めて受光層3での受光にそなえる。
【0033】
受光待機のとき、上述の空乏層が、pn接合15から受光層3のInP基板1側へと張り出される。光がInP基板1側から入射されると、光は受光層3で受光され、受光によって生じた電子/正孔対は、逆バイアス電界によって電子と正孔とに分離されるように互いに逆方向に誘導される。
空乏層は、pn接合15からInP基板1側へと縦方向に張り出すだけでなく、横方向にも張り出すのは、実施の形態1と同じである。上述のように、画素Pのピッチが20μm〜30μm程度の場合は、横方向へたとえば2.5μm〜7μm程度張り出すと、隣り合う画素Pの空乏層Kと接触することになる。横方向への空乏層Kの張り出し長さは、基本的に縦方向への空乏層Kの張り出し長さと同じである。したがって、受光層3の厚み全体に空乏層Kを張り出させるとき、大きい場合には5μm程度の張り出し長さとなる。このような場合には、仮にn型領域7がない場合、隣り合う画素の空乏層Kは接触することになり、感度低下をきたす。
また、たとえば受光層3の厚みが5μm未満であっても逆バイアス電圧を大きくしてしまう場合、または製造時のばらつきなどによって、横方向への空乏層Kの張り出し長さが大きくなるおそれは除去しきれない。このため、仮にn型領域7がない場合には、隣り合う空乏層Kが接触し合って感度低下が生じるおそれがある。
しかし、図5に示すように、画素Pの境目にp型領域7があれば、そのp型領域7は、上記逆バイアス下での空乏層Kの横方向への張り出しを確実に止めることができる。その結果、横方向での隣り合う画素どうしの空乏層Kの接触を確実に防止することができる。この結果、現状における画素ピッチにおいて十分高い感度を確保できる。さらに将来、画素ピッチがさらに小さく密になったとき、感度の確保に貢献することができる。
【0034】
さらに、上記のように、InGaAs拡散濃度分布調整層4内で空乏層Kが横方向に張り出す。InGaAsのバンドギャップは近赤外域よりも少し短波長側に対応する。このためInGaAs拡散濃度分布調整層4内の横方向に張り出した空乏層において、この少し短波長側の光を受光することができる。この結果、近赤外域の受光感度はタイプ2MQWが確保し、それより短い波長域の光の受光感度をInGaAs拡散濃度分布調整層4がバックアップすることができる。InP窓層5についても同様の議論が成り立ち、InP窓層5は、InGaAs層4よりも短い波長域の受光感度のバックアップをすることができる。
【0035】
次に図5に示す受光素子アレイ10の製造方法を説明する。まずn型InP基板1を準備する。n型不純物はとくに限定しないが、たとえば5E18cm−3程度のSがドープされたInP基板を用いるのがよい。量産性を考慮して、たとえば2インチ径を用いるのがよい。このInP基板1に、たとえばシリコン窒化膜などの絶縁膜(図示せず)を堆積する。その後、フォトリソグラフィ技術を用いてこの絶縁膜に所定の形状となるパターニング処理を施す。次に、この絶縁膜をマスクとしてドライエッチング技術およびウエットエッチング技術を、単独または組み合わせて、図6に示すように凹部Sを備えるメサ構造を形成する。凹部Sの深さは4.5μm程度にするのがよい。凹部Sの表面での直径は、このあと説明する選択拡散マスクパターンの開口部36hの直径Dより少し大きい程度にする。
次いで、全有機金属気相成長(MOVPE)法などを用いて、凹部Sに、上述のエピタキシャル積層体を選択成長する。まず、InPバッファ層2を厚み1μm程度に選択成長する。このときアンドープであるが、全有機金属気相成長法では、通常、n型不純物が1E15cm−3程度混入する。次いでInGaAs受光層3を厚み3μmに選択成長する。このInGaAs受光層3もアンドープとするが、n型不純物が1E15cm−3程度混入する。このあとアンドープ(n型不純物が1E15cm−3程度)InP窓層5を厚み1.5μmにエピタキシャル成長する。このあと絶縁膜を除去してエピタキシャルウエハが完成する。
【0036】
上記のエピタキシャル積層体の形成のとき、再成長界面を形成しない。すなわち、InPバッファ層2を形成したあと、InP窓層5の形成まで、全有機金属気相成長法によって同じ成膜室または石英管の中で成長を続けることが、重要である。InP窓層5の形成の前に、成膜室からウエハを取り出して、別の成膜法によってInP窓層5を形成することがないために、再成長界面を持たない点が一つのポイントである。凹部K内の各層は、成膜室において連続して形成されるので、(InPバッファ層2/InGaAs受光層3)の界面、および(InGaAs受光層3/InP窓層5)の界面はいずれも再成長界面ではない。このため、酸素および炭素の濃度がいずれも所定レベル以下であり、各界面おいても格子欠陥密度は低く抑えられる。このため暗電流を抑制することができる。
【0037】
このエピタキシャルウエハを用いて受光素子を作製する。まず図7に示すように、SiNの選択拡散マスクパターン36を形成する。選択拡散マスクパターン36は、凹部Sの直径より少し小さい直径の開口部36hを持つ。この開口部36hからp型不純物の亜鉛(Zn)をInGaAs受光層3に届くように選択拡散することで、図5に示すように、p型領域6を形成する。このあと、図5に示すように、p型領域6にはAuZnによるp側電極11を、またInP基板1の裏面には、各受光部10に共通にAuGeNiのグランド電極(n側電極)12を、それぞれオーミック接触するように形成する。
【0038】
図8は、本発明の実施の形態の一例である、実施の形態2の変形例を示す図である。この変形例の受光素子アレイ10において、受光部Pは図5と同様に埋め込まれている。しかし、図5の受光素子アレイ10がInP基板1内に埋め込まれていたのに対して、この変形例では、InP基板1上にn型バッファ層22を介在させて成長した埋め込み層23の凹部S内に埋め込まれる点で相違する。また、グランド電極12は、InP基板1の裏面ではなく、n型バッファ層22にオーミック接触しており、電極配線12eにより、図示しない読み出し回路の読み出し電極に対面する配置をとっている。
受光部Pの間のn型領域7の作用効果については、実施の形態2における受光素子アレイ10の説明がそのまま当てはめることができる。
【0039】
上記において、本発明の実施の形態について説明を行ったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
【産業上の利用可能性】
【0040】
本発明の受光素子アレイ等によれば、近赤外の長波長域にまで受光でき、かつ画素ピッチを密にしても受光感度を確保でき、とくに受光層がカバーする波長域よりも短い波長域の受光感度をInP窓層などによってバックアップすることができる。このため、様々な検査・検出装置、宇宙光による夜間視認装置などに大きな貢献をすることが期待される。
【符号の説明】
【0041】
1 InP基板、2 InPバッファ層、3 受光層、5 InP窓層、6 p型領域、7 n型領域、10 受光素子アレイ、11 p側電極(画素電極)、12 グランド電極(n側電極)、12e 電極配線、15 pn接合、22 バッファ層、23 埋め込み層、35 AR(反射防止)膜、36 選択拡散マスクパターン、36h 選択拡散マスクパターンの開口部、K 空乏層、S 凹部、P 画素または受光部。


【特許請求の範囲】
【請求項1】
近赤外波長領域に受光感度を有し、III−V族半導体の積層体に形成された受光素子アレイであって、
前記近赤外波長領域に対応するバンドギャップエネルギを有する受光部が、複数、配列され、
前記受光部は、選択拡散によって形成された第1導電型領域の先端部にpn接合を有し、
前記受光部を区分けするように、第2導電型領域が該受光部の間に位置することを特徴とする、受光素子アレイ。
【請求項2】
前記選択拡散のマスクパターンが前記III−V族半導体の積層体の表面に位置し、前記第2導電型領域は、前記選択拡散のマスクパターンのマスク部において前記表面から前記受光部の底部と同じ深さにまで延びていることを特徴とする、請求項1に記載の受光素子アレイ
【請求項3】
平面的にみて、前記受光部は20μm以上30μm以下のピッチで配列され、前記第1導電型領域の径は7.5μm〜20μmであり、前記第2導電型領域は1μm〜7.5μmの幅を有することを特徴とする、請求項1または2に記載の受光素子アレイ。
【請求項4】
前記第2導電型領域が、III−V族半導体基板、III−V族半導体基板上に形成された埋め込み用III−V族半導体層、およびIII−V族半導体層に導入された第2導電型不純物の領域、のうちのいずれかであることを特徴とする、請求項1〜3のいずれか1項に記載の受光素子アレイ。
【請求項5】
前記受光部が、InGaAs層を備えることを特徴とする、請求項1〜4のいずれか1項に記載の受光素子アレイ。
【請求項6】
前記受光部が、タイプ2のInGaAs/GaAsSb多重量子井戸構造を備えることを特徴とする、請求項1〜5のいずれか1項に記載の受光素子アレイ。
【請求項7】
前記III−V族半導体の積層体の表層がInP窓層で形成され、前記受光部の底部から前記InP窓層まで再成長界面を持たないことを特徴とする、請求項1〜6のいずれか1項に記載の受光素子アレイ。
【請求項8】
請求項1〜7のいずれか1項に記載の受光素子アレイと、読み出し回路とを備えることを特徴とする検出装置。
【請求項9】
近赤外波長領域に受光感度を有し、III−V族半導体による受光素子アレイの製造方法であって、
前記近赤外波長領域に対応するバンドギャップエネルギを有する受光層を形成する工程と、
前記受光層の上に窓層を形成する工程と、
前記受光素子アレイにおける受光部間の区分け壁になるように、第2導電型領域を前記窓層の表面から前記受光層の底部にまで形成する工程と、
前記窓層の表面に選択拡散マスクパターンを形成して、前記第2導電型領域の区分け壁で囲まれた中に第1導電型不純物を選択拡散することにより第1導電型領域を形成する工程と、を備えることを特徴とする受光素子アレイの製造方法。
【請求項10】
近赤外波長領域に受光感度を有し、III−V族半導体による受光素子アレイの製造方法であって、
第2導電型のIII−V族半導体基板を準備する工程と、
前記III−V族半導体基板に、受光部に対応する位置に凹部を開口する工程と、
前記凹部に、前記近赤外波長領域に対応するバンドギャップを有する受光層、および窓層、を形成する工程と、
前記窓層上に前記凹部に合わせた開口部を有する選択拡散マスクパターンを形成し、該凹部内に第1導電型不純物を選択拡散することで第1導電型領域を前記窓層から前記受光層内に届くように形成する工程とを備えることを特徴とする、受光素子アレイの製造方法。
【請求項11】
近赤外波長領域に受光感度を有し、III−V族半導体による受光素子アレイの製造方法であって、
半導体基板上に、第2導電型の埋め込み用半導体層を形成する工程と、
前記第2導電型埋め込み用半導体層に、受光部に対応する位置に凹部を開口する工程と、
前記凹部に、前記近赤外波長領域に対応するバンドギャップを有する受光層、および窓層を形成する工程と、
前記窓層上に前記凹部に合わせた開口部を有する選択拡散マスクパターンを形成し、該凹部内に第1導電型不純物を選択拡散することで第1導電型領域を前記窓層から前記受光層内に届くように形成する工程とを備えることを特徴とする、受光素子アレイの製造方法。
【請求項12】
前記窓層をInP層で形成し、前記受光層および該InP窓層を含むエピタキシャル積層体を形成する工程において、前記エピタキシャル層の成長開始から前記InP窓層の成長を終了するまで、全有機金属気相成長法によって、一貫して同じ成膜室で成長させることを特徴とする、請求項9〜11のいずれか1項に記載の受光素子アレイの製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−244124(P2012−244124A)
【公開日】平成24年12月10日(2012.12.10)
【国際特許分類】
【出願番号】特願2011−116183(P2011−116183)
【出願日】平成23年5月24日(2011.5.24)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】