説明

多層キャパシタ内蔵型のプリント基板の製造方法

【課題】内蔵型キャパシタが複数の導電層および複数の誘電体層を持つようにして、静電容量を増加させた多層キャパシタ内蔵型のプリント基板の製造方法を提供する。
【解決手段】本発明は、コア層を構成するベース基板に絶縁層を形成し、一面に下部電極層が形成されたRCCを該絶縁層に積層する第1工程と、前記RCCの上部銅箔を除去した後、内部電極層を形成する第2工程と、前記第1工程のRCC積層から前記第2工程を数回繰り返して、誘電層と内部電極層からなる複数層を形成する第3工程と、前記誘電層と前記内部電極層が複数層形成されたプリント基板に複数のビアホールを形成し、ビアホールの内壁をメッキして内部電極層間を導通させて多層キャパシタを完成する第4工程とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、キャパシタ内蔵型のプリント基板の製造方法に関し、特に、プリント基板の内部に多層のキャパシタを形成して静電容量を増加させた多層キャパシタ内蔵型のプリント基板の製造方法に関するものである。
【背景技術】
【0002】
大部分のプリント基板(PCB)の表面には、一般に、ディスクリート部品のチップ抵抗またはディスクリート部品のチップキャパシタを実装しているが、最近、抵抗またはキャパシタなどの受動素子を内蔵したプリント基板が開発されている。
このような受動素子内蔵型プリント基板技術とは、新規な材料(物質)およびプロセスを用いて、基板の外層あるいは内層に抵抗またはキャパシタなどの受動素子を挿入することで、既存のチップ抵抗及びチップキャパシタの役目を代替する技術を言う。
【0003】
換言すると、受動素子内蔵型プリント基板は、基板自体の内層あるいは外層に受動素子、例えばキャパシタ、が埋め込まれている形態であって、基板自体の大きさにかかわらず、受動素子のキャパシタがプリント基板の一部に一体化されているものを「内蔵型キャパシタ(Embedded Capacitor)」と言い、このような基板をキャパシタ内蔵型プリント基板と言う。
【0004】
このような受動素子内蔵型プリント基板の最も重要な特徴は、受動素子がプリント基板の一部として一体的に備えられているため、基板表面に実装する必要がない。
【0005】
一般に、受動素子内蔵型プリント基板の製造技術は、大きく3種の方法に分類することができ、それらについて以下に詳細に説明する。
【0006】
第1は、ポリマーキャパシタペーストを塗布し、熱硬化、すなわち乾燥させてキャパシタを実現するポリマー厚膜型キャパシタの製造方法である。
【0007】
この方法は、プリント基板の内層にポリマーキャパシタペーストを塗布し、これを乾燥させた後、電極を形成するように、銅ペーストを印刷し乾燥させることで、内蔵型キャパシタを製造する。
【0008】
第2は、セラミック充填感光性(photodielectric)樹脂をプリント基板にコートして、ディスクリートタイプの内蔵型キャパシタを実現する方法であり、米国のモトローラ(Motorola)社が関連特許技術を保有している。
【0009】
この方法は、セラミック粉末を含有した感光性樹脂を基板に塗布した後、銅箔を積層させ、それぞれの上部電極及び下部電極を形成し、続いて回路パターンを形成し、感光性樹脂をエッチングすることで、ディスクリートのキャパシタを得る。
【0010】
第3は、プリント基板の表面に実装されるデカップリングキャパシタと置換するように、プリント基板内層に容量特性を有する誘電層を別途に挿入してキャパシタを実現する方法であり、米国サンミナ(Sanmina)社が関連特許技術を保有している。
【0011】
サンミナ社の特許に関して、下記特許文献1は、2つの導電層およびその間に設けられた1つの絶縁材料層(誘電体層)からなるキャパシタ内蔵型プリント基板およびこれを含むプリント基板を開示している。
【0012】
前記キャパシタ内蔵型プリント基板の誘電体層は、少なくとも0.5mil(12.5μm)、一般に1〜2mil(25〜50μm)の厚さを持つ。導電層は、少なくとも0.5oz./ft(厚さ約18μm)、一般には1oz./ftの重量分布を持つ。
【0013】
また、サンミナ社の特許文献2,3は、接着力および容量密度を確保するため、導電箔を表面処理した導電性材料シートを使用している。
【0014】
また、サンミナ社の特許文献4は、高容量の粉末を使った容量性コア素子を開示する。ここでは、500以上の高い誘電率(エポキシ樹脂の少なくとも10倍)を持つ予備焼成(pre-fired)セラミック粉末を誘電体層に含有させて、デカップリング能力を増加させている。
【0015】
しかし、このような従来技術では、その容量値が非常に低く、実用性が低下するという問題点があった。これを解決するために、構成成分として容量値の高い物質を使用しているが、依然として製品に必要な要求レベルに到達していない。
【0016】
【特許文献1】米国特許第5,079,069号明細書
【特許文献2】米国特許第5,155,655号明細書
【特許文献3】米国特許第5,161,086号明細書
【特許文献4】米国特許第5,162,977号明細書
【発明の開示】
【発明が解決しようとする課題】
【0017】
したがって、本発明はこのような問題点に鑑みてなされたもので、その目的は、内蔵型キャパシタが複数の導電層および複数の誘電体層を持つようにして、静電容量を増加させた多層キャパシタ内蔵型のプリント基板の製造方法を提供することにある。
【課題を解決するための手段】
【0018】
上記課題を解決するために、本発明のある観点によれば、コア層を構成するベース基板に絶縁層を形成し、一面に下部電極層が形成されたRCC(Resin Coated Copper:樹脂付銅箔)を該絶縁層に積層する第1工程と、前記RCCの上部銅箔を除去した後、内部電極層を形成する第2工程と、前記第1工程のRCC積層から前記第2工程を数回繰り返して、誘電体層と内部電極層からなる複数層を形成する第3工程と、前記誘電体層と前記内部電極層が複数層形成されたプリント基板に複数のビアホールを形成し、ビアホールの内壁をメッキして内部電極層間を導通させて多層キャパシタを完成する第4工程と、を含むことを特徴とする、多層キャパシタを内蔵したプリント基板の製造方法が提供される。
【発明の効果】
【0019】
本発明によれば、多層で形成することにより、同一素材(誘電定数、厚さなどの特性を有する)、同一基板面積でより高い性能(デカップリングまたはマッチング)を発揮することができる効果がある。
【0020】
また本発明によれば、電流の流れを逆方向にするパターン設計を行った場合、インダクタンスの相殺効果により、高周波特性が良好なキャパシタ内蔵型プリント基板を得ることができる。
【0021】
また本発明によれば、デカップリング用途では、容量密度が最も重要な要素であるので、多層構造の利点を十分発揮するようにする効果がある。
【0022】
また本発明によれば、信号マッチング用では、誘電率を一定値以上確保するために誘電体フィラーを入れる場合、温度特性などの問題が発生し得るため、ポリマー等のように、誘電率は低いがその他の特性が優れた材料を多層構成に設計して、その他の特性の劣化なしに容量を所望のレベルに高めることができるようにする効果がある。
【発明を実施するための最良の形態】
【0023】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
【0024】
図1A〜図1Jは、本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【0025】
まず、図1Aに示すように、コア層を構成するベース基板100の銅箔102に、像形成プロセスを用いて回路パターンを形成する。
【0026】
ベース基板100として使用される銅張積層板(CCL)の種類には、その用途によって、ガラス/エポキシ銅張積層板、耐熱樹脂銅張積層板、紙/フェノール銅張積層板、高周波用銅張積層板、フレキシブル銅張積層板、複合銅張積層板などの様々なものがある。これらのうち両面プリント基板及び多層プリント基板の製造には、主に使用される絶縁樹脂層101に銅箔層102、103が被せられたガラス/エポキシ銅張積層板100を使用することが望ましい。
【0027】
ベース基板100にドライフィルム(図示せず)を塗布した後、所定のパターンが印刷されたアートワークフィルムを用いてドライフィルムを露光及び現像することで、ドライフィルムに所定のパターンを形成し、エッチャントを噴霧することにより、ドライフィルムによって保護された領域を除いた残り領域の銅箔102を除去する。使用したドライフィルムは剥離して、最終的に銅箔102の配線パターンが形成される。
【0028】
ドライフィルムは、カバーフィルム、フォトレジストフィルム及びマイラー(Mylar)フィルムの3層で構成されるが、実質的にレジストの役目をする層はフォトレジストフィルムである。
【0029】
ドライフィルムの露光及び現象工程においては、所定のパターンが印刷されたアートワークフィルムをドライフィルムの上に密着させた後、紫外線を照射する。
【0030】
その際、アートワークフィルムのパターンが印刷された黒い部分は紫外線が透過することができず、印刷されていない部分は紫外線が透過して、アートワークフィルムの下のドライフィルムを硬化させる。
【0031】
このようにドライフィルムが硬化した銅張積層板102を現像液に浸漬すると、硬化していないドライフィルム部分が現像液によって除去され、硬化したドライフィルム部分のみ残ってレジストパターンを形成する。ここで、現像液としては、炭酸ナトリウム(NaCO)または炭酸カリウム(KCO)の水溶液などを使用する。
【0032】
このように、像形成プロセスによりベース基板100上にレジストパターンを形成し、エッチャントを噴霧することで、レジストパターンによって保護される領域を除いた残り領域の銅箔102を除去し、使用したレジストパターンを剥離することによって、最終的に銅箔102の配線パターンが形成される。
【0033】
そして、図1Bに示すように、回路パターンが形成されたベース基板100の両面にプレプレグ(prepreg)104、105を積層した後、片面に回路パターンが形成された銅張積層板110、120を両面に積層する。
【0034】
ここで、銅張積層板110、120の片面に回路パターンを形成する手順は、前述したベース基板100に回路パターンを形成する手順と同様であるが、銅張積層板110、120の絶縁層111、121は、高容量のキャパシタを形成するために、高誘電率の材料を使用することが好ましい。
【0035】
そして、図1Cに示すように、銅張積層板110、120の最も外側の銅箔112、122を除去する。このように、銅張積層板110、120の最も外側の銅箔112、122を除去する理由は、一般的な銅張積層板の銅箔の厚さが厚いため、銅張積層板の銅箔を多層キャパシタの電極層としてそのまま使用すると、後工程の誘電層の積層によってプリント基板の厚さが厚くなり、パターン形成後、除去された導電部分を樹脂などで埋める問題など、製品に要求される仕様を満足させにくいからである。
【0036】
次に、図1Dに示すように、プリント基板に内蔵される多層キャパシタの内部電極層を形成するために、シード層131、132を形成する。
【0037】
このようなシード層131、132は無電解メッキで形成することができる。無電解メッキは絶縁体に対するメッキであるので、荷電イオン反応ではなく、析出反応によるものであり、析出反応は触媒によって促進される。
【0038】
一般に、無電解銅メッキを例として説明すれば、メッキ液から銅が析出するためには、メッキしようとする材料の表面に触媒が付着しなければならない。これは、無電解銅メッキが、多くの前処理を必要とすることを意味する。
【0039】
例えば、無電解銅メッキプロセスは、脱脂(cleaning)、ソフトエッチング、予備触媒処理(pre-catalysis)、触媒処理、活性化処理(acceleration)、無電解銅メッキ、酸化防止処理の各工程を含む。
【0040】
そして、無電解銅メッキプロセスは、一般に、電解銅メッキプロセスに比べ、物理的特性が劣るので、薄い銅メッキ層を形成するために用いられる。
【0041】
次に、図1Eに示すように、プリント基板に内蔵される多層キャパシタを形成するために、内部導電層133、134を電解メッキプロセスで形成する。
【0042】
そして、図1Fに示すように、内部導電層133、134を像形成プロセスによってパターン化して、内部電極層を形成する。
【0043】
以後、図1F及び図1Gに示すように、必要に応じて、図1B〜図1Fの電解メッキ層をパターン化するための手順を繰り返して、所望の多層キャパシタを形成する。
【0044】
すなわち、必要に応じて、i)プレプレグを積層して誘電体層を形成し、ii)下面がパターン化された銅張積層板を積層した後、iii)上層の銅箔を除去し、iv)無電解メッキと電解メッキを用いて、多層キャパシタの内部電極層を形成する、という手順を繰り返す。
【0045】
このように、内部導電層133、134に、像形成プロセスによるパターン化により内部電極層を形成した後、図1Hに示すように、最も外側にRCC(樹脂付銅箔)を積層して誘電体層161、171を形成し、図1Iに示すように、RCCの銅箔162、172をパターン化して、上部電極層を形成する。
【0046】
以後、図1Iに示すように、多層プリント基板にビアホール(図示せず)またはスルーホールを形成し、ビアホールまたはスルーホールの内壁にメッキ層180を施して、多層構造の内部電極層が互いに導通すると、多層キャパシタが形成される。
【0047】
ここで、ビアホールまたはスルーホールを形成するプロセスは、レーザまたはCNC(Computer Numerical Control)ドリルを使用して、予め設定された位置にビアホールまたはスルーホールを形成することが望ましい。
【0048】
CNCドリルを用いる手法は、両面プリント基板のビアホールまたは多層プリント基板のスルーホールを形成するのに適している。
【0049】
こうしてCNCドリルを用いてビアホールまたはスルーホールを加工した後、ドリル加工時に発生する銅箔のばり、ビアホール内の埃、銅箔表面の埃などを除去するばり取りプロセスを行うことが望ましい。このとき銅箔表面が粗面化されることにより、以後の銅メッキプロセスにおいて銅との密着力が向上する利点がある。
【0050】
レーザを用いる手法は、多層プリント基板のマイクロビアホールを形成するのに適している。このようなレーザを用いる手法において、YAG(Yttrium Aluminum Garnet)レーザを用いて銅箔層と絶縁樹脂層を同時に加工してもよく、ビアホールが形成される部分の銅箔層をエッチングした後、二酸化炭素レーザを用いて絶縁樹脂層を加工してもよい。
【0051】
そして、ビアホールを形成した後、形成時に発生する熱によってベース基板の絶縁樹脂層などを溶融させることによって、ビアホールの側壁で発生するスミアを除去するスミア取りプロセスを行うことが望ましい。
【0052】
そして、図1Jに示すように、多層キャパシタが形成されたプリント基板にICチップ190、191を実装することで、半導体チップパッケージを完成する。
【0053】
図2A〜図2Jは、本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【0054】
まず、図2Aに示すように、コア層を構成するベース基板200の銅箔202、203に、像形成プロセスを用いて、回路パターンを形成する。ここで、ベース基板200は、第1実施形態で説明したように、ガラス/エポキシ銅張積層板、耐熱樹脂銅張積層板、紙/フェノール銅張積層板、高周波用銅張積層板、フレキシブル銅張積層板、複合銅張積層板などの様々なものがあるが、ガラス/エポキシ銅張積層板を使用することが望ましい。
【0055】
そして、図2Bに示すように、回路パターンが形成されたベース基板200の両面にプレプレグ204、205を積層した後、プリント基板に内蔵される多層キャパシタの下部電極となる薄い箔206、207を両面に積層し、図2Cに示すように、回路パターンを形成する。
【0056】
ここで、箔206、207に回路パターンを形成する手順は、前記ベース基板200に回路パターンを形成する手順と同様である。
【0057】
その後、図2Dに示すように、高容量の誘電率を有する誘電体層211、221と、前記誘電体層211、221に積層された非常に薄い箔212、222と、前記箔212、222に積層されたキャリア213、223とを備える超薄箔(Ultrathin Foil)キャリア210、220を積層する。
【0058】
ここで、キャリア213、223は、誘電体層211、221と箔212、222とからなるRCC材料を運ぶために使用されるもので、図2Eに示すように、RCC材料が下部電極を形成する箔206、207に付着すると、除去される。
【0059】
そして、図2Fに示すように、箔212、222を像形成プロセスによってパターン化すると、内部電極層として機能する。キャリア(図示せず)を使用すると、複数のRCC材料(ここでは、両面にそれぞれ上側RCC230と下側RCC240を示している)をさらに積層して、誘電層と内部電極層が多層となるように、要求する製品仕様を満足させることができる。
【0060】
図2Gは、このようにして形成された多層キャパシタを示す。内部電極層の電気的な接続のために、ビアホール251、252を加工して、内部電極層が互いに導通するようにする。
【0061】
ここで、ビアホールを形成するプロセスは、前述したように、CNCドリルまたはレーザを使用して、予め設定された位置にビアホールを形成することが望ましい。
【0062】
CNCドリルを用いる手法は、両面プリント基板のビアホールまたは多層プリント基板のスルーホールを形成するのに適している。
【0063】
レーザを用いる手法は、多層プリント基板のマイクロビアホールを形成するのに適している。このようなレーザを用いる方式手法において、YAGレーザを用いて銅箔層と絶縁樹脂層を同時に加工してもよく、ビアホールが形成される部分の銅箔層をエッチングした後、二酸化炭素レーザを用いて絶縁樹脂層を加工してもよい。
【0064】
次に、図2H〜図2Iに示すように、RCC材料260、270を積層した後、最外側の箔262、272を像形成プロセスでパターン化することで、外部電極層を形成する。
【0065】
多数のビアホール281、282を形成することで、内部電極層と外部電極層が導通するようにし、内部電極層が互いに導通すると、多層キャパシタが形成される。
【0066】
その後、図2Jに示すように、ICチップを実装して半導体チップパッケージを完成する。
【0067】
以上に説明したように、本発明による多層キャパシタを内蔵したプリント基板において、キャパシタの導電層を3層以上、絶縁層を2層以上形成してもよい。
【0068】
そして、容量を持つRCC型またはCCL型の層は、一括積層プロセスまたはビルドアッププロセスにより、多層に形成することが可能である。
【0069】
また、多層キャパシタの絶縁層は、その厚さが小さいほど、層数を増加するほど、容量が増加する。多層キャパシタの内部導電層は、最終的に得られるプリント基板(PCB)の厚さを小さくし、絶縁層の厚さ均一化のためには、厚さが低いほど有利である。
【0070】
このように、内部導電層の厚さを小さくするためには、最初から厚さの小さい箔(0.5oz./ft≒18μmまたはそれ以下、3〜9μmの箔)を使用するか、またはRCCまたはCCLを積層した後、最外側の厚い導電箔を除去し、無電解メッキを施してシード層を形成した後、電解メッキで導電層(5μm以下の厚さ)を形成するか、または表面加工されたRCCまたはCCLを積層した後、最外側の厚い導電箔を部分的に除去する方法などが可能である。
【0071】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、特許請求の範囲に記載された範囲内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【産業上の利用可能性】
【0072】
本発明は、内蔵型キャパシタが複数の導電層および複数の誘電体層を持つようにして、静電容量を増加させた多層キャパシタ内蔵型のプリント基板の製造方法に適用可能である。
【図面の簡単な説明】
【0073】
【図1A】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1B】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1C】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1D】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1E】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1F】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1G】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1H】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1I】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図1J】本発明の第1実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2A】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2B】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2C】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2D】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2E】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2F】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2G】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2H】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2I】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【図2J】本発明の第2実施形態による多層キャパシタ内蔵型プリント基板の製造方法の工程図である。
【符号の説明】
【0074】
100 ベース基板
104、105 プレプレグ
110、120、140、150、160、170 RCC
131、132 シード層
133、134 電解メッキ層
200 ベース基板
204、205 プレプレグ
206、207 箔
210、220 超薄箔キャリア
230、240 RCC






【特許請求の範囲】
【請求項1】
コア層を構成するベース基板に絶縁層を形成し、一面に下部電極層が形成されたRCCを該絶縁層に積層する第1工程と、
前記RCCの上部銅箔を除去した後、内部電極層を形成する第2工程と、
前記第1工程のRCC積層から前記第2工程を数回繰り返して、誘電体層と内部電極層からなる複数層を形成する第3工程と、
前記誘電体層と前記内部電極層が複数層形成されたプリント基板に複数のビアホールを形成し、ビアホールの内壁をメッキして内部電極層間を導通させて多層キャパシタを完成する第4工程と、を含むことを特徴とする多層キャパシタを内蔵したプリント基板の製造方法。
【請求項2】
前記第2工程は、
前記絶縁層に積層されたRCCの上部銅箔を除去する工程と、
前記上部銅箔が除去されたRCCの絶縁層上に無電解メッキを施して、シード層を形成する工程と、
前記シード層上に電解メッキを施して、内部電極層を形成する工程と、を含むことを特徴とする請求項1に記載の多層キャパシタを内蔵したプリント基板の製造方法。
【請求項3】
前記シード層上に形成された内部電極層の厚さは、0.1〜5μmであることを特徴とする請求項2に記載の多層キャパシタを内蔵したプリント基板の製造方法。
【請求項4】
コア層を構成するベース基板に絶縁層を形成し、下部電極層を形成する第1工程と、
前記下部電極層上に、超薄箔キャリアを用いて、絶縁層と内部電極層を形成する第2工程と、
前記絶縁層と前記内部電極層が形成されたプリント基板にビアホールを加工して、内部電極層間を導通させる第3工程と、
前記第2工程と第3工程を繰り返すことで、複数の絶縁層および内部電極層を形成して、多層キャパシタを形成する第4工程と、を含むことを特徴とする多層キャパシタを内蔵したプリント基板の製造方法。
【請求項5】
前記第1工程は、
コア層を構成するベース基板にプレプレグを積層し、絶縁層を形成する工程と、
前記絶縁層上に箔を積層した後、像形成プロセスを用いて下部電極層を形成する工程と、を含むことを特徴とする請求項4に記載の多層キャパシタを内蔵したプリント基板の製造方法。
【請求項6】
前記第2工程は、
前記下部電極層上に、超薄箔キャリアを用いて、絶縁層に薄膜が積層されたRCCを積層する工程と、
前記超薄箔キャリアからキャリアを除去して、前記RCCの薄膜を露出させる工程と、
前記薄膜に、像形成プロセスを用いて内部電極層を形成する工程と、を含むことを特徴とする請求項4に記載の多層キャパシタを内蔵したプリント基板の製造方法。



【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図1E】
image rotate

【図1F】
image rotate

【図1G】
image rotate

【図1H】
image rotate

【図1I】
image rotate

【図1J】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図2F】
image rotate

【図2G】
image rotate

【図2H】
image rotate

【図2I】
image rotate

【図2J】
image rotate


【公開番号】特開2006−253656(P2006−253656A)
【公開日】平成18年9月21日(2006.9.21)
【国際特許分類】
【出願番号】特願2006−17832(P2006−17832)
【出願日】平成18年1月26日(2006.1.26)
【出願人】(591003770)三星電機株式会社 (982)
【Fターム(参考)】