説明

燃料供給装置

【課題】燃料ポンプに供給される電気特性を最適化し、燃費を向上したり燃料ポンプの劣化促進を抑制することができる燃料供給装置を提供する。
【解決手段】ECUは、低圧燃料供給状態において(ステップS11)、燃料噴射量が一定であり、かつ、燃料温度が推定可能であることを条件に、燃料ポンプユニットの印加電圧を所定値ずつ低減する(ステップS14)。そして、ECUは、空燃比が最もリーンとなる最リーン電圧を取得すると(ステップS17)、初期電圧と最リーン電圧との差からリターン流量Qの変化量を算出する(ステップS18)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料タンク内に貯留された燃料を調圧して燃料消費部に供給する燃料供給装置に関するものである。
【背景技術】
【0002】
従来、車両に搭載される内燃機関の燃料供給装置は、燃料タンク内に貯留された燃料を燃料ポンプによって燃料消費部に供給するときに、燃料消費部に対する燃料供給圧力を調整するための圧力制御装置を備えている。この圧力制御装置は、燃料タンク内の燃料を汲み上げる燃料ポンプから、燃料消費部を構成するインジェクタへの燃料供給圧力を調圧するようになっている。
【0003】
このような圧力制御装置においては、一般に、ハウジング内を2室に区画し、中央部に調圧弁体を有するダイヤフラムを備えている。このダイヤフラムの一面側において、調圧室内の燃料圧に応じたダイヤフラム中央部の変位を利用して調圧弁体を開弁方向および閉弁方向に変位させる一方、ダイヤフラムの他面側に設置された圧縮コイルばねによりダイヤフラムの変位を抑制するようになっている。これにより、調圧室内の燃料圧が設定圧に達するよう調圧弁体の開弁状態を保持するようになっている。また、このような圧力制御装置は、燃料ポンプとともに燃料タンク内に配置されていることが多い。
【0004】
このような圧力制御装置としては、ハウジング内部を区画するダイヤフラムと、このダイヤフラムの一面側に位置し、燃料ポンプから加圧燃料が導入される燃料導入口および余剰燃料が排出される排出口を有する調圧室と、ダイヤフラムの他面側に位置し、背圧流体が導入される背圧室と、ダイヤフラムと背圧室の間に大気に開放される開放室を形成するプランジャと、ダイヤフラムの変位に応じて排出口を開閉するようダイヤフラムに装着された弁部材と、ダイヤフラムとプランジャの間に介在されて弁部材を閉弁方向に付勢するスプリングと、プランジャの可動範囲を規定するストッパ手段と、によって構成される可変燃料圧調整弁を備えたものが提案されている(例えば、特許文献1参照)。
【0005】
この特許文献1に記載の燃料供給装置は、このような圧力制御装置を構成する可変燃料圧調整弁を備えることにより、背圧流体の供給の有無によってスプリングの設定荷重を2段階に切替えることで、調圧する燃料圧の設定値を低圧と高圧とのいずれかに切替えることができる。
【0006】
しかしながら、この特許文献1に記載の燃料供給装置は、1つの可変燃料圧調整弁により燃料圧を切替えることができるものの、可変燃料圧調整弁が3室により構成されているため、小型化が難しく、また、調圧室と背圧室に燃料を供給する配管は、互いに逆向きに接続されるため、可変燃料圧調整弁の配置に制約が生じるという問題があった。
【0007】
さらには、この特許文献1に記載の燃料供給装置は、燃料ポンプの劣化や吐出特性のばらつきに応じて燃料消費部に供給される燃料圧が変化するにもかかわらず、燃料ポンプの劣化や吐出特性のばらつきを考慮するようなものではなかった。そのため、実燃料圧が目標燃料圧から乖離し、気筒に対する燃料噴射量が適切なものとならず、結果として、空燃比が目標空燃比から乖離する可能性があるという問題があった。
【0008】
また、特許文献1に記載の燃料供給装置とは異なり燃料圧を高圧と低圧とに切替える構成を有していないものの、燃料ポンプの劣化や吐出特性のばらつきを包含して燃料ポンプに供給される駆動電流を設定する燃料供給装置が知られている(例えば、特許文献2参照)。
【0009】
この特許文献2に開示された燃料供給装置は、検出された実際の空燃比と目標空燃比との偏差を、燃料ポンプやインジェクタの機械的な個体差や経年劣化が反映された空燃比学習補正係数として常時学習している。また、燃料供給装置は、目標燃圧値をエンジンの運転状態に基づいて算出し、算出された目標燃圧値を空燃比学習補正係数により補正する。そして、燃料供給装置は、補正された目標燃圧値に応じて燃料ポンプに供給される駆動電流を設定するようになっていた。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2009−144686号公報
【特許文献2】特開平11−247697号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、上述した特許文献2に記載の燃料供給装置は、駆動電流を補正する際に、燃料ポンプの吐出性能の個体差や経年劣化が補正値に含まれているものの、燃料ポンプの吐出性能の個体差や経年劣化そのものを求めるようなものではなかった。
【0012】
そのため、使用されている燃料ポンプの吐出性能が平均的な燃料ポンプからどの程度ずれているか、あるいは、燃料ポンプがどの程度劣化したかを推定することができなかった。さらには、特許文献2に記載の燃料供給装置は、燃料圧を高圧と低圧とに設定可能な可変燃料圧調整弁を備えたものに適用することを考慮しておらず、可変燃料圧調整弁を備えたものにおいて、燃料ポンプの吐出性能や経年劣化を求めることができなかった。
【0013】
したがって、可変燃料圧調整弁を有する燃料供給装置においては、燃料ポンプに供給される電気特性が最適化されず、燃費が低下したり燃料ポンプの劣化が促進される可能性があるという問題があった。
【0014】
本発明は、このような問題を解決するためになされたもので、可変燃料圧調整弁を有する燃料供給装置において、燃料ポンプに供給される電気特性を最適化し、燃費を向上したり燃料ポンプの劣化促進を抑制することができる燃料供給装置を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明に係る燃料供給装置は、上記目的達成のため、(1)燃料ポンプから吐出した燃料を調圧して燃料消費部に供給する燃料供給装置であって、少なくとも前記燃料の燃料圧を高圧にする高圧供給状態と低圧にする低圧供給状態とのいずれかの状態を取り得る可変燃料圧調整弁と、前記燃料ポンプに印加する電圧を制御する制御手段と、排気成分に基づいて空燃比を検出する空燃比検出手段と、を備え、前記制御手段は、前記可変燃料圧調整弁が前記低圧供給状態であることを条件に、前記燃料ポンプに印加される電圧と前記空燃比検出手段により検出された空燃比とに基づいて、前記可変燃料圧調整弁から排出される燃料量を推定することを特徴とする。
【0016】
この構成により、可変燃料圧調整弁から排出される燃料量を推定することが可能になる。これにより、排出される燃料量が最低必要量になるよう燃料ポンプに印加される電圧を低減することが可能となる。したがって、可変燃料圧調整弁を有する場合において燃料ポンプにより消費されるエネルギーを低減させ、燃費を向上することができる。
【0017】
また、上記(1)に記載の燃料供給装置において、(2)前記制御手段は、前記燃料ポンプに印加する電圧を変化させ前記空燃比検出手段により検出される空燃比が最もリーンとなる最低電圧を求め、前記最低電圧と前記燃料ポンプの新品時に空燃比が最もリーンとなる初期電圧との差と、車両の走行距離と、に基づいて前記排出される燃料量を推定することを特徴とする。
【0018】
この構成により、燃料ポンプに印加される電圧の変化に応じて、可変燃料圧調整弁から排出される燃料量を推定することが可能となる。結果として、燃料ポンプの劣化度合いおよび吐出特性のばらつきを求めることができる。
【0019】
また、上記(2)に記載の燃料供給装置において、(3)前記初期電圧は、複数の前記燃料ポンプにおいて新品時に空燃比が最もリーンとなる電圧の略平均値であることを特徴とする。
【0020】
ここで、本発明における「略平均値」とは、燃料ポンプが大量に生産された場合に吐出特性が平均的な燃料ポンプによる値を意味し、中央値であってもよい。
【0021】
この構成により、平均的な吐出特性を有する燃料ポンプの初期電圧が予め算出されていれば、すべての燃料ポンプに対し初期電圧を測定することなく、燃料ポンプの劣化特性や吐出特性のばらつきを算出することが可能になる。したがって、燃料供給装置の生産効率を低下することなく各燃料ポンプを最適な状態に維持することができる。
【0022】
また、上記(1)から(3)に記載の燃料供給装置において、(4)前記制御手段は、推定した前記排出される燃料量と、複数の前記燃料ポンプのうち最も多い吐出量および最も少ない吐出量を有する燃料ポンプから排出される燃料量との比から、当該燃料ポンプの吐出特性のばらつきを算出することを特徴とする。
【0023】
この構成により、推定した排出される燃料量に基づいて、検出対象となる燃料ポンプの吐出特性を判断することが可能となる。また、検出対象となる燃料ポンプの吐出量が、複数の燃料ポンプのうち最も少ない吐出量よりも低い場合には、当該検出対象となる燃料ポンプに故障が発生していると判断することが可能となる。
【0024】
また、上記(1)から(4)に記載の燃料供給装置において、(5)前記制御手段は、前記燃料の温度に応じて前記排出される燃料量の推定値を補正することを特徴とする。
【0025】
この構成により、燃料の温度に応じて可変燃料圧調整弁から排出される燃料量が変化する場合においても、排出量を精度よく推定することが可能となる。
【0026】
また、上記(1)から(5)に記載の燃料供給装置において、(6)前記可変燃料圧調整弁は、前記燃料が導入される燃料導入口および該燃料が排出される燃料排出口を有するハウジングと、前記ハウジングとの間に前記燃料導入口に連通する調圧室を形成する隔壁部と前記調圧室内の燃料圧に応じて前記調圧室を前記燃料排出口に連通させる開弁方向に変位する可動弁体部とを有する調圧部材と、を備え、前記調圧室の内部に前記燃料排出口に連通するとともに前記可動弁体部の変位に応じて開度が変化する排出穴を形成する第1弁座部と、前記調圧室の内部に前記可動弁体部の変位に応じて開度が変化するとともに操作圧を有する燃料が導入される操作圧燃料導入穴を形成する第2弁座部とが、それぞれ前記ハウジングに設けられ、前記調圧部材が前記開弁方向に燃料圧を受ける面積が、前記操作圧燃料導入穴内の操作圧に応じて変化することを特徴とする。
【0027】
この構成により、調圧部材が燃料圧を受ける面積を可変とすることにより燃料圧が2段階に調圧される。したがって、可変燃料圧調整弁の内部を3室にしたり、可変燃料圧調整弁を2つ設けることなく燃料消費部に供給される燃料圧を2段階に制御することができる。このため、燃料供給装置を小型化することができる。
【発明の効果】
【0028】
本発明によれば、可変燃料圧調整弁を有する燃料供給装置において、燃料ポンプに供給される電気特性を最適化し、燃費を向上したり燃料ポンプの劣化促進を抑制することができる燃料供給装置を提供できる。
【図面の簡単な説明】
【0029】
【図1】本発明の実施の形態に係る燃料供給装置およびその周辺を示す概略構成図である。
【図2】本発明の実施の形態に係る切替弁の概略構成図である。
【図3】本発明の実施の形態に係る燃料供給装置の高圧供給状態を示す概略構成図である。
【図4】本発明の実施の形態に係る燃料供給装置の低圧供給状態を示す概略構成図である。
【図5】本発明の実施の形態に係る燃料供給装置の概略ブロック構成図である。
【図6】本発明の実施の形態に係る電力供給ユニット周辺の回路図である。
【図7】本発明の実施の形態に係る燃料供給装置のタイミングチャートである。
【図8】本発明の実施の形態に係るリターン流量と制御圧との関係を示すグラフである。
【図9】本発明の実施の形態に係る燃料ポンプユニットの経年劣化と吐出量との関係を示す図である。
【図10】本発明の実施の形態に係るリターン流量推定制御を示すフローチャートである。
【図11】本発明の実施の形態に係る吐出量算出マップを示すグラフである。
【図12】本発明の実施の形態に係る燃料ポンプユニットの経年劣化と印加電圧との関係を示す図である。
【発明を実施するための形態】
【0030】
以下、本発明の実施の形態について、図面を参照して説明する。なお、本実施の形態においては、本発明に係る燃料供給装置を4気筒のガソリンエンジンを搭載した車両に適用する場合について説明する。
【0031】
まず、構成について説明する。
【0032】
図1に示すように、本実施の形態に係る燃料供給装置8は、エンジン1で消費される燃料を貯留する燃料タンク2と、燃料タンク2の内部に貯留された燃料をエンジン1の複数のインジェクタ3に圧送する燃料圧送機構10と、燃料圧送機構10からインジェクタ3に供給される燃料を導入して予め設定された燃料圧に調圧するプレッシャレギュレータ20と、プレッシャレギュレータ20により調圧される燃料圧を高圧側の設定圧と低圧側の設定圧との間で切替えるようプレッシャレギュレータ20を制御する切替弁60と、を備えている。ここで、プレッシャレギュレータ20は、本発明に係る可変燃料圧調整弁を構成する。
【0033】
エンジン1は、車両に搭載される多気筒の内燃機関により構成されている。本実施の形態においては、4つの気筒5を備える4サイクルガソリンエンジンにより内燃機関が構成されている。ここで、インジェクタ3および各気筒5は、本発明に係る燃料消費部を構成する。インジェクタ3は、エンジン1の各気筒5にそれぞれ設置されており、噴孔を形成する端部3aが吸気ポート7内に露出している。
【0034】
また、燃料圧送機構10とインジェクタ3はデリバリーパイプ4を介して接続されており、燃料圧送機構10からの燃料は、デリバリーパイプ4を介して各インジェクタ3に分配されるようになっている。
【0035】
燃料圧送機構10は、燃料タンク2内の燃料を吸入口から汲み上げ、加圧して吐出口から吐出する燃料ポンプユニット11と、燃料ポンプユニット11の吸入口側に設置され燃料ポンプユニット11内への異物の吸入を阻止するサクションフィルタ12と、燃料ポンプユニット11の吐出口側に設置され燃料ポンプユニット11から吐出された燃料に含まれる異物を除去する燃料フィルタ13と、燃料フィルタ13の上流側または下流側に設置されるチェック弁14と、を有している。
【0036】
燃料ポンプユニット11は、ポンプ作動用の羽根車を有する燃料ポンプ11pと、燃料ポンプ11pを回転駆動する内蔵直流モータであるポンプ駆動モータ11mへの通電を後述するECU(Electronic Control Unit)51により制御させることで駆動および停止されるようになっている。
【0037】
また、ECU51は、燃料ポンプユニット11のポンプ駆動モータ11mに印加される電圧を制御することによって、ポンプ駆動モータ11mの回転速度を変化させ、燃料ポンプユニットによる単位時間当たりの吐出量Dを変化させることができるようになっている。なお、以下では説明を簡単にするために、燃料ポンプユニット11に電圧が印加されるものとして説明する。また、本実施の形態に係る燃料ポンプユニット11は、本発明に係る燃料ポンプを意味する。
【0038】
チェック弁14は、燃料ポンプユニット11からインジェクタ3側への燃料供給方向に開弁する一方、インジェクタ3側から燃料ポンプユニット11側への燃料の逆流方向には閉弁し、加圧された供給燃料の逆流を阻止するようになっている。
【0039】
燃料タンク2の上部には、燃料ポンプユニット11の動作を制御する燃料ポンプコントローラ(以下、FPCという)17が設けられており、このFPC17には、ポンプ駆動モータ11mの端子電圧を検出する電圧検出部や、ポンプ駆動モータ11mに流れる電流を検出する電流検出部が装着されている。
【0040】
FPC17は、ECU51からのポンプ制御信号と、ポンプ駆動モータ11mの端子電圧を検出する電圧検出部の検出信号との偏差に応じて、燃料ポンプユニット11に印加する電圧を制御したり、燃料圧送機構10の異常診断のためのポンプ駆動モータ11mの作動状態に応じた診断用信号をECU51に供給したりするようになっている。つまり、本実施の形態において、ECU51は、FPC17を介して燃料ポンプユニット11に印加される電圧を制御するようになっている。
【0041】
図1および図3に示すように、プレッシャレギュレータ20は、燃料が導入される流体導入口21aおよびその燃料が排出される流体排出口21bを有するハウジング21を備えている。ハウジング21は、一対の凹状のハウジング部材18、19をそれらの外周部でかしめ結合して形成されている。
【0042】
ハウジング21の内部には、ハウジング21の内部を2室に区画する隔壁状の調圧部材22が設けられている。この調圧部材22は、ハウジング21との間に流体導入口21aに連通する調圧室23を形成する隔壁部24と、調圧室23内の燃料圧に応じた開度で調圧室23を流体排出口21bに連通させる開弁方向に変位する可動弁体部25とを一体化したものである。隔壁部24は、その一面側で調圧室23内の燃料圧を常時受圧するようになっている。
【0043】
また、隔壁部24は、その他面側でハウジング21との間に調圧室23側に背圧を付与する背圧室26を形成しており、背圧室26内には、調圧部材22の可動弁体部25を閉弁方向に付勢する圧縮コイルばね27が設けられている。また、調圧部材22と共に背圧室26を形成する他方のハウジング部材19には、少なくとも1つの大気圧導入穴19aが形成されている。
【0044】
さらに、ハウジング21の内側には、互いに径が異なる外側筒状部材29および内側筒状部材30が設置されている。内側筒状部材30および外側筒状部材29の可動弁体部25側の端部には、それぞれ第1弁座部31および第2弁座部32が形成されている。また、外側筒状部材29と内側筒状部材30とによって、操作圧燃料導入穴32hが形成されている。操作圧燃料導入穴32hは、操作圧流出口21cを介して切替弁60の内部に連通している。
【0045】
図2に示すように、切替弁60は、プレッシャレギュレータ20の操作圧燃料導入穴32h内の燃料圧を切替えるためのもので、電磁コイル61と、圧縮コイルばね62と、合成樹脂製のボビン63と、バルブ67と、電磁コイル61の外周を覆うシールド65と、を備えている。
【0046】
ボビン63は、ボビン部73と、シリンダ部74と、燃料管部75と、を備えている。ボビン部73の外周には、電磁コイル61が巻きつけられている。一方、ボビン部73の内側には圧縮コイルばね62が収容されている。
【0047】
ボビン部73とシリンダ部74とは、内周面が同一面となるよう形成されており、バルブ67は、シリンダ部74の内部に往復動可能に収容されている。
【0048】
燃料管部75は、シリンダ部74の端部に形成されており、プレッシャレギュレータ20の操作圧流出口21cを介して燃料が流入される燃料流入管77と、燃料を燃料タンク2内にリターンするための燃料流出管78と、シリンダ部74の内側に向けた開口を形成する開口端部70と、を備えている。
【0049】
バルブ67は、略円柱形状の磁性体からなり、アーマチャ部71と、一方の端面に設けられたシール部64とを有している。バルブ67がシリンダ部74で移動してシール部64が開口端部70に押圧されることにより、燃料流入管77内の流路と燃料流出管78内の流路との連通が阻止されるようになっている。
【0050】
圧縮コイルばね62は、バルブ67が燃料流入管77内の流路と燃料流出管78内の流路との連通を阻止する方向に付勢している。
【0051】
このように構成される切替弁60において、電磁コイル61に通電されているON状態のときは、図3に示すように、バルブ67は、電磁コイル61により圧縮コイルばね62の付勢力に抗して吸引され、燃料流入管77内の流路と燃料流出管78内の流路とが連通される。したがって、燃料流入管77に流入された燃料は、シリンダ部74を経て燃料流出管78から排出される。
【0052】
一方、電磁コイル61に通電されていないOFF状態のときは、図4に示すように、バルブ67は、圧縮コイルばね62の付勢により燃料流入管77内の流路と燃料流出管78内の流路との連通を阻止する。したがって、燃料流入管77に流入された燃料は、バルブ67により燃料タンク2への流出を阻止される。
【0053】
次に、燃料圧を高圧にする高圧供給状態におけるプレッシャレギュレータ20の作用について説明する。
【0054】
燃料ポンプユニット11(図1参照)の運転中において、ECU51により燃料圧が高圧に設定されると、図3に示すように、切替弁60がECU51によりON状態に制御される。
【0055】
このとき、バルブ67のシール部64が開口端部70から離隔し、燃料流入管77内の流路と燃料流出管78内の流路とが連通する。そのため、操作圧燃料導入穴32hは、燃料タンク2内と連通し、排出穴31hおよび操作圧燃料導入穴32hのいずれもが大気圧となる。したがって、調圧室23の内部の燃料のみが調圧部材22を開弁方向に付勢する。つまり、調圧部材22の有効受圧面積が、隔壁部24の環状受圧面24aのみとなる。これにより、可動弁体部25の閉弁方向の推力が増加し、可動弁体部25を閉弁方向に付勢する圧縮コイルばね27の撓み量が減少することで、可動弁体部25が第1弁座部31および第2弁座部32に対して閉弁方向に変位する。
【0056】
この可動弁体部25の閉弁方向への変位により、燃料通路15から分岐通路15aを介して調圧室23に供給される燃料量が減少し、結果として燃料通路15内を流通する燃料が高圧に調圧される。
【0057】
一方、燃料圧を低圧にする低圧供給状態におけるプレッシャレギュレータ20の作用について説明する。燃料ポンプユニット11の運転中において、ECU51により燃料圧が低圧に設定されると、図4に示すように、切替弁60がECU51によりOFF状態に制御される。
【0058】
このとき、バルブ67のシール部64が開口端部70に当接し、燃料流入管77内の流路と燃料流出管78内の流路との連通が阻止される。そのため、燃料流入管77と、プレッシャレギュレータ20の操作圧燃料導入穴32hは、燃料下流側における端部が閉塞されるため、操作圧燃料導入穴32h内の燃料圧は、調圧室23内の燃料圧と等しくなる。つまり、排出穴31hのみが大気圧となり、調圧室23の内部の燃料および操作圧燃料導入穴32hの燃料が調圧部材22を開弁方向に付勢する。したがって、調圧部材22の有効受圧面積が拡大し、隔壁部24の環状受圧面24aおよび操作圧燃料導入穴32hに対向する略円形の受圧面を含むものとなる。したがって、可動弁体部25の開弁方向の推力が増加し、可動弁体部25を開弁方向に付勢する圧縮コイルばね27の撓み量が増加することで、可動弁体部25が第1弁座部31および第2弁座部32に対して開弁方向に変位する。
【0059】
そして、その可動弁体部25の開弁方向への変位により燃料通路15から分岐通路15aを介して調圧室23に供給される燃料が増加し、結果として燃料通路15内を流通する燃料が低圧に調圧される。
【0060】
図5に示すように、本実施の形態に係るエンジン1を搭載した車両は、エンジン回転数センサ41、エアフロメータ42、吸気温センサ43、スロットル開度センサ44、冷却水温センサ45、アクセル開度センサ46、車輪速センサ47および空燃比センサ48を備えている。これらのセンサは、検出結果を表す信号をECU51にそれぞれ出力するようになっている。
【0061】
エンジン回転数センサ41は、エンジン1のクランクシャフトの回転数を検出し、エンジン回転数NeとしてECU51に出力する。エアフロメータ42は、図示しないスロットルバルブより吸気上流側に配置され、吸入空気量に応じた検出信号をECU51に出力する。吸気温センサ43は、図示しない吸気マニホールドに配置され、吸入空気の温度に応じた検出信号をECU51に出力する。スロットル開度センサ44は、スロットルバルブの開度に応じた検出信号をECU51に出力する。
【0062】
冷却水温センサ45は、エンジン1のシリンダブロックに形成されたウォータージャケットに配置されており、エンジン1の冷却水温Twに応じた検出信号をECU51に出力する。アクセル開度センサ46は、アクセルペダルの踏み込み量に応じた検出信号をECU51に出力する。
【0063】
車輪速センサ47は、車両の図示しない車輪の回転速度に応じた検出信号をECU51に出力する。空燃比センサ48は、検出対象となる排気中の酸素濃度及び燃料の未燃成分の濃度に基づいて、空燃比に応じた電圧VafをECU51に出力する。
【0064】
燃料供給装置8の一部を構成するECU51は、図5に示すように、CPU(Central Processing Unit)52、RAM(Random Access Memory)53、ROM(Read Only Memory)54およびバックアップメモリ55などを備えている。なお、本実施の形態に係るECU51は、本発明に係る制御手段を構成する。
【0065】
ROM54は、燃料圧切替制御および気筒5における燃料噴射制御を実行するための制御プログラムを含む各種制御プログラムや、これらの各種制御プログラムを実行する際に参照されるマップなどが記憶されている。CPU52は、ROM54に記憶された各種制御プログラムやマップに基づいて各種の演算処理を実行するようになっている。また、RAM53は、CPU52による演算結果や、上述した各センサから入力されたデータ等を一時的に記憶するようになっている。バックアップメモリ55は、不揮発性のメモリにより構成されており、例えばエンジン1の停止時に保存すべきデータ等を記憶するようになっている。
【0066】
CPU52、RAM53、ROM54およびバックアップメモリ55は、バス58を介して互いに接続されるとともに、入力インターフェース56および出力インターフェース57と接続されている。
【0067】
入力インターフェース56には、エンジン回転数センサ41、エアフロメータ42、吸気温センサ43、スロットル開度センサ44、冷却水温センサ45、アクセル開度センサ46、車輪速センサ47および空燃比センサ48が接続されている。さらに、入力インターフェース56には、オルタネータ35が接続されている。なお、車両がECU51以外の他のECUを搭載し、これらのセンサのうち少なくとも一部から出力された信号が、当該他のECUを介してECU51に入力されるようにしてもよい。
【0068】
出力インターフェース57は、インジェクタ3、点火プラグ6、切替弁60や図示しないスロットルバルブなどに接続されている。さらに、出力インターフェース57は、FPC17(図1参照)を介して燃料ポンプユニット11に接続されている。そして、ECU51は、上記した各種センサの出力に基づいて、燃料圧切替制御および燃料噴射制御などを含む各種制御を実行する。
【0069】
本実施の形態において、ECU51は、オルタネータ35の起電力を検出するようになっている。図6は、本実施の形態における電力供給ユニット34周辺の回路図である。
【0070】
電力供給ユニット34は、エンジン1に機械的に接続されるオルタネータ35と、オルタネータ35に電気的に接続されるバッテリ37とを有している。オルタネータ35は、エンジン1にベルト36で接続され、ベルト36を介してエンジン1から駆動力が入力されるようになっている。
【0071】
オルタネータ35は、図示しない固定子のステータコイル、回転子のロータコイル、整流器およびレギュレータから構成されている。ロータコイルは、レギュレータを介してイグニッションスイッチ38の一端子に接続されている。イグニッションスイッチ38の他端子はバッテリ37に接続されており、イグニッションスイッチ38がON状態に移行すると、バッテリ37からレギュレータを介してロータコイルに通電され、ロータコイルが磁化される。エンジン1により生成された駆動力は、ロータコイルに入力されるようになっており、エンジン1の回転に連動してロータコイルが回転すると、ステータコイルに交流電圧が発生する。発生した交流電圧は整流器で直流電圧に変換され、この直流電圧がオルタネータ35の起電圧としてバッテリ37に印加される。
【0072】
オルタネータ35の起電力は、エンジン回転数Neに応じて変化する。エンジン回転数Neが高回転数である場合には、オルタネータ35の起電力は、例えば14[V]の近傍になる。一方、エンジン回転数Neが低回転数である場合には、オルタネータ35の起電力は例えば8[V]の近傍になる。
【0073】
また、オルタネータ35はECU51に接続されており、オルタネータ35の起電力がECU51に入力されるようになっている。また、切替弁60の電磁コイル61は、ECU51に接続されており、オルタネータ35の起電力に応じた電圧が電磁コイル61に印加されるようになっている。つまり、切替弁60の電磁コイル61に印加される電圧は、オルタネータ35の起電力を検出することにより求められる。
【0074】
また、ECU51は、CPU52(図5参照)により制御されるトランジスタ69を有している。トランジスタ69は、オルタネータ35の起電力を切替弁60の電磁コイル61に印加するON状態と、オルタネータ35の起電力が切替弁60の電磁コイル61に印加されないOFF状態とのいずれかの状態をとるようになっている。
【0075】
図7は、以上のように構成された燃料供給装置8の動作を示すタイミングチャートである。最初に、図7において、燃料圧が低圧から高圧に切替えられる箇所について説明する。また、オルタネータ35の起電力Ebが12[V]である場合を例に説明する。
【0076】
まず、ECU51は、車両の走行状態に基づいて、時刻T0より前に燃料圧を低圧から高圧に切替える燃料圧切替要求が発生したと判断している。そして、ECU51は、オルタネータ35の起電力Ebを検出すると、後述するように設定される時刻T0、すなわち切替タイミングにおいて、オルタネータ35の起電力が切替弁60の電磁コイル61に印加されるよう、トランジスタ69をON状態にする(実線81参照)。
【0077】
トランジスタ69がON状態になると、電磁コイル61に印加される電圧が0[V]から12[V]になる(実線82参照)。このとき、切替弁60の電磁コイル61に電圧Ebが印加されると、切替弁60の電磁コイル61に供給される電流Iは、以下の式(1)で表される。
【0078】
I(t)=Eb/R(1−exp(−t/τ)) (1)
ここで、Ebは、オルタネータ35の起電力であり、τは、L/Rにより表される時定数である。また、Rは、電磁コイル61の電気抵抗、Lは、電磁コイル61のインダクタンスを表している。
【0079】
このため、電磁コイル61に供給される電流Iは、式(1)に表される応答特性にしたがって上昇する(実線83参照)。このような電流Iが電磁コイル61に供給されると、切替弁60のバルブ67に加わる吸引力Fは、以下の式(2)により表される。
【0080】
F = Φ/(2・μ・S) (2)
式(2)において、μは透磁率であり、真空の透磁率と比透磁率の積により求められる。また、Sは磁気通路の断面積を表している。また、Φは、磁気ギャップ中の磁束であり、以下の式(3)により表される。
【0081】
Φ = n・(I/R) (3)
式(3)において、nは電磁コイル61のターン数、Iは上記式(1)により求められる電流、Rは磁気抵抗をそれぞれ表している。
【0082】
したがって、電磁コイル61に供給される電流Iが上記式(1)にしたがって増加すると、電磁コイル61のバルブ67に対する吸引力は、式(2)にしたがって増加する。
【0083】
そして、時刻T1において、バルブ67に対する電磁コイル61の吸引力が、圧縮コイルばね62のバルブ67に対する付勢力より大きくなると、バルブ67のシール部64が開口端部70に当接する下死点から離隔する上死点の方向に移動を開始する(実線84参照)。その結果、プレッシャレギュレータ20の操作圧燃料導入穴32h内の燃料圧、すなわちパイロット圧が300[kPa]から大気圧に低下する(実線85参照)。
【0084】
これにより、プレッシャレギュレータ20の可動弁体部25は、オーバーシュートを経て閉弁方向に変位し(実線86参照)、これに伴い、燃料通路15内を流通する燃料も、時刻T2において一旦高圧となった後、オーバーシュートを経て時刻T3において高圧の定常状態となる(実線87参照)。
【0085】
ところで、この可動弁体部25のオーバーシュート量および変位の脈動の収束の特性は、プレッシャレギュレータ20の構造に依存するため、予め実験的な測定により求めることができる。これに対し、切替弁60のバルブ67が下死点から上死点に移動を開始する時刻T1は、上記式(1)に示すように、電磁コイル61に印加される電圧Ebに応じて電磁コイル61に供給される電流Iが変わるため、毎回異なる値となる。つまり、オルタネータ35の起電力Ebによって時刻T0からT2までの時間t1が変動する。
【0086】
したがって、本実施の形態に係るECU51は、燃料圧を低圧から高圧に切替える際に、オルタネータ35の起電力Ebを検出することにより、切替り遅れ時間t1を算出し、この算出した切替り遅れ時間t1および予め求められた脈動時間t2に基づいて燃料圧の切替タイミングT0を制御するようになっている。
【0087】
次に、図7において、燃料圧が高圧から低圧に切替えられる箇所について説明する。ECU51は、車両の暖機時や燃料の高温時などに燃料圧を高圧に設定した状態で、車両の暖機が終了したり燃料温度が低下した場合に、燃料圧を高圧から低圧に低下する燃料圧切替制御を実行するようになっている。
【0088】
ECU51は、車両の暖機時や燃料の高温時などに燃料圧を高圧に設定した状態で、車両の暖機が終了したり燃料温度が低下した場合には、燃料圧を高圧から低圧に切替える燃料圧切替要求が発生したと判断する。
【0089】
そして、ECU51は、切替弁60の電磁コイル61に印加されているオルタネータ35の起電力が遮断されるよう、後述するように設定される時刻T0'、すなわち切替タイミングにおいて、トランジスタ69をON状態からOFF状態に移行する(実線81参照)。
【0090】
トランジスタ69がOFF状態になると、電磁コイル61に印加される電圧が12[V]から0[V]になる(実線82参照)。このとき、切替弁60の電磁コイル61に印加されていた電圧がEbから0になり、切替弁60の電磁コイル61に供給される電流I(t)は、以下の式(4)で表される。
【0091】
I(t)=Eb/R・exp(−t/τ) (4)
そのため、電磁コイル61に供給される電流Iは、式(4)に表される応答特性にしたがって減少する(実線83参照)。
【0092】
また、切替弁60のバルブ67に加わる吸引力Fは、上述した式(2)および式(3)により表される。したがって、電磁コイル61に供給される電流Iが上記式(4)にしたがって減少すると、電磁コイル61のバルブ67に対する吸引力は、式(2)にしたがって減少する。
【0093】
そして、時刻T1'において、電磁コイル61のバルブ67に対する吸引力が、圧縮コイルばね62のバルブ67に対する付勢力より小さくなると、バルブ67のシール部64が開口端部70から離隔した上死点から下死点の方向に移動を開始する(実線84参照)。
【0094】
そして、時刻T2'において、バルブ67のシール部64が開口端部70に当接すると(実線84参照)、プレッシャレギュレータ20の操作圧燃料導入穴32h内の燃料圧、すなわちパイロット圧が大気圧から300[kPa]に上昇する(実線85参照)。
【0095】
これにより、燃料通路15内を流通する燃料の燃料圧は、プレッシャレギュレータ20の可動弁体部25の開弁方向への変位に応じて、時刻T3'において一旦目標となる低圧に達すると、オーバーシュートを経て(実線87参照)、時刻T4'において低圧となる(実線87参照)。
【0096】
燃料圧を低圧から高圧に切替える場合と同様、可動弁体部25のオーバーシュート量および変位の脈動の収束は、予め実験的な測定により求めることができる。また、切替弁60のバルブ67が上死点から下死点に到達するまでにかかる時間(時刻T1'〜T2')も、予め実験的な測定により求めることができる。これに対し、バルブ67が上死点から下死点に向けて移動を開始する時刻T1'は、上記式(4)に示すように、切替え開始時に電磁コイル61に印加されている電圧Ebに応じて電磁コイル61に供給される電流Iが変わるため変動する。つまり、オルタネータ35の起電力によって切替り遅れ時間t1が変動する。
【0097】
したがって、本実施の形態に係るECU51は、燃料圧を高圧から低圧に切替える際に、オルタネータ35の起電力Ebを検出することにより、切替り遅れ時間t1を予測し、この予測した切替り遅れ時間t1に基づいて燃料圧の切替タイミングT0'を制御するようになっている。
【0098】
オルタネータ35の起電力Ebと切替り遅れ時間t1とは、切替り遅れ時間マップとして予め対応付けられている。ECU51は、高圧への切替時および低圧への切替時に使用する切替り遅れ時間マップをそれぞれROM54に予め記憶しており、ECU51は、オルタネータ35の起電力Ebを表す信号を取得すると、切替り遅れ時間マップを参照して切替り遅れ時間t1を算出するようになっている。
【0099】
燃料圧が低圧から高圧に切替える場合には、オルタネータ35の起電力Ebが小さいほど、トランジスタ69をON状態にしてからバルブ67が移動を開始するまでの時間が長くなる。したがって、ECU51は、オルタネータ35の起電力Ebが小さいほど、トランジスタ69をOFF状態にするタイミングを前倒しすることになる。一方、燃料圧が高圧から低圧に切替える場合には、オルタネータ35の起電力Ebが大きいほど、トランジスタ69をOFF状態にしてからバルブ67が移動を開始するまでの時間が長くなる。したがって、ECU51は、オルタネータ35の起電力Ebが大きいほど、トランジスタ69をOFF状態にするタイミングを前倒しすることになる。
【0100】
また、燃料温度が低下すると、燃料の粘性が高まるため、プレッシャレギュレータ20の可動弁体部25の変位に時間がかかる。したがって、ECU51は、予め実験的な測定により求められている脈動時間t2を燃料温度により補正するようにしてもよい。
【0101】
以上のように構成された燃料供給装置8において、プレッシャレギュレータ20は、燃料圧を高圧と低圧との間で切替えるよう動作するために、少なくとも調圧室23内を常に燃料で満たす必要がある。そのため、ECU51は、プレッシャレギュレータ20の動作に必要となる燃料量より多い燃料を流体導入口21aから導入し、流体排出口21bから余分な燃料が排出されるよう燃料ポンプユニット11を制御するようになっている。
【0102】
ここで、プレッシャレギュレータ20が燃料圧を低圧に設定する場合、プレッシャレギュレータ20により調圧される燃料圧(制御圧)Pと、流体排出口21bから排出される燃料量(以下、リターン流量Qという)とは、図8に示す対応関係を有している。
【0103】
一般に、燃料ポンプユニット11による吐出量Dの低下に応じてリターン流量Qが低下すると、制御圧Pも低下する。しかしながら、リターン流量Qがある所定値まで低下すると、操作圧燃料導入穴32hにおける燃料圧が上昇せず、結果として、可動弁体部25における受圧面積が低下した状態となる。そのため、リターン流量Qが所定値より低い場合には、プレッシャレギュレータ20はリターン流量Qが低いほど高圧供給状態に近づき、制御圧Pが上昇するようになっている。換言すれば、本実施の形態に係るプレッシャレギュレータ20のように、燃料圧を高圧および低圧に調圧可能であるプレッシャレギュレータは、リターン流量Qに対し制御圧Pが最小となる曲げ点を上記所定値として有している。
【0104】
そこで、ECU51は、プレッシャレギュレータ20が燃料圧を高圧と低圧との2段に切替える機能を維持し、かつ、燃料ポンプユニット11に過剰な電圧が印加されないよう、曲げ点におけるリターン流量、すなわち上記所定値をリターン流量Qの最低必要量とし、リターン流量Qが最低必要量以上を維持するよう燃料ポンプユニット11に印加する電圧を制御するようになっている。
【0105】
また、インジェクタ3から噴射される単位時間当たりの燃料量は、燃料圧の平方根に比例する。したがって、インジェクタ3による燃料噴射時間を一定とした場合、各気筒5の燃焼室内に供給される燃料量は、制御圧Pが高いほど増加する。つまり、制御圧Pが高いほど空燃比が低く、すなわちリッチとなり、空燃比センサ48は、上述した排気ガス成分に基づいて、各気筒5の燃焼室内において燃焼した混合気がリッチであったことを表す信号をECU51に送信することになる。
【0106】
ところで、燃料ポンプユニット11は、製造時の特性ばらつきや経年劣化に起因して、同じ電圧が印加されたとしても吐出量Dに個体差が生じる。図9は、特性ばらつきおよび劣化に応じた燃料ポンプユニット11による吐出量Dの変化を示すグラフである。横軸は、走行距離に応じた経年劣化を示しており、縦軸は、燃料ポンプユニット11による燃料の吐出量を示している。また、燃料ポンプユニット11から吐出される燃料のうち、エンジン1の燃焼室において消費される燃料量をエンジン消費量Aとする。したがって、燃料ポンプユニット11から吐出される燃料量Dは、エンジン消費量Aと、プレッシャレギュレータ20からのリターン流量Qとを合計した値となる。
【0107】
車両の走行距離が0である場合、燃料ポンプユニット11の吐出量Dは、特性ばらつきにより、点aと点bとの間に分布する。以下、走行距離が0の新品時において吐出量Dが点aとなる燃料ポンプユニット11を上限品、吐出量Dが点bとなる燃料ポンプユニット11を下限品という。
【0108】
燃料ポンプユニット11の吐出量Dは、車両の走行距離が増加するにつれて劣化カーブに沿って減少し、例えば20万kmに達すると、走行距離が0である場合と等しい電圧が印加されたとしても上限品で点a'、下限品で点b'まで低下する。
【0109】
このとき、下限品のリターン流量Qが最低必要量Qminを下回ると、図8に示したように、低圧側の燃料圧が上昇し、燃費が悪化する可能性が生じる。
【0110】
したがって、従来は、車両に燃料ポンプユニット11が設置されると、当該ポンプユニット11が仮に下限品であったとしても、走行距離が20万kmに達した時点でリターン流量Qが最低必要量Qminを下回らないよう、新品時の時点から高めの電圧をかけ、この電圧を維持するようになっていた。
【0111】
ところが、このように燃料ポンプユニット11に印加される電圧が設定されると、ECU51は、リターン流量Qを検出するための高価なセンサを備えることなく、吐出性能や走行距離にかかわらずリターン流量Qを最低必要量Qmin以上に維持することが可能になるものの、下限品で走行距離が20万[km]に達したもの以外の燃料ポンプユニット11においては、最低必要量Qmin以上の燃料がプレッシャレギュレータ20から排出され続けることになる。つまり、従来のECU51は、燃料ポンプユニット11に必要以上の電圧を印加し続けており、燃費の低下や燃料ポンプユニット11の劣化を早める原因となっていた。
【0112】
そこで、本実施の形態に係るECU51は、リターン流量Qを検出するセンサを備えていない車両において、リターン流量Qを推定し、この推定したリターン流量Qに基づいて燃料ポンプユニット11に印加される電圧を最適化するとともに、燃料ポンプユニット11の吐出性能のばらつきおよび経年劣化を求めるようになっている。
【0113】
ECU51は、リターン流量Qを算出するために、リターン流量推定制御を実行するようになっている。図10は、本実施の形態に係るリターン流量推定制御を示すフローチャートである。なお、以下の処理は、ECU51を構成するCPU52によって所定のタイミングで実行されるとともに、CPU52によって処理可能なプログラムを実現する。
【0114】
ECU51は、まず燃料の低圧供給状態であるか否かを判断する(ステップS11)。具体的には、ECU51は、冷却水温センサ45から入力される信号に基づいて、燃料が高圧供給状態となる車両の暖機時や高燃料温度時に該当していないか否かを判断する。ECU51は、燃料の低圧供給状態であると判断すると(ステップS11でYES)、ステップS12に移行する。一方、ECU51は、燃料の高圧供給状態であると判断すると(ステップS11でNO)、ENDに移行する。
【0115】
次に、ECU51は、燃料噴射量が一定であるか否かを判断する(ステップS12)。具体的には、ECU51は、エンジン回転数センサ41、スロットル開度センサ44およびアクセル開度センサ46から入力される信号に基づいて、エンジン回転数、スロットル開度およびアクセル開度を所定時間検出する。そして、ECU51は、これらの値が所定の幅にある場合には、燃料噴射量が一定であると判断する。
【0116】
ECU51は、燃料噴射量が一定であると判断した場合には(ステップS12でYES)、ステップS13に移行する。一方、ECU51は、燃料噴射量が一定でないと判断した場合には(ステップS12でNO)、ENDに移行する。
【0117】
次に、ECU51は、冷却水温センサ45など公知のセンサから入力される信号に基づいて、燃料温度が推定できるか否かを判断する(ステップS13)。具体的には、ECU51は、冷却水温センサ45などのセンサから燃料温度が推定できる車両の走行状態であるか否かを判断する。この走行状態を表す諸条件は、使用するセンサに応じて予め定められている。
【0118】
ECU51は、燃料温度を推定可能であると判断した場合には(ステップS13でYES)、ステップS14に移行する。一方、ECU51は、燃料温度を推定可能でないと判断した場合には(ステップS13でNO)、ENDに移行する。なお、車両が燃料温度を検出するための燃料温度センサを備えている場合には、この燃料温度センサから入力される信号に基づいて、燃料温度を表す情報を直接取得してもよい。
【0119】
次に、ECU51は、燃料ポンプユニット11に印加される電圧を所定値分減少させる(ステップS14)。本実施の形態においては、ECU51は、所定値として0.5[V]低下させる。そして、ECU51は、現在燃料ポンプユニット11に印加されている電圧をRAM53に記憶する(ステップS15)。
【0120】
次に、ECU51は、空燃比センサ48から入力される信号に基づいて、空燃比がリーンの方向に振れたか否かを判断する(ステップS16)。
【0121】
ECU51は、燃料ポンプユニット11に印加される電圧を低下させたことにより空燃比がリーンの方向に振れたと判断した場合には(ステップS16でYES)、ステップS14に戻り、燃料ポンプユニット11に印加される電圧をさらに0.5[V]低下させる。一例として、燃料ポンプユニット11におけるリターン流量Qと制御圧Pとの関係が、図8に示す点2から点5にある場合には、電圧を0.5[V]低下させたことにより空燃比がリーンの方向に振れるため、ECU51は、ステップS16において電圧を再び0.5[V]低下させることになる。
【0122】
一方、ECU51は、空燃比がリーンの方向に振れていない、すなわちリッチの方向に振れたと判断すると(ステップS16でNO)、RAM53に記憶されている電圧を取得する(ステップS17)。一例として、燃料ポンプユニット11におけるリターン流量Qと制御圧Pとの関係が、図8に示す点6にある場合には、電圧を0.5[V]低下させたことにより空燃比がリッチの方向に振れるため、ECU51は、ステップS17において、点6の状態における電圧をRAM53から取得することになる。
【0123】
そして、ECU51は、RAM53から取得した電圧の値より0.5[V]高い電圧が燃料ポンプユニット11に印加された際に空燃比が最もリーンに振れているので、この電圧を最リーン電圧Vafと定義し、バックアップメモリ55に記憶する。一例として、ECU51は、RAM53から取得した電圧に0.5[V]を加えたV(図8参照)を最リーン電圧Vafと定義する。なお、ECU51は、このリターン流量推定制御を常時実行してもよく、あるいは、所定の走行距離、あるいは走行時間ごとに実行するようにしてもよい。ここで、本実施の形態に係る最リーン電圧Vafは、本発明に係る最低電圧を意味する。
【0124】
また、ECU51は、最リーン電圧Vafに基づいて、以下に説明するようにリターン流量Qを算出する(ステップS18)。
【0125】
リターン流量Qは、同一の電圧が燃料ポンプユニット11に印加されたとしても、燃料ポンプユニットの劣化度合いおよび吐出特性の個体差により変化する。そこで、ECU51は、最リーン電圧Vafを算出すると、平均的な吐出特性を有する燃料ポンプユニット11の新品時における最リーン電圧Vaf(以下、初期電圧Viniという)と、最リーン電圧Vafとの差に基づいて、燃料ポンプユニット11の個体差に応じた吐出特性を算出するようになっている。
【0126】
初期電圧Viniと最リーン電圧Vafとの差と、燃料ポンプユニット11による吐出量Dの変化量、すなわちリターン流量Qの変化量は、個体差によらず一様に求められる。そこで、ECU51は、燃料ポンプユニット11に印加される初期電圧Viniと最リーン電圧Vafとの差と、当該電圧差に応じた吐出量Dの変化量と、を対応付けた吐出量算出マップを予めROM54に記憶している。吐出量算出マップは、図11に示すように、傾きαが一定となるグラフにより表されるものであり、ECU51は、上記リターン流量推定制御において求めた最リーン電圧Vafと初期電圧Viniとの電圧差を算出し、吐出量算出マップを参照することにより、リターン流量Qのずれを算出する。なお、この傾きαは、ポンプ駆動モータ11mにおける公知の電圧方程式により算出できる。また、実験的な測定により予め求めておいてもよい。
【0127】
本実施の形態における一例として、図9に示すように、ECU51は、新品の燃料ポンプユニット11に8[V]の電圧を印加することにより、走行距離が20万[Km]となった下限品においてもリターン流量Qを最低必要量以上とすることができ、Viniが8[V]の場合、平均的な吐出特性(図9における点c)を有する燃料ポンプユニット11の吐出量Dが80[L/h]になる場合を考える。また、この平均的な吐出特性を有する燃料ポンプユニット11の新品時におけるVafを7[V]とする。
【0128】
ECU51は、走行距離Xにおいて、上記のリターン流量推定制御を実行し、最リーン電圧Vafを算出する。走行距離Xは、例えば、車輪速センサ47から取得した信号に基づいて算出するようになっている。
【0129】
ここで、算出された最リーン電圧Vafが7.6[V]、吐出量算出マップにおける傾きαが30、エンジン消費量Aが16[L/h]であるとする。なお、下限品、上限品および平均的な特性を有する燃料ポンプユニット11の最リーン電圧Vafと、走行距離との関係は、図12に示すようになっている。
【0130】
この場合、ECU51は、初期電圧Vafと最リーン電圧Vafとの差0.6[V]と、傾きα=30との積から、吐出量Dの変化量を18[L/h]と算出する。したがって、ECU51が燃料ポンプユニット11に8[V]の電圧を印加している場合、現在のリターン流量Qは、吐出量80[L/h]から、エンジン消費量16[L/h]と吐出量Dの変化量18[L/h]を引いた46[L/h]であると推定することができる。
【0131】
また、ECU51は、算出したリターン流量Qを、燃料温度Tに応じて補正してもよい。リターン流量Qに対する補正量は、燃料温度Tに対応付けられた補正量マップとして予めROM54に記憶されている。この補正量マップにおける補正量は、リターン流量Qが燃料温度Tの減少に伴い減少するように定義されており、予め実験的な測定により求められている。なお、ECU51は、補正量マップの代わりに、燃料温度Tに応じて補正量を算出する式をROM54に記憶していてもよい。
【0132】
ECU51は、上記のように最リーン電圧Vafに応じてリターン流量Qを算出すると、燃料ポンプユニット11の劣化の進行を低減するよう、燃料ポンプユニット11に印加される電圧を設定するようになっている。ここで、図8に示すように、最リーン電圧Vafよりも印加電圧が低くなると、制御圧Pは急激に上昇する。つまり、ECU51が燃料ポンプユニット11に対する印加電圧を最リーン電圧Vafに設定すると、最リーン電圧設定後の燃料ポンプユニット11の経年劣化などに起因して実際に印加される電圧が低下し、その結果、制御圧Pが急激に変化し、空燃比がリッチに振れやすくなるなど、空燃比制御の精度が低下する可能性が生じる。したがって、ECU51は、最リーン電圧Vafを算出すると、最リーン電圧Vafに所定の値だけ高い電圧を燃料ポンプユニット11に印加するようになっている。所定の値としては、リターン流量推定制御の実行間隔の間において燃料ポンプユニット11の劣化進行によってリターン流量Qが減少しても、空燃比がリッチ側に振れることを抑制できる値に設定されており、予め実験的な測定により求められている。
【0133】
さらに、ECU51は、図9に示すグラフをマップとして記憶しておき、走行距離Xにおける上限品および下限品のリターン流量Qと、リターン流量推定制御により算出したリターン流量Qとの比から、現在の燃料ポンプユニット11の吐出性能のばらつきを算出することができる。このように、ECU51は、燃料ポンプユニット11の吐出性能のばらつきを算出可能であるとともに、仮に吐出性能が下限品を下回っていると判断したならば、当該燃料ポンプユニット11に故障が発生している可能性が高いため、MIL点灯など警告手段により運転者に故障を知らせることが可能となる。
【0134】
以上のように、本発明の実施の形態に係る燃料供給装置8は、プレッシャレギュレータ20から排出される燃料量を推定することが可能になる。これにより、排出される燃料量が最低必要量になるよう燃料ポンプユニット11に印加される電圧を低減することが可能となる。したがって、プレッシャレギュレータ20を有する場合において燃料ポンプユニット11により消費されるエネルギーを低減させ、燃費を向上することができる。
【0135】
また、燃料ポンプユニット11に印加される電圧の変化に応じて、プレッシャレギュレータ20から排出される燃料量を推定することが可能となる。結果として、燃料ポンプユニット11の劣化度合いおよび吐出特性のばらつきを求めることができる。
【0136】
また、平均的な吐出特性を有する燃料ポンプユニット11の初期電圧が予め算出されていれば、すべての燃料ポンプユニット11に対し初期電圧を測定することなく、燃料ポンプユニット11の劣化特性や吐出特性のばらつきを算出することが可能になる。したがって、燃料供給装置8の生産効率を低下することなく各燃料ポンプユニット11を最適な状態に維持することができる。
【0137】
また、推定した排出される燃料量に基づいて、検出対象となる燃料ポンプユニット11の吐出特性を判断することが可能となる。また、検出対象となる燃料ポンプユニット11の吐出量が、複数の燃料ポンプユニット11のうち下限品の吐出量よりも低い場合には、当該検出対象となる燃料ポンプユニット11に故障が発生していると判断することが可能となる。
【0138】
また、燃料の温度に応じてプレッシャレギュレータ20から排出される燃料量が変化する場合においても、排出量を精度よく推定することが可能となる。
【0139】
なお、以上の説明において、プレッシャレギュレータ20および切替弁60の構成は一例である。したがって、小型化、低コスト化あるいは燃料圧の切替え応答性などの点で本実施の形態に係る燃料供給装置8より低下する可能性が高いものの、例えば、プレッシャレギュレータ20を公知のものと置き換えてもよい。
【0140】
また、以上の説明においては、ECU51がリターン流量Qを推定する際に、空燃比がリッチの方向に振れるまで電圧を0.5Vずつ下げていく場合について説明したが、これに限定されず、ECU51は、空燃比がリッチの方向に振れるまで0.5Vずつ下げていき、空燃比がリッチの方向に振れたならば、電圧を再び0.5Vずつ上げていくようにしてもよい。この場合、電圧を上げることにより空燃比が再びリッチの方向に振れる直前の電圧が最リーン電圧Vafとなる。また、ECU51は、最リーン電圧Vafを求めるために電圧を低下させる場合には0.5Vずつ下げていき、空燃比がリッチの方向に振れたことにより電圧を再び上昇させる場合には、電圧を0.1Vずつ上げていくようにしてもよい。この場合、最リーン電圧Vafをより正確に求めることが可能となる。
【0141】
以上のように、本発明に係る燃料供給装置は、可変燃料圧調整弁を有する燃料供給装置において、燃料ポンプに供給される電気特性を最適化し、燃費を向上したり燃料ポンプの劣化促進を抑制することができるという効果を奏するものであり、燃料タンク内に貯留された燃料を調圧して燃料消費部に供給する燃料供給装置に有用である。
【符号の説明】
【0142】
1 エンジン
2 燃料タンク
3 インジェクタ(燃料消費部)
5 気筒(燃料消費部)
7 吸気ポート
8 燃料供給装置
10 燃料圧送機構
11 燃料ポンプユニット
15 燃料通路
15a 分岐通路
19a 大気圧導入穴
20 プレッシャレギュレータ(可変燃料圧調整弁)
21 ハウジング
21a 流体導入口
21b 流体排出口
21c 操作圧流出口
22 調圧部材
23 調圧室
24 隔壁部
24a 環状受圧面
25 可動弁体部
26 背圧室
31 第1弁座部
31h 排出穴
32 第2弁座部
32h 操作圧燃料導入穴
35 オルタネータ
41 エンジン回転数センサ
42 エアフロメータ
44 スロットル開度センサ
45 冷却水温センサ
47 車輪速センサ
48 空燃比センサ
51 ECU(制御手段)
60 切替弁
61 電磁コイル
67 バルブ
69 トランジスタ
70 開口端部
75 燃料管部
77 燃料流入管
78 燃料流出管

【特許請求の範囲】
【請求項1】
燃料ポンプから吐出した燃料を調圧して燃料消費部に供給する燃料供給装置であって、
少なくとも前記燃料の燃料圧を高圧にする高圧供給状態と低圧にする低圧供給状態とのいずれかの状態を取り得る可変燃料圧調整弁と、
前記燃料ポンプに印加する電圧を制御する制御手段と、
排気成分に基づいて空燃比を検出する空燃比検出手段と、を備え、
前記制御手段は、前記可変燃料圧調整弁が前記低圧供給状態であることを条件に、前記燃料ポンプに印加される電圧と前記空燃比検出手段により検出された空燃比とに基づいて、前記可変燃料圧調整弁から排出される燃料量を推定することを特徴とする燃料供給装置。
【請求項2】
前記制御手段は、前記燃料ポンプに印加する電圧を変化させ前記空燃比検出手段により検出される空燃比が最もリーンとなる最低電圧を求め、前記最低電圧と前記燃料ポンプの新品時に空燃比が最もリーンとなる初期電圧との差と、車両の走行距離と、に基づいて前記排出される燃料量を推定することを特徴とする請求項1に記載の燃料供給装置。
【請求項3】
前記初期電圧は、複数の前記燃料ポンプにおいて新品時に空燃比が最もリーンとなる電圧の略平均値であることを特徴とする請求項2に記載の燃料供給装置。
【請求項4】
前記制御手段は、推定した前記排出される燃料量と、複数の前記燃料ポンプのうち最も多い吐出量および最も少ない吐出量を有する燃料ポンプから排出される燃料量との比から、当該燃料ポンプの吐出特性のばらつきを算出することを特徴とする請求項1ないし請求項3のいずれか1の請求項に記載の燃料供給装置。
【請求項5】
前記制御手段は、前記燃料の温度に応じて前記排出される燃料量の推定値を補正することを特徴とする請求項1ないし請求項4のいずれか1の請求項に記載の燃料供給装置。
【請求項6】
前記可変燃料圧調整弁は、前記燃料が導入される燃料導入口および該燃料が排出される燃料排出口を有するハウジングと、前記ハウジングとの間に前記燃料導入口に連通する調圧室を形成する隔壁部と前記調圧室内の燃料圧に応じて前記調圧室を前記燃料排出口に連通させる開弁方向に変位する可動弁体部とを有する調圧部材と、を備え、
前記調圧室の内部に前記燃料排出口に連通するとともに前記可動弁体部の変位に応じて開度が変化する排出穴を形成する第1弁座部と、前記調圧室の内部に前記可動弁体部の変位に応じて開度が変化するとともに操作圧を有する燃料が導入される操作圧燃料導入穴を形成する第2弁座部とが、それぞれ前記ハウジングに設けられ、
前記調圧部材が前記開弁方向に燃料圧を受ける面積が、前記操作圧燃料導入穴内の操作圧に応じて変化することを特徴とする請求項1ないし請求項5のいずれか1の請求項に記載の燃料供給装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−92058(P2013−92058A)
【公開日】平成25年5月16日(2013.5.16)
【国際特許分類】
【出願番号】特願2011−233021(P2011−233021)
【出願日】平成23年10月24日(2011.10.24)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】