説明

薄膜形成装置及び薄膜形成方法

【課題】従来に比べて品質特性がより高いSi薄膜をより低コストで形成する薄膜形成装置及び方法を提供する。
【解決手段】薄膜形成装置は、原料ガスと希釈ガスとクリプトンガスの流量を調整することにより得られる第1のガスを成膜空間に供給する工程と、前記第1のガスが供給された前記成膜空間において、電極板に高周波電力を供給してプラズマを生成するとともに、前記載置台にバイアス電圧を印加することにより、前記基板に処理を施す工程と、前記原料ガスと前記希釈ガスの流量を調整することにより得られる第2のガスを前記成膜空間に供給する工程と、前記第2のガスが供給された前記成膜空間において、前記電極板に高周波電力を供給してプラズマを生成することにより、前記基板に薄膜を形成する工程と、を行う。前記第1のガスにおける前記原料ガスと前記希釈ガスの合計流量に対する前記原料ガスの流量の比は、前記第2のガスの前記比に比べて小さい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマを用いて基板に薄膜を形成する薄膜形成装置及び薄膜形成方法に関する。
【背景技術】
【0002】
従来より、基板に薄膜を形成するためにCVD(Chemical Vapor Deposition)装置が用いられる。特に、CVD装置を用いて薄膜太陽電池やTFT(Thin Film Transistor)に用いるSi薄膜をガラス基板に形成するプロセスが注目されている。Si薄膜の形成では、例えば、モノシラン(SiH4)をプラズマ化して、ガラス基板上にSi薄膜を形成する。近年、薄膜太陽電池用パネルは大型化しており、大型のガラス基板に、品質特性が高くしかも均質な特性を有する微結晶Si薄膜を低コストで形成することが望まれている。
【0003】
例えば、微結晶Si薄膜を形成する際の製造コストを下げるためには、成膜する基板の温度を250℃以下にすることが望まれる。しかし、基板の温度を250℃以下にして微結晶Si薄膜を形成するとき、薄膜の結晶性が悪くキャリアの移動度が低い、といった微結晶Si薄膜の特性上の問題がある。
【0004】
一方、従来に比べて高い変換効率を達成する、微結晶半導体を光電変換層に用いた光起電力素子を効率よく製造する方法が知られている(特許文献1)。
当該方法では、光電変換層となるi型μc−Si:H層をプラズマCVD法により形成する工程を、2ステップに分ける。前半のステップでは、原料ガス(SiH4 )の水素希釈率を大きくすると共にプラズマ生成用の電力を大きくして微結晶シリコンの核を効果的に生成し、後半のステップでは、原料ガスの水素希釈率を小さくすると共にプラズマ生成用の電力を小さくして成膜速度を速くする。
これにより、高い品質の微結晶半導体層からなる光電変換層を効率良く形成できる、とされている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−37278号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記方法では、前半のステップでは、原料ガス(SiH4)の水素希釈率を大きくすると共にプラズマ生成用の電力を大きくして微結晶Siの核を効果的に生成する。これにより、基板の温度も230℃の状態で微結晶Si薄膜を形成することができる。
しかし、品質特性が高い微結晶Si薄膜をより低コストで形成することが望まれている現状において、上記方法では必ずしも十分に上記要請に対応できない。
【0007】
そこで、本発明は、従来に比べて品質特性がより高いSi薄膜をより低コストで形成する薄膜形成装置及び薄膜形成方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一態様は、基板に薄膜を形成する薄膜形成装置である。当該装置は、
減圧状態で載置台に載置された基板に薄膜を形成する成膜空間を備える成膜容器と、
前記成膜容器の前記成膜空間内に薄膜形成に用いるガスを導入するガス導入部と、
前記成膜空間内の前記ガスを用いて前記成膜空間内でプラズマを生成させるプラズマ電極部と、
前記載置台にバイアス電圧を印加するバイアス電圧部と、
前記バイアス電圧の印加を制御する制御部と、を有する。
前記ガス導入部は、
クリプトンガスを貯蔵するKr貯蔵部と、
薄膜の成分を含む原料ガスを貯蔵する原料ガス貯蔵部と、
前記成膜容器に前記原料ガスを供給する際、前記原料ガスを希釈する希釈ガスを貯蔵する希釈ガス貯蔵部と、
前記原料ガスと前記希釈ガスと前記クリプトンガスの流量を調整することにより、前記成膜容器にガスを供給するガス流量調整部と、を有する。
前記制御部は、前記バイアス電圧の制御の他に前記流量の調整を制御する。
【0009】
その際、前記ガス流量調整部は、前記原料ガスと前記希釈ガスの流量比が異なる第1のガスと第2のガスを異なる処理で供給し、前記ガス流量調整部は、前記第1のガスの供給の後に、前記第2のガスを供給し、
前記第1のガスにおける、前記原料ガスと前記希釈ガスの合計流量に対する前記原料ガスの流量の比は、前記第2のガスにおける前記比に対して小さく、前記第1のガスには前記クリプトンガスが含まれている、ことが好ましい。
【0010】
また、前記第1のガスにおける前記原料ガスの流量の前記比の上限は30%であり、前記第2のガスにおける前記原料ガスの流量の前記比の下限は40%である、ことが好ましい。
【0011】
また、前記制御部は、前記ガス流量調整部が前記第1のガスを供給するとき、前記バイアス電圧を前記載置台に印加するように前記バイアス電圧部を制御する、ことが好ましい。
【0012】
本発明の別の一態様は、基板に薄膜を形成する薄膜形成方法である。当該方法は、
原料ガスと希釈ガスとクリプトンガスの流量を調整することにより得られる第1のガスを、基板が載置台に載置された減圧状態の成膜空間に供給する工程と、
前記第1のガスが供給された前記成膜空間において、前記基板の上部に設けられた電極板に高周波電力を供給してプラズマを生成するとともに、前記載置台にバイアス電圧を印加することにより、前記基板に処理を施す工程と、
前記第1のガスを前記成膜空間から除去し、前記原料ガスと前記希釈ガスの流量を調整することにより得られる第2のガスを前記成膜空間に供給する工程と、
前記第2のガスが供給された前記成膜空間において、前記電極板に高周波電力を供給してプラズマを生成することにより、前記基板に薄膜を形成する工程と、を有する。
前記第1のガスにおける前記原料ガスと前記希釈ガスの合計流量に対する前記原料ガスの流量の比は、前記第2のガスの前記比に比べて小さい。
【0013】
その際、前記第1のガスにおける前記原料ガスの流量の前記比の上限は30%であり、前記第2のガスにおける前記原料ガスの流量の前記比の下限は40%である、ことが好ましい。
【発明の効果】
【0014】
上述の薄膜形成装置及び薄膜形成方法では、従来に比べて品質特性がより高いSi薄膜をより低コストで形成することができる。
【図面の簡単な説明】
【0015】
【図1】本実施形態である薄膜形成装置の構成を表す概略図である。
【図2】図1に示す制御部による制御システムを説明する図である。
【図3】図1に示すプラズマ電極部を説明する図である。
【図4】本実施形態である薄膜形成装置のフローを説明する図である。
【発明を実施するための形態】
【0016】
以下、本発明の薄膜形成装置について詳細に説明する。
図1は、本発明の一実施形態である薄膜形成装置10の構成を示す概略図である。
【0017】
以下、本発明の薄膜形成装置について詳細に説明する。
図1は、本発明の一実施形態である薄膜形成装置10の構成を示す概略図である。
【0018】
図1に示す薄膜形成装置10は、生成されるプラズマを用いて、基板に薄膜を形成するCVD装置である。薄膜形成装置10は、電極板を流れる電流によって生成される磁界により、プラズマを生成する方式である。この方式は、モノポールアンテナ等のアンテナ素子等の共振により発生する高電圧によりプラズマを生成する方式と異なる。このため、プラズマを生成する素子が共振するように供給する電力の周波数を調整する必要がない。
【0019】
(薄膜形成装置)
以下、薄膜として微結晶Si薄膜を形成する例を用いて、薄膜形成装置10について説明する。
薄膜形成装置10は、給電ユニット12と、成膜容器14と、ガス供給部16と、ガス排気部18と、制御部19と、を有する。
【0020】
給電ユニット12は、高周波電源22と、高周波ケーブル24と、マッチングボックス26と、伝送線28a,28b,29a,29bと、プラズマ電極部30と、バイアス電圧部31と、を有する。
高周波電源22は、例えば、100〜2000Wで数10MHzの高周波電力をプラズマ電極部30の電極板30a,30b(図3参照)に給電する。マッチングボックス26は、高周波ケーブル24を通して提供される電力が電極板30a,30bに効率よく供給されるように、インピーダンスを整合する。マッチングボックス26は、キャパシタおよびインダクタ等の素子を設けた公知の整合回路を備える。
マッチングボックス26から延びる伝送線28a,28bは、例えば、一定の幅を備える銅板状の伝送線路であり、電極板30a,30bへ数10アンペアの電流を流すことができる。伝送線29a,29bは、電極板30a,30bのそれぞれから延び接地されている。
【0021】
電極板30a,30bそれぞれは、後述する隔壁32上に固定された板部材であって、この板部材の第1の主面(最大の面積を有する面)が成膜容器14内の成膜空間に向いて配置されている。電極板30a,30bは、伝送線28a,28bが接続されている端面と伝送線29a,29bが接続されている端面との間の、板部材の長手方向に沿って電流を流す。
バイアス電圧部31は、サセプタ42に接続されており、制御部19の制御によって0.1〜10kHzのパルス電圧を成膜中の基板20に印加する。
【0022】
成膜容器14は、内部空間38を容器内に有する。内部空間38は、隔壁32及び電極板30a,30b等により上部空間と下部の成膜空間40に区分けされている。成膜容器14は、例えば、アルミニウム等の材質で形成されて、内部空間38を0.1Pa以下の減圧状態にできるように密閉されている。成膜容器14の上部空間には、マッチングボックス26と、伝送線28a,28b,29a,29bと、電極板30a,30bと、を有する。隔壁32の上部空間に面する側には、電極板30a,30bが固定されている。電極板30a,30bの周囲には、周囲の隔壁32と絶縁するための絶縁部材34が設けられている。一方、隔壁32の成膜空間40に面する側には、誘電体からなる電極板遮蔽部36が設けられている。電極板遮蔽部36には、例えば石英板が部材として用いられる。電極板遮蔽部36を設けるのは、プラズマによる電極板30a,30bの腐食を防ぎ、かつ効率よくプラズマへ電磁エネルギを供給させるためである。
【0023】
成膜容器14の成膜空間40には、ヒータ42と、サセプタ44と、昇降機構46と、が設けられている。
ヒータ42は、サセプタ44に載置するガラス基板20を所定の温度、例えば250℃程度に加熱する。
サセプタ44は、基板20を載置する載置台を有する。
昇降機構46は、ガラス基板20を載置したサセプタ44をヒータ42ともに、成膜空間40内を自在に昇降する。成膜プロセス段階では、電極板30a,30bに近接するように、ガラス基板20を所定の位置にセットする。
サセプタ44は、バイアス電源部31と接続されており、プラズマを用いて成膜処理中、基板20に対してバイアス電圧が印加される。
【0024】
ガス供給部16は、ガスタンク48a,48b,48cと、マスフローコントローラ50a,50b,50cと、バルブ51a,51b,51cと、を有する。
ガスタンク48aは、薄膜用原料ガスであるモノシランガス(SiH4)を希釈する希釈ガスとして水素ガスを貯蔵する。ガスタンク48bは、薄膜用原料ガスであるモノシランガス(SiH4)を貯蔵する。ガスタンク48cは、クリプトンガスを貯蔵する。クリプトンガスは、後述するように、成膜時の初期段階の成膜処理において用いられる。
マスフローコントローラ50a,50b,50cは、水素ガス、モノシランガス及びクリプトンガスの流量を調整する。バルブ51a,51b,51cは、水素ガス、モノシランガス及びクリプトンガスの供給のオン、オフ(流量0)を行う。すなわち、マスフローコントローラ50a,50b,50c及びバルブ51a,51b,51cは、水素ガス、モノシランガス及びクリプトンガスの流量を調整する流量調整部である。これらのガスの混合ガスは、成膜容器14の側壁から成膜空間40内に供給される。
【0025】
ガス排気部18は、成膜空間40内の側壁から延びる排気管と、ターボ分子ポンプ52と、ドライポンプ54と、を有する。ドライポンプ54は、成膜空間40内を粗引きし、ターボ分子ポンプ52は、成膜空間40内の圧力を所定の減圧状態に維持する。ターボ分子ポンプ52とドライポンプ54とは、排気管で接続されている。
【0026】
制御部19は、高周波電源22、バイアス電圧部31、マスフローコントローラ50a,50b,50c、及びバルブ51a,51b,51cの動作を制御する。図2は、制御部19による制御システムを説明する図である。具体的には、薄膜形成装置10では、成膜初期段階の第1の処理とその後に行う第2の処理において、異なる成分比のガスを用いる。第1の処理では、水素ガス、モノシランガス及びクリプトンガスを混合した第1のガスが用いられる。このとき、電極板30a,30bに高周波電力を供給するように高周波電源22を制御する。さらに、サセプタ42にバイアス電圧を印加するようにバイアス電圧部31を制御する。
【0027】
一方、第2の処理では、水素ガス及びモノシランガスを混合した第2のガスが用いられる。第2のガスにはクリプトンガスは含まれない。第2のガスにクリプトンガスが含まれてもよいが、クリプトンガスは第2の処理において機能しないため、第2のガスにはクリプトンガスは含まれないことが好ましい。このとき、電極板30a,30bに高周波電力を供給するように高周波電源22を制御する。第2の処理では、第1の処理と異なり、サセプタ42にバイアス電圧は印加されない。
【0028】
第1の処理では、基板20に微結晶Si薄膜の核が形成され、第2の処理では、形成された核に微結晶Si薄膜が成長する。
このとき、第1のガスにおける、モノシランガスと水素ガスの合計流量に対するモノシランガスの流量の比は、第2のガスにおける上記比に対して小さいことが好ましい。すなわち、第1のガスでは、モノシランガスの成分が第2のガスに比べて少ない。例えば、第1のガスにおける、モノシランガスと水素ガスの合計流量に対するモノシランガスの流量の比は、0〜30%であり、第2のガスにおける、モノシランガスと水素ガスの合計流量に対するモノシランガスの流量の比は、40%以上である。第1のガスには、上記比が0%、すなわち、モノシランガスが全く含まれていなくてもよい。これは、薄膜形成装置10を使用することによって成膜空間40内の壁面に堆積したSi薄膜を利用して、第1の処理において基板20上に微結晶Si薄膜の核を形成することができるからである。
以上のように、制御部19は、高周波電源22、バイアス電圧部31、マスフローコントローラ50a,50b,50c、及びバルブ51a,51b,51cの動作を制御する。
【0029】
図3は、電極板30a,30bと電極板遮蔽部36を拡大した拡大断面図である。
プラズマ電極部30の電極板30a,30bは、成膜空間40内のサセプタ44の上部に設けられ、第1のガスあるいは第2のガスを用いてプラズマを生成させる。電極板30a,30bは、矩形形状の一方向に長尺な板部材である。電極板30a,30bでは、給電線28a,28bと接続された一方の端面から給電線29a,29bに接続された他方の端面31bに向けて、すなわちX方向に電流が流れる。電極板30a,30bの一方の主面(電極板30a,30bの中で最大の面)は成膜空間40に向いている。給電線29a,29bは、図1に示すように接地されている。電極板30a,30bは、例えば、銅、アルミニウム等が用いられる。電極板30a,30bには、例えば500V〜1kVの高周波電圧を印加する。
電極板遮蔽部36は、誘電体板を有する。誘電体板は、成膜空間40に向く電極板30a,30bの主面の全体を遮蔽する。
【0030】
本実施形態では、電極板30a,30bを用いたが、電極板の数は2つに限定されない。電極板は、1つであってもよいし、3つ以上であってもよい。また、本実施形態では、微結晶Si薄膜を形成する例を示したが、これに限定されない。
【0031】
(薄膜形成方法)
図4は、本実施形態の薄膜形成方法のフローを示す図である。
まず、制御部19は、バルブ51bを閉じ、バルブ51a,51cを開けるように制御し、さらに、マスフローコントローラ50a,50cを制御して、第1のガスを生成する。第1のガスは、水素ガス及びクリプトンガスを含み、モノシランガスを含まない。例えば、クリプトンガスの流量(sccm)を水素ガスの流量の4分の1とする。生成される第1のガスではモノシランガスを含まないので、モノシランガスの流量は、モノシランガスと水素ガスの合計流量に対して0%となる。本実施形態では、第1のガスに、モノシランガスを、モノシランガスと水素ガスの合計流量に対して30%まで含ませることができる。この状態で、薄膜形成装置10は、第1のガスを減圧状態の成膜空間40に供給する(ステップS10)。
【0032】
この後、制御装置19は、高周波電源22が電極板30a,30bに高周波電力を供給するように高周波電源22を制御し、さらに、制御装置19は、基板20にバイアス電圧が印加されるように、バイアス電圧をサセプタ42に印加する。このとき、電極板30a,30bを流れる電流によって成膜空間40内に磁場が形成され、この磁場によって、第1のガスが電離して、成膜空間40内の基板20の上方でプラズマが生成される。このプラズマを用いて、基板20の表面に微結晶Si薄膜の核が生成される(ステップS20)。
【0033】
具体的には、第1のガスにクリプトンガスが含まれているので、プラズマの密度が高まり、それによって、水素ガスから生成される水素イオンや水素ラジカルの密度も高まる。また、基板20に負のバイアス電圧が印加されるので、水素イオン及びクリプトンイオンが基板20上に引き込まれ、このときのイオン衝撃により基板20はエネルギを受ける。一方、生成したプラズマは、成膜空間40内の他の壁面に堆積したSi薄膜の成分をエッチングし、このSiの成分が成膜空間40内に拡散する。このSiの成分が基板20上に堆積する。このとき、基板20に引き込まれた水素ラジカルあるいは水素イオンは、堆積したSiをエッチングし発熱反応を起こす。そのため、基板20の表面温度は従来に比べて大きく上昇し、形成される微結晶Si薄膜の結晶性は高くなる。
【0034】
なお、プラズマ密度を高める点で、キセノン等の原子半径がより大きな希ガスを用いることが好ましいが、原子半径が大きく質量が大きくなると、基板20に衝突するイオンの運動量が高くなり、微結晶Si薄膜の核の結晶性に損傷を与える。一方、結晶性に損傷を与えないためには、アルゴン等の原子半径がより小さな希ガスを用いることが好ましいが、この場合、プラズマ密度を高める効果が少なく、基板20の受ける水素イオンとラジカルの照射は小さく基板20の表面温度はあまり高くならない。以上の理由より、本実施形態では第1のガスにクリプトンガスが含まれる。ステップS20の処理は、例えば、0.1〜100Paの減圧状態で、水素ガス10sccm、クリプトンガス20sccm、高周波電力1000〜20000Wの条件で、5〜20秒行われる。
【0035】
こうして、基板20に微結晶Si薄膜の核が形成された後、第1の処理が終了し、第1のガスがガス排気部18から排気される(ステップS30)。
次に、制御部19は、バルブ51cを閉じ、バルブ51a,51bを開けるように制御し、さらに、マスフローコントローラ50a,50bを制御して、第2のガスを生成する。第2のガスでは、水素ガス及びモノシランガスを含み、クリプトンガスを含まない。例えば、モノシランガスの流量(sccm)をモノシランガス及び水素ガスの合計の流量の50%とする。生成される第2のガスにはクリプトンガスを含まないので、モノシランガスの流量は、モノシランガスと水素ガスの合計流量に対して40%以上含ませることができる。この状態で、薄膜形成装置10は、第2のガスを減圧状態の成膜空間40に供給する(ステップS40)。
【0036】
この後、制御装置19は、高周波電源22が電極板30a,30bに高周波電力を供給するように高周波電源22を制御する。このとき、電極板30a,30bを流れる電流によって成膜空間40内に磁場が形成され、この磁場によって、第2のガスが電離して、成膜空間40内の基板20の上方でプラズマが生成される。このプラズマにより、基板20に形成された微結晶Si薄膜の核に微結晶Siを成長させることができる。このとき、基板20にバイアス電圧は印加されない。こうして、微結晶Si薄膜が形成される(ステップS50)。ステップS50の処理は、例えば、0.1〜100Paの減圧状態で、水素ガス10sccm、モノシランガス10sccm、高周波電力100〜2000Wの条件で、1〜10分行われる。
こうして、基板20に微結晶Si薄膜が形成された後、第2の処理が終了し、第2のガスがガス排気部18から排気される(ステップS60)。
【0037】
以上のように、ステップS20では、クリプトンガスの流量を調整し基板にバイアス電圧を印加してプラズマによる第1の処理を行うので、基板20の表面温度は高くなり微結晶Si薄膜の核の結晶性を高めることができる。このため、従来に比べて品質特性がより高いSi薄膜をより低コストで形成することができる。
【0038】
以上、本発明の薄膜形成装置及び薄膜形成方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
【符号の説明】
【0039】
10 薄膜形成装置
12 給電ユニット
14 成膜容器
16 ガス供給部
18 ガス排気部
19 制御部
20 基板
22 高周波電源
24 高周波ケーブル
26 マッチングボックス
28a,28b,29a,29b 伝送線
30 プラズマ電極部
30a,30b 電極板
31 バイアス電圧部
32 隔壁
34 絶縁部材
36 電極板遮蔽部
38 内部空間
40 成膜空間
42 ヒータ
44 サセプタ
46 昇降機構
48a,48b,48c ガスタンク
50a,50b,50c マスフローコントローラ
51a,51b,51c バルブ
52 ターボ分子ポンプ
54 ドライポンプ

【特許請求の範囲】
【請求項1】
基板に薄膜を形成する薄膜形成装置であって、
減圧状態で載置台に載置された基板に薄膜を形成する成膜空間を備える成膜容器と、
前記成膜容器の前記成膜空間内に薄膜形成に用いるガスを導入するガス導入部と、
前記成膜空間内の前記ガスを用いて前記成膜空間内でプラズマを生成させるプラズマ電極部と、
前記載置台にバイアス電圧を印加するバイアス電圧部と、
前記バイアス電圧の印加を制御する制御部と、を有し、
前記ガス導入部は、
クリプトンガスを貯蔵するKr貯蔵部と、
薄膜の成分を含む原料ガスを貯蔵する原料ガス貯蔵部と、
前記成膜容器に前記原料ガスを供給する際、前記原料ガスを希釈する希釈ガスを貯蔵する希釈ガス貯蔵部と、
前記原料ガスと前記希釈ガスと前記クリプトンガスの流量を調整することにより、前記成膜容器にガスを供給するガス流量調整部と、を有し、
前記制御部は、前記バイアス電圧の制御の他に前記流量の調整を制御することを特徴とする薄膜形成装置。
【請求項2】
前記ガス流量調整部は、前記原料ガスと前記希釈ガスの流量比が異なる第1のガスと第2のガスを異なる処理で供給し、前記ガス流量調整部は、前記第1のガスの供給の後に、前記第2のガスを供給し、
前記第1のガスにおける、前記原料ガスと前記希釈ガスの合計流量に対する前記原料ガスの流量の比は、前記第2のガスにおける前記比に対して小さく、前記第1のガスには前記クリプトンガスが含まれている、請求項1に記載の薄膜形成装置。
【請求項3】
前記第1のガスにおける前記原料ガスの流量の前記比の上限は30%であり、前記第2のガスにおける前記原料ガスの流量の前記比の下限は40%である、請求項2に記載の薄膜形成装置。
【請求項4】
前記制御部は、前記ガス流量調整部が前記第1のガスを供給するとき、前記バイアス電圧を前記載置台に印加するように前記バイアス電圧部を制御する、請求項1〜3のいずれか1項に記載の薄膜形成装置。
【請求項5】
基板に薄膜を形成する薄膜形成方法であって、
原料ガスと希釈ガスとクリプトンガスの流量を調整することにより得られる第1のガスを、基板が載置台に載置された減圧状態の成膜空間に供給する工程と、
前記第1のガスが供給された前記成膜空間において、前記基板の上部に設けられた電極板に高周波電力を供給してプラズマを生成するとともに、前記載置台にバイアス電圧を印加することにより、前記基板に処理を施す工程と、
前記第1のガスを前記成膜空間から除去し、前記原料ガスと前記希釈ガスの流量を調整することにより得られる第2のガスを前記成膜空間に供給する工程と、
前記第2のガスが供給された前記成膜空間において、前記電極板に高周波電力を供給してプラズマを生成することにより、前記基板に薄膜を形成する工程と、を有し、
前記第1のガスにおける前記原料ガスと前記希釈ガスの合計流量に対する前記原料ガスの流量の比は、前記第2のガスの前記比に比べて小さい、ことを特徴とする薄膜形成方法。
【請求項6】
前記第1のガスにおける前記原料ガスの流量の前記比の上限は30%であり、前記第2のガスにおける前記原料ガスの流量の前記比の下限は40%である、請求項5に記載の薄膜形成装方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−191028(P2012−191028A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【出願番号】特願2011−53866(P2011−53866)
【出願日】平成23年3月11日(2011.3.11)
【出願人】(000005902)三井造船株式会社 (1,723)
【Fターム(参考)】