説明

表面検査装置及び表面検査方法

【課題】被検査体の表面内を均一な検出感度にて検査することができる表面検査装置及び表面検査方法を提供する。
【解決手段】表面検査装置は、被検査体移動ステージ、照明装置と、検査座標検出装置、光検出器と、A/D変換器と、異物・欠陥判定部、を有する。照明装置は、検査座標検出装置によって得られた照明スポットの半径方向の位置に基づいて、照明スポットの円周方向の寸法を変化させるように構成されている。照明スポットが被検査体上を外周部から中心部に移動する間に、照明スポットにおける照射光量密度が一定となるように構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、被検査体の表面を検査する技術に関し、特に、光の散乱を解析することによって表面を検査する技術に関する。
【背景技術】
【0002】
半導体デバイスの製造工程では、ベアウェーハにパターンを転写し、エッチングで削ることによって回路を形成する。このような回路を形成する過程で、ベアウェーハ表面に異物が付着したり、欠陥が生じることがある。これは、歩留まりを低下させる大きな要因となる。各製造工程では、ベアウェーハ表面に付着した異物や欠陥を管理するために、表面検査を行う。表面検査装置により、ベアウェーハ表面に付着している異物やウェーハ表面に存在する欠陥などを高感度、及び、高スループットで検出する。
【0003】
ウェーハの表面検査方法として、電子ビーム等の荷電粒子線を用いる方法と、光を用いる光学的方法がある。光学的方法には、カメラを用いてウェーハ表面の画像を撮影し、画像情報を解析する方法と、ウェーハ表面で散乱された光を光電子増倍管のような受光素子で検出し光の散乱の程度を解析する方法がある。後者の方法の一例として特許文献1記載のものがある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭63−143830号公報
【特許文献2】米国特許7548308号
【特許文献3】特開2008−20362号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
光の散乱を解析する方法では、一般に、レーザ光をウェーハ表面に照射し、異物から発生する散乱光を検出器で検出する。検出器からの信号をデジタル信号にA/D変換し、デジタルデータから、異物・欠陥の大きさを算出する。検査の高スループット化のため、ワーク(ウェーハ)を搭載した検査テーブルを高速回転させながら、水平方向に移動させる方式が採用されている。ワーク上における照射スポットの軌跡は、螺旋状となる。異物・欠陥の大きさ情報とステージからの座標情報に基づいて、ワーク全面の異物・欠陥マップを算出する。
【0006】
光の散乱を解析する方法では、ワークを高速回転させるため、外周部では円周方向の線速度は大きく、中心部では円周方向の線速度は小さい。一方、レーザ光の照射スポット寸法は一定であり、外周部と中心部では同一である。従って、外周部では単位時間あたりの照射光量密度が小さく、中心部では単位時間あたりの照射光量密度が大きい。
【0007】
一般に、異物・欠陥の検出感度SNRは、下記の式のように照射光量密度の平方根と比例関係にある。
【0008】
SNR∝√((P×Δt)÷s)×√λ 式1
SNR:ノイズ信号比(Signal To Noise Ratio)
P:レーザ光量
Δt:照射時間
s:照射スポット面積
λ:レーザ波長
【0009】
従って、異物・欠陥の検出感度SNRは、外周部では検出感度が低く、中心部では検出感度が高い。即ち、従来の表面検査装置では検出精度の変動とばらつきが生じ易い。
【0010】
本発明の目的は、被検査体の表面内を均一な検出感度にて検査することができる表面検査装置及び表面検査方法を提供することにある。
【課題を解決するための手段】
【0011】
本発明の表面検査装置は、被検査体を回転させながら半径方向に沿って直進させるように構成された被検査体移動ステージと、被検査体の表面上にレーザ光の照明スポットを生成する照明装置と、前記被検査体上の照明スポットの位置を検出する検査座標検出装置と、前記照明スポットからの散乱光を検出して電気信号に変換するする光検出器と、前記電気信号をデジタルデータに変換するA/D変換器と、前記A/D変換器によって得られるデジタルデータから被検査体の表面の異物又は欠陥を判定する異物・欠陥判定部と、を有する。
【0012】
前記照明装置は、前記検査座標検出装置によって得られた前記照明スポットの半径方向の位置に基づいて、前記照明スポットの円周方向の寸法を変化させるように構成されており、前記照明スポットが前記被検査体上を外周部と中心部の間にて走査される間に、前記照明スポットにおける照射光量密度が一定となるように構成されている。
【発明の効果】
【0013】
本発明によると、被検査体の表面内を均一な検出感度にて検査することができる表面検査装置及び表面検査方法を提供する。
【図面の簡単な説明】
【0014】
【図1】本発明の表面検査装置の例の概略構成を示す図である。
【図2A】本発明の表面検査装置における照明装置の例を示す図である。
【図2B】本発明の表面検査装置における照明スポットを示す図である。
【図3】本発明の表面検査装置における照明スポットの変化を示す図である。
【図4】本発明の表面検査装置における光照射光量密度の変化を示す図である。
【図5A】通常の表面検査装置における信号周波数特性を示す図である。
【図5B】本発明の表面検査装置における信号周波数特性を示す図である。
【図6】本発明の表面検査装置における可変フィルタの動作を示す図である。
【図7】本発明の表面検査装置における走査量を示す図である。
【図8】本発明の表面検査装置における照明スポットの変化処理を説明する図である。
【発明を実施するための形態】
【0015】
以下、図面を用いて、本発明の実施の形態を説明するが、本発明の装置及び方法は、各図面に示された構成に限定されるものではなく、その技術思想の範囲内で種々変形可能である。
【0016】
図1に、本発明による異物・欠陥を検査するための表面検査装置の例を示す。本例の表面検査装置は、被検査体を真空吸着により支持するチャック101と、被検査体に照明光を照射し、その散乱光を検出する照明・検出光学系120と、チャック101に支持された被検査体を移動させる移動ステージ102を有する。ここでは、被検査体の例として半導体ウェーハ100の場合を説明する。照明・検出光学系120は、照明装置200と光検出器212を有する。被検査体移動ステージ102は、被検査体を回転させる回転ステージ103、被検査体をXY方向に移動させる直進ステージ104、及び、被検査体をZ方向に移動させるZステージ105を有する。
【0017】
移動ステージ102の回転ステージ103と直進ステージ104によって、半導体ウェーハ100を回転させながら、半径方向に沿って移動させることができる。即ち、水平方向の回転移動θと直進移動Rを時間と共に組合せて変化させることができる。照明装置200からのレーザ光によって、半導体ウェーハ100上に照明スポットが形成される。半導体ウェーハ100は回転運動と直進運動を行うから、照明スポットは、半導体ウェーハ100上で螺旋状に走査させることができる。円周方向の走査を主走査と称し、半径方向の走査を副走査と称する。
【0018】
本例の表面検査装置は、更に、異物・欠陥判定系、異物・欠陥座標検出系、上位CPU108、入力装置109及び表示装置110を有する。異物・欠陥判定系は、増幅器121、A/D変換器122、減算器123、可変フィルタ124、欠陥判定機構125、及び、粒径算出機構126を有する。
【0019】
異物・欠陥座標検出系は、検査座標検出機構106、異物・欠陥座標検出機構107、及び、パラメータ演算器111を有する。検査座標検出機構106は、半導体ウェーハ100上の照明スポットの主走査座標位置θと副走査座標位置Rを検出する。主走査座標位置θの検出には、光学読み取り式のロータリーエンコーダを用いる。副走査座標位置Rには、光学読み取り式のリニアエンコーダを用いる。しかしながら、高精度で角度または直線上の位置が検出できるセンサであれば、他の検出原理を用いたものでも良い。
【0020】
本例の異物・欠陥表面検査装置の動作の概略を説明する。照明装置200からの照明光は、半導体ウェーハ100に照射される。半導体ウェーハ100上の異物・欠陥130からの散乱光は、光検出器212で検出される。光検出器212からの散乱光検出信号は、増幅器121で増幅され、A/D変換器122でサンプリング間隔ΔT毎にサンプリングされ、デジタルデータに変換される。A/D変換器122からのデジタルデータは、可変フィルタ124及び減算器123によって、デジタルフィルタリング処理され、ノイズ等の不所望信号成分が除去される。
【0021】
可変フィルタ124及び減算器123によって得られた散乱光強度値は、異物・欠陥判定機構125にて、予め定められた閾値と比較される。異物・欠陥判定機構125は、散乱光強度値が閾値以上であれば、異物・欠陥判定情報を発生し、それを粒径算出機構126と異物・欠陥座標検出機構107に提供する。粒径算出機構126は、散乱光強度値から、検出された異物・欠陥の大きさを算出する。
【0022】
検査座標検出機構106は、半導体ウェーハ100上の照明スポットの主走査座標位置θと副走査座標位置Rを検出し、異物・欠陥座標検出機構107とパラメータ演算器111に提供する。異物・欠陥座標検出機構107は、検査座標検出機構106からの位置情報に基づいて、検出された異物・欠陥の座標位置を算出し、それをパラメータ演算器111に供給する。
【0023】
一方、ユーザーは、入力装置109を介して、被検査体移動ステージの回転数、照明スポットの大きさを設定する。これらの情報は、上位CPU108によって演算され、パラメータ演算器111に提供される。
【0024】
パラメータ演算器111は、検査座標検出機構106、異物・欠陥座標検出機構107及び上位CPU108からの情報に基づいて、可変フィルタ124におけるパラメータの一例であるCut−off周波数を制御する。即ち、Cut−off周波数は、半導体ウェーハ100の主走査座標位置θと副走査座標位置R、異物・欠陥の座標位置、被検査体移動ステージの回転数、及び、照明スポットの大きさに基づいて、制御される。Cut−off周波数の制御の詳細は後に説明する。
【0025】
入力装置109として、キーボード又はマウス等のポンテイングデバイスを用いてもよい。また、前述の必要な情報を記憶した独立したメモリを図示しないインターフェースを介して、表面検査装置へ入力してもよい。このように本実施例では、光検出器212から得られた光散乱信号をデジタルデータに変換し、可変フィルタ処理により、ノイズ等の不所望信号成分を除去した後に異物・欠陥の大きさを算出する。
【0026】
本発明の特徴は、検査座標検出機構106によって半導体ウェーハ100上の照明スポットの位置に基づいて、照明装置200を制御し、照明スポットの寸法を変化させることにあるが、詳細は以下に説明する。
【0027】
図2Aを参照して、半導体ウェーハ100の上方に配置されている照明・検出光学系120を説明する。照明・検出光学系120は、照明装置200と検出光学系210を有する。照明装置200は、光源201、ビームエキスパンダ202、及び、照射レンズ203を有する。検出光学系210は、集光レンズ211、及び、光検出器212を有する。光源201にはレーザ光源を用いる。光源201からの照射ビーム204はビームエキスパンダ202、及び、照射レンズ203を経由して、半導体ウェーハ100に照射される。半導体ウェーハ100には異物・欠陥130が付着している。
【0028】
集光レンズ211は、レーリー散乱に従うような微小な異物に対して効率良くその散乱光を捕捉できるよう、低い仰角で散乱光を集光できる構成にしてある。したがって、異物・欠陥130からの散乱光は、集光レンズ211によって集光され、光検出器212で検出される。光検出器212からは散乱光検出信号が得られる。本実施例では光検出器212として光電子増倍管を用いているが、異物からの散乱光を高感度に検出できる光検出器であれば他の検出原理の光検出器であっても良い。
【0029】
図2Bを参照して半導体ウェーハ100上の照明スポットを説明する。照明装置200からの照射ビーム204によって、半導体ウェーハ100上に、予め定められた大きさの照明スポット206が形成される。照射ビーム204は例えばP偏光である。照射ビーム204は、被検査体である半導体ウェーハ100の表面に、概略、結晶Siに対するブリュースター角で斜入射する。このため照明スポット206は概略楕円形状である。ここで、あらためて、照明スポットを、照度が照明スポットの中心部のeの2乗分の1(eは自然対数の底)に低下する輪郭線の内部と定義することにする。この照明スポット206の半径方向(長軸方向)の幅をDr、円周方向(短軸方向)の幅をDcとする。
【0030】
上述のように、移動ステージ102の回転ステージ103と直進ステージ104によって、半導体ウェーハ100上に、相対的に、照明スポット206の主走査と副走査が生成される。即ち、照明スポット206を、半導体ウェーハ100上で螺旋状に走査させることができる。図2B及び図3にて点線の矢印205は、照明スポット206の走査軌跡を表す。走査軌跡は、主走査成分と副走査成分を有する。本実施例では、照明スポット206の半径方向の走査、即ち、副走査は、半導体ウェーハ100の内周から外周に向かって行うが、逆であっても差し支えない。
【0031】
図3を参照して本発明の表面検査装置における照明スポットの寸法を変化させる処理を説明する。上述のように、本発明によると、検査座標検出機構106によって半導体ウェーハ100上の照明スポットの位置に基づいて、照明装置200を制御し、照明スポットの寸法を変化させる。外周部における照明スポット206Aの円周方向の寸法(幅)をDc1、中周部における照明スポット206Bの円周方向の寸法(幅)をDc2、内周部、即ち、中心部における照明スポット206Cの円周方向の寸法(幅)をDc3とする。Dc1<Dc2<Dc3である。すなわち、照明スポットの円周方向の寸法(幅)は、外周部から中心部に行くほど、大きくなる。
【0032】
本発明によると、照明スポットの円周方向の寸法は、外周部から中心部に行くほど、大きくなればよい。従って、外周部における照明スポットの円周方向の寸法を基準として、中心部に近づくほど、照明スポットの円周方向の寸法を拡大させてもよいが、内周部における照明スポットの円周方向の寸法を基準として、外周部に近づくほど、照明スポットの円周方向の寸法を縮小させてもよい。又は、半径方向の所定の基準位置における照明スポットの円周方向の寸法を基準とし、基準位置より外周部に近づくほど、照明スポットの円周方向の寸法を縮小させ、基準位置より中心部に近づくほど、照明スポットの円周方向の寸法を拡大させてもよい。
【0033】
検査走査時において、ウェーハの中心から照明スポット206の中心までの半径方向の距離をRcとするとき、照明スポットの円周方向の寸法(幅)Dcは次の式によって求められる。
【0034】
Dc∝Dm×(Rm/Rc) 式2
Dc:照明スポットの円周方向の寸法(短軸方向の幅)
Rc:照明スポットの半径方向の位置(ウェーハの中心からの距離)
Dm:基準となる照明スポットの円周方向の寸法(照明スポットの短軸方向の幅)
Rm:基準となる照明スポットの半径方向の位置(ウェーハの中心からの距離)
【0035】
こうして本例によると、照明スポットの円周方向の寸法は、外周部から中心部に行くほど、大きくなる。尚、照明スポットの半径方向の幅Drは一定である。従って、照明スポットの面積は、外周部から中心部に行くほど、大きくなる。しかしながら、ウェーハ上の円周方向の線速度は、外周部から中心部に行くほど、小さくなる。そのため、本発明によると、外周部でも中心部でも、照射光量密度は一定となる。
【0036】
尚、照明スポット206の円周方向の寸法を変更させるための手段として、照明装置200内のビームエキスパンダ202が用いられてよい。ビームエキスパンダ202は、例えば、フォーカス又はレンズ間距離が可変に構成されており、倍率変更が可能である。それによってビーム幅を変更し、照明スポットの円周方向の寸法(短軸方向の幅)を変更することができる。
【0037】
図4を参照して半導体ウェーハ100上の照射光量密度について説明する。図4は、半導体ウェーハ100上の照射光量密度を説明する図であり、横軸は、半導体ウェーハ100上の半径方向の位置、即ち、中心からの距離を表す。縦軸は、レーザ光の照射スポットによる照射光量密度を表す。実線の曲線401は、従来の表面検査装置における照射光量密度を表す。中心部では、照射光量密度は大きいが、外周部に行くに従って、照射光量密度が小さくなる。破線の直線400は、半導体ウェーハ100の物性を変化させないために必要な、照射光量密度の制限値を表す。半導体ウェーハ100における照射光量密度は、この制限値より少ないことが必要である。
【0038】
破線の曲線402は、本発明の表面検査装置における照射光量密度を表す。上述のように、ウェーハ上の円周方向の線速度は、外周部から中心部に行くほど小さくなるが、本発明によると、照明スポットの面積は外周部から中心部に行くほど大きくなるから、照射光量密度は一定となる。破線の曲線402の例では、内周部における照射光量密度を基準値としている。従って、ウェーハ100上の照射光量密度は、内周部から外周部に亘って、この内周部における基準値に略等しい。これは、ウェーハ上の内周部における、照明スポット206の円周方向の寸法Dc3を基準値とし、外周部に進むに従って、照明スポット206の円周方向の寸法を減少させた結果である。2つの曲線401、402の間の差403は、照射光量密度の増加分を表す。
【0039】
一方、破線の曲線404は、外周部における照射光量密度を基準値としている。従って、ウェーハ100上の照射光量密度は、内周部から外周部に亘って、この外周部における基準値に略等しい。これは、ウェーハ上の外周部における、照明スポット206の円周方向の寸法Dc1を基準値とし、内周部に進むに従って、照明スポット206の円周方向の寸法を増加させた結果である。
【0040】
破線の曲線404の場合、照射光量密度は照射光量密度の制限値400より十分小さい。そこで、このような場合には、レーザ光の強度を大きくし、照射光量密度の値を大きくしてもよい。この場合でも、照射光量密度の値は、照射光量密度の制限値400より小さくなることが必要である。
【0041】
このように本実施例では、照明スポット206の寸法を変化させ、ウェーハ面における単位時間あたり照射光量密度を一定にすることができる。そのため、検査精度の変動又はばらつきを回避することができる。従来の表面検査装置では、実線の曲線401に示すように、ウェーハの中心部において、照射光量密度が、制限値に近い値となっていた。そのため、外周部では、照射光量密度が制限値より相当に小さくなる。即ち、外周部では、検査精度が小さくなる傾向があった。本発明によると、破線の曲線402に示すように、照射光量密度は、ウェーハ全体で一定であり且つ制限値に近い値とすることができる。そのため、検査精度が向上し、検査精度の変動及びばらつきを回避することができる。
【0042】
図5Aは、従来の光検出器212からの散乱光検出信号の例を示す。横軸は時間、縦軸は信号強度を表す。半導体ウェーハ100の回転角速度は一定であるから、照明スポット206の円周方向の線速度は、内周部に比べて外周部では大きくなる。そのため、半導体ウェーハ100上にある異物が照明スポット206を横切る時間は、異物が半導体ウェーハ100の外周部にあるときは、内周部にあるときに比べて短い。そのため光検出器212から増幅器121を経て得られる散乱光検出信号の信号強度の時間変化波形の幅は、一般的に図5Aに示すように、外周部では小さくなる。外周部における散乱光検出信号の波形501の半値幅Toは、内周部における散乱光検出信号の波形502の半値幅Tiより小さい。
【0043】
図5Bは、本発明の光検出器212からの散乱光検出信号の例を示す。横軸は時間、縦軸は信号強度を表す。ここでは、外周部と中心部の間の基準位置における照明スポット206の寸法を基準として、基準位置より外周側では、照明スポット206の円周方向の寸法を基準値より小さくし、基準位置より内周側では、照明スポット206の円周方向の寸法を基準値より大きくした場合を想定する。内周部における散乱光検出信号の波形504の半値幅Tiは、図5Aに示す従来の例と比べて大きくなっている。一方、外周部における散乱光検出信号の波形502の半値幅Tiは、図5Aに示す従来の例と比べて小さくなっている。
【0044】
このように、照明スポット206の円周方向の寸法を変化させることによって、光検出器212からの散乱光検出信号の幅、特に、半値幅を変化させることができる。例えば、内周部における散乱光検出信号の波形の半値幅Tiは変化させないで、外周部における散乱光検出信号の波形502の半値幅Toをより小さくしたい場合には、外周部において照明スポット206の円周方向の寸法を小さくすればよい。また、外周部における散乱光検出信号の波形の半値幅Toは変化させないで、内周部における散乱光検出信号の波形504の半値幅Tiをより大きくしたい場合には、内周部において照明スポット206の円周方向の寸法を大きくすればよい。
【0045】
次に、A/D変換器122におけるサンプリング間隔ΔTの設定方法を説明する。半導体ウェーハ100の検査中におけるサンプリング間隔ΔTは、通常、一定である。従って、一般に、内周部における散乱光検出信号の波形503、504は、信号幅が大きいから、所定のサンプリング間隔ΔTによってサンプリングを行っても、必要な数のデジタル信号が得られる。しかしながら、外周部における散乱光検出信号の波形501、502は、信号幅が小さいから、所定のサンプリング間隔ΔTによってサンプリングを行っても、必要な数のデジタル信号が得られない可能性がある。特に、本発明のように、外周部における散乱光検出信号の波形502の信号幅が比較的小さい場合には、必要な数のデジタル信号が得られない可能性が大きい。
【0046】
そこで、本発明によると、A/D変換器122におけるサンプリング間隔ΔTを、所定の値に設定する。即ち、外周部における散乱光検出信号の波形502の信号幅が比較的小さい場合でも、十分な時間分解能にてサンプリングできるように、サンプリング間隔ΔTを設定する。例えば、外周部における散乱光検出信号の波形502の半値幅をToとすると、サンプリング間隔ΔTは、式ΔT=To÷nによって求める。nは例えば10であってよい。こうして、本例では、半値幅Toが比較的小さい波形であっても、十分な数のデジタルデータが得られる。即ち、時間的分解能を確保することができる。
【0047】
図6を参照して、本発明の表面検査装置の可変フィルタ124及び減算器123の処理を説明する。図6は光検出器212からの散乱光検出信号の例を示す。横軸は周波数、縦軸は信号強度を表す。実線の曲線501は、従来の表面検査装置における外周部における散乱光検出信号の波形を示し、破線の曲線502は、本発明の表面検査装置における外周部における散乱光検出信号の波形を示す。2つの曲線501、502を比較すると明らかなように、本例では、外周部における散乱光検出信号の波形は縮小している。
【0048】
これは、本例では、外周部では、照明スポット206の円周方向の寸法を基準値より小さくした結果である。散乱光検出信号の波形形状は、照明スポット206の円周方向の寸法によった変化する。照明スポット206の円周方向の寸法を小さくすると、散乱光検出信号の波形幅は小さくなり、照明スポット206の円周方向の寸法を大きくすると、散乱光検出信号の波形幅は大きくなる。
【0049】
可変フィルタ124及び減算器123は、散乱光検出信号から不所望信号成分505を除去するものである。不所望信号成分505は、背景散乱光ノイズやステージ用モータ等のシステムノイズであり、不可避的に発生する。不所望信号成分505の周波数は、散乱光検出信号の波形の幅、又は、半値幅に依存しない。
【0050】
台形601、602は、可変フィルタ124及び減算器123によって除去する信号領域、即ち、カットオフ周波数を表す。可変フィルタ124及び減算器123は、光検出器212からの散乱光検出信号より、台形601、602の外側に存在する信号成分を除去する。従って、カットオフ周波数は、散乱光検出信号の波形形状に対応して設定される。即ち、カットオフ周波数は、照明スポット206の円周方向の寸法に基づいて設定される。
【0051】
台形は、上底と2つの斜辺によって決まる。カットオフ周波数は、デジタル信号より、所定の周波数領域の所定の大きさのデジタル値を除去する。図示のように、散乱光検出信号の信号幅が小さいほうが、不所望信号成分505を除去し易い。即ち、曲線501によって表される散乱光検出信号より不所望信号成分505を除去するより、曲線502によって表される散乱光検出信号より不所望信号成分505を除去するほうが容易であり、高い精度にて、不所望信号成分505を除去することができる。
【0052】
パラメータ演算器111におけるカットオフ周波数の設定方法を説明する。フィルタ周波数帯域の中心周波数は次の式によって求める。
【0053】
fc=1÷((1÷rθ)×(Dc÷π×Rc)) 式3
rθ:回転ステージ103の回転数
Dc:照明スポットの円周方向の寸法(短軸方向の幅)
Rc:照明スポットの半径方向の位置(ウェーハの中心からの位置)
【0054】
こうして本発明によると、散乱光検出信号より不所望信号成分505を容易に且つ確実に除去することができる。そのため、ノイズに対して、欠陥、異物を精度よく検出できる。本発明に表面検査装置によると異物・欠陥の検出感度SNRは、次に式によって得られる。
【0055】
SNR=√(fc÷fx) 式4
SNR:ノイズ信号比(Signal To Noise Ratio)
fc:照明スポットの円周方向の寸法の変更前の散乱光検出信号の周波数
fx:照明スポットの円周方向の寸法の変更後の散乱光検出信号の周波数
【0056】
式3に示すように、フィルタ周波数帯域の中心周波数は、照明スポットの円周方向の寸法Dcの関数である。従って、検出感度SNRは、次の式によって得られる。この式より明らかに、検出感度SNRは照明スポットの円周方向の寸法の変化に対応して向上する。
【0057】
SNR=√(Dc÷Dx) 式5
Dc:照明スポットの円周方向の寸法の変更後の値
Dx:照明スポットの円周方向の寸法の変更前の値
【0058】
図7を参照して説明する。図7の左側の縦軸は、主走査(単位:円周方向の走査角度θ)を示し、右側の縦軸は、副走査(単位:半径方向の走査距離r)を示す。横軸は時間である。本実施例では、回転ステージ103による半導体ウェーハ100の回転角速度は一定であり、直進ステージ104による半導体ウェーハ100の直進線速度は一定である。従って、主走査を表すグラフは、周期T毎に現れる直線であり、その傾きは、回転角速度の大きさを表す。副走査を表すグラフは、半径方向の走査距離rの最小値から最大値まで変化する直線であり、その傾きは、半径方向の直進線速度の大きさを表す。
【0059】
半導体ウェーハ100が1回転する間に、照明スポットは半径方向に沿ってΔrだけ移動するものとする。照明スポット206の半径方向の幅Drが、1回転当りの照明スポット206の半径方向の走査量Δrより小さいと、即ち、Δr>Drであると、照明スポット206の螺旋状走査によって、半導体ウェーハ100上において照明光が照射されない領域が生じる。即ち、検査されない隙間領域が生じる。従って、通常Δr<Drに設定する。それによって、照明スポット206を半導体ウェーハ100の概略全表面上で走査させることができる。
【0060】
図8を参照して本発明による表面検査装置における照射スポットの寸法を設定する処理を説明する。ステップS101にて、照明スポット206の走査を開始する。即ち、照明スポット206を半導体ウェーハ100上にて、主走査と副走査の組み合わせた走査を開始する。ステップS102にて、半導体ウェーハ100上の照明スポットの位置を検出する。即ち、照明スポットの輻走査方向の位置を検出する。ステップS103にて、照明スポットの半径方向の位置に基づいて、照明スポットの円周方向の寸法を演算する。この演算には上述の式2を用いてよい。ステップS104にて、照明スポットの円周方向の寸法に基づいて、照明装置を制御する。上述のように、ビームエキスパンダ202を制御することにより、円周方向のビーム幅を調節することにより、所望の照明スポットの円周方向の寸法を得ることができる。
【0061】
以上本発明の例を説明したが本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは、当業者によって容易に理解されよう。
【符号の説明】
【0062】
100…半導体ウェーハ、101…チャック、102…被検査体移動ステージ、103…回転ステージ、104…直進ステージ、105…Zステージ、106…検査座標検出機構、107…異物・欠陥座標検出機構、108…上位CPU、109…入力装置、110…表示装置、111…パラメータ演算器、120…照明・検出光学系、121…増幅器、122…A/D変換器、123…減算器、124…可変フィルタ、125…異物・欠陥判定機構、126…粒径算出機構、130…異物・欠陥、200…照明装置、201…光源、202…エキスパンダ、203…照射レンズ、204…照射ビーム、205…走査軌跡、206…照明スポット、210…検出光学系、211…集光レンズ、212…光検出器、400…照射光量密度制限値、401…従来の照射光量密度カーブ、402…今回の照射光量密度カーブ、403…照射光量密度増加分、404…今回の照射光量密度カーブ、501…従来の外周部の信号分布、502…今回の外周部の信号分布、503…従来の内周部の信号分布、504…今回の内周部の信号分布、505…不所望信号成分、601…従来のフィルタ周波数帯域、602…今回のフィルタ周波数帯域

【特許請求の範囲】
【請求項1】
被検査体を回転させながら半径方向に沿って直進させるように構成された被検査体移動ステージと、前記被検査体の表面上にレーザ光の照明スポットを生成する照明装置と、前記被検査体上の照明スポットの位置を検出する検査座標検出装置と、前記照明スポットからの散乱光を検出して散乱光検出信号に変換する光検出器と、前記散乱光検出信号をデジタルデータに変換するA/D変換器と、前記A/D変換器によって得られるデジタルデータから前記被検査体の表面の異物又は欠陥を判定する異物・欠陥判定部と、を有し、
前記照明装置は、前記検査座標検出装置によって得られた前記照明スポットの半径方向の位置に基づいて、前記照明スポットの円周方向の寸法を変化させるように構成されており、前記照明スポットが前記被検査体上を外周部と中心部の間にて走査される間に、前記照明スポットにおける照射光量密度が一定となるように構成されている表面検査装置。
【請求項2】
請求項1記載の表面検査装置において、
前記照明スポットの円周方向の寸法Dcは、被検査体上に設定した基準位置に基づいて次の式によって決めることを特徴とする表面検査装置。
Dc∝Dm×(Rm/Rc)
Dc:照明スポットの円周方向の寸法
Rc:照明スポットの半径方向の位置
Rm:基準位置の半径方向の位置
Dm:基準位置における照明スポットの円周方向の寸法
【請求項3】
請求項1記載の表面検査装置において、
前記異物・欠陥判定部は、前記A/D変換器によって得られるデジタルデータから不用なノイズを除去する可変フィルタ機能を備えており、該可変フィルタ機能は、デジタルデータから除去する信号の周波数領域を決めるパラメータであるカットオフ周波数を有しており、該カットオフ周波数は、前記光検出器から得られる散乱光検出信号の波形形状に基づいて制御されるように構成されている表面検査装置。
【請求項4】
請求項1記載の表面検査装置において、
前記照明スポットにおける照射光量密度は、前記被検査体上のエネルギー照射量が被検査体の物性を変化させることがない値となるように設定されていることを特徴とする表面検査装置。
【請求項5】
請求項1記載の表面検査装置において、
前記A/D変換器におけるサンプリング周波数は、照明スポットが被検査体の最外周部にあるときに前記光検出器から得られる散乱光検出信号の波形の半値幅に基づいて、設定されることを特徴とする表面検査装置。
【請求項6】
請求項1記載の表面検査装置において、
前記照明装置は、レーザ光を発生する光源と、該レーザ光のビーム幅を調整するビームエキスパンダと、を有し、前記ビームエキスパンダは、前記検査座標検出装置によって得られた前記照明スポットの半径方向の位置に基づいて、前記照明スポットの円周方向の寸法を変化させるよう構成されていることを特徴とする表面検査装置。
【請求項7】
請求項1記載の表面検査装置において、
前記検査座標検出装置は、前記照明スポットの円周方向の角度座標である主走査座標位置θと半径方向の直線座標である副走査座標位置Rを検出することを特徴とする表面検査装置。
【請求項8】
請求項7記載の表面検査装置において、
前記検査座標検出装置によって検出された主走査座標位置θと副走査座標位置Rに基づいて、前記異物・欠陥判定部によって判定された異物又は欠陥の主走査座標位置θと副走査座標位置Rを検出する異物・欠陥座標検出部を有することを特徴とする表面検査装置。
【請求項9】
請求項1記載の表面検査装置において、
前記照明スポットの半径方向の寸法Drが、前記被検査体の1回転当りの半径方向の走査量Δrより大きいことを特徴とする表面検査装置。
【請求項10】
被検査体を回転させながら半径方向に沿って直進させるステップと、
前記回転及び直進している被検査体の表面上にレーザ光の照明スポットを生成する照明スポット生成ステップと、
前記被検査体上の照明スポットの位置を検出する検査座標検出ステップと、
前記照明スポットからの散乱光を検出して散乱光検出信号に変換するする光検出ステップと、
前記散乱光検出信号をデジタルデータに変換するA/D変換ステップと、
前記デジタルデータから被検査体の表面の異物又は欠陥を判定する異物・欠陥判定ステップと、を有する表面検査方法において、
前記照明スポット生成ステップは、前記照明スポットの半径方向の位置に基づいて、前記照明スポットの円周方向の寸法を変化させ、前記照明スポットが前記被検査体上を外周部と中心部の間にて走査される間に、前記照明スポットにおける照射光量密度が一定となるように構成されている表面検査方法。
【請求項11】
請求項10記載の表面検査方法において、
前記照明スポットの円周方向の寸法Dcは、被検査体上に設定した基準位置に基づいて次の式によって決めることを特徴とする表面検査方法。
Dc∝Dm×(Rm/Rc)
Dc:照明スポットの円周方向の寸法
Rc:照明スポットの半径方向の位置
Rm:基準位置の半径方向の位置
Dm:基準位置における照明スポットの円周方向の寸法
【請求項12】
請求項10記載の表面検査方法において、
前記A/D変換ステップでは、前記デジタルデータから不用なノイズを除去する可変フィルタ機能を用いており、該可変フィルタ機能は、デジタルデータから除去する信号の周波数領域を決めるパラメータであるカットオフ周波数を有しており、該カットオフ周波数は、前記光検出ステップにて得られる散乱光検出信号の波形形状に基づいて制御されるように構成されている表面検査方法。
【請求項13】
半導体ウエーハを回転させながら半径方向に沿って直進させるように構成された被検査体移動ステージと、前記半導体ウエーハの表面上にレーザ光の照明スポットを生成する照明装置と、前記半導体ウエーハ上の照明スポットの位置を検出する検査座標検出装置と、前記照明スポットからの散乱光を検出して散乱光検出信号に変換するする光検出器と、前記散乱光検出信号をデジタルデータに変換するA/D変換器と、前記A/D変換器によって得られるデジタルデータから前記半導体ウエーハの表面の異物又は欠陥を判定する異物・欠陥判定部と、を有し、
前記照明スポットが前記半導体ウエーハ上を外周部と中心部の間にて走査される間に、前記照明スポットにおける照射光量密度が一定となるように前記照明装置からの照明光が制御されるように構成された表面検査装置。
【請求項14】
請求項13記載の表面検査装置において、
前記照明スポットが前記半導体ウエーハ上を外周部と中心部の間にて走査される間に、前記照明スポットの円周方向の寸法は外周部では小さく中心部では大きくなるように変更するように構成された表面検査装置。
【請求項15】
請求項13記載の表面検査装置において、
前記A/D変換器におけるサンプリング周波数は、前記照明スポットが前記半導体ウエーハの最外周部にあるときに前記光検出器から得られる散乱光検出信号の波形の半値幅に基づいて、設定されることを特徴とする表面検査装置。
【請求項16】
請求項13記載の表面検査装置において、
前記異物・欠陥判定部は、前記A/D変換器によって得られるデジタルデータから不用なノイズを除去する可変フィルタ機能を備えており、該可変フィルタ機能は、デジタルデータから除去する信号の周波数領域を決めるパラメータであるカットオフ周波数を有しており、該カットオフ周波数は、前記光検出器から得られる散乱光検出信号の波形形状に基づいて制御されるように構成されている表面検査装置。
【請求項17】
請求項13記載の表面検査装置において、
前記異物・欠陥判定部は、前記A/D変換器によって得られるデジタルデータから不用なノイズを除去する可変フィルタ機能を備えており、該可変フィルタ機能は、デジタルデータから除去する信号の周波数領域を決めるパラメータであるカットオフ周波数を有しており、該カットオフ周波数は、前記照明スポットの円周方向の寸法に基づいて制御されるように構成されている表面検査装置。
【請求項18】
請求項13記載の表面検査装置において、
前記照明スポットの円周方向の寸法Dcは、被検査体上に設定した基準位置に基づいて次の式によって決めることを特徴とする表面検査装置。
Dc∝Dm×(Rm/Rc)
Dc:照明スポットの円周方向の寸法
Rc:照明スポットの半径方向の位置
Rm:基準位置の半径方向の位置
Dm:基準位置における照明スポットの円周方向の寸法
【請求項19】
請求項13記載の表面検査装置において、
前記照明装置は、レーザ光を発生する光源と、該レーザ光のビーム幅を調整するビームエキスパンダと、を有し、前記ビームエキスパンダは、前記検査座標検出装置によって得られた前記照明スポットの半径方向の位置に基づいて、前記照明スポットの円周方向の寸法を変化させるよう構成されていることを特徴とする表面検査装置。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−209148(P2011−209148A)
【公開日】平成23年10月20日(2011.10.20)
【国際特許分類】
【出願番号】特願2010−78057(P2010−78057)
【出願日】平成22年3月30日(2010.3.30)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】