説明

車両および車両制御プログラム

【課題】搭乗者の進行したい方向を正確に汲み取りながら走行予定軌道を選択して自動走行を行うことができる車両および車両制御プログラムを提供すること。
【解決手段】第3車両位置予測処理(S107)によって、ステアリングホイール13の回転角速度Δδを取得してステアリングホイール13の操舵角を算出し、そのステアリングホイール13の操舵角から前輪2FL,2FRへ付与される操舵角を算出して、その前輪2FL,2FRへ付与される操舵角と車両速度とに基づいて車両1のヨーレートを推定し、その推定したヨーレートから所定時間後の車両位置を予測する。これにより、搭乗者の進行したい方向を、所定時間後の車両位置まで特定して把握しているので、予測された車両位置に基づいて走行軌道を選択することによって、搭乗者の進行した方向を正確に汲み取りながら走行予定軌道を選択して、自動走行を行うことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両および車両制御プログラムに関し、特に、搭乗者の行きたい方向を正確に汲み取りながら走行予定軌道を選択して自動走行を行うことができる車両および車両制御プログラムに関するものである。
【背景技術】
【0002】
従来より、車両に搭載されたコンピュータの制御によって、自車両を自動走行させる技術が知られている(例えば、特許文献1)。従来の車両の自動走行では、搭乗者によって目的地や経由地の位置情報が入力されると、その入力された位置情報に基づいて、コンピュータが目的地までの走行経路を設定する。その後、コンピュータは、その設定された走行経路に沿って車両が走行するように、該車両の走行を制御している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平11−282530号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述した従来の技術では、搭乗者が一旦目的地や経由地を設定すると、後はコンピュータが走行経路を設定して自動で走行するため、どこをどのように走るかは全て車両が判断し決定する。これにより、搭乗者が、急遽目的地を変更した場合や、寄り道をしたい場合、又は、渋滞等により進行方向を変更した場合等において、車両を停車させて目的地や経由地を設定し直す必要性が生じる。このように、車両を自動走行させた場合、搭乗者の思いに従って車両を走行させることができないため、本来人が持っている自由に思うまま移動したい、という欲求を満たすことができない、という問題点があった。
【0005】
そこで、出願人は、車両が走行すべき軌道を示した走行予定軌道に沿って自動走行している場合に、複数の走行予定軌道の候補を用意し、車両の搭乗者によって操作されたステアリングホイールの操舵方向から搭乗者の行きたい方向を判断して、複数用意された走行予定軌道の候補の中から行きたい方向にある走行予定軌道を選択して設定する発明を行った(未公知)。これにより、搭乗者の意思に基づいて走行予定軌道が設定され、その走行予定軌道に沿って搭乗者が進行したい方向へ車両を進行させることができる。
【0006】
ここで、ステアリングホイールの操舵方向が、そのまま搭乗者の進行したい方向になるとは限らない。図11は、路面の傾きに対して、ステアリングホイールの操舵方向と車両の進行方向との関係を示した図であり、(a)は、平坦な路面を走行中にステアリングホイールの操舵を行わなかった場合の車両の進行方向を示し、(b)は、車両の進行方向左側が高く右側が低い傾いた路面を走行中にステアリングホイールの操舵を行わなかった場合の車両の進行方向を示し、(c)は、(b)と同様に傾いた路面を走行中にステアリングホイールを左側に操舵した場合の車両の進行方向を示している。
【0007】
図11(a)に示す通り、平坦な路面を走行中は、ステアリングホイールの操舵を行わなくても車両は直進する。また、図示はしていないが、平坦な路面を走行中は、ステアリングホイールの操舵方向に車両は進行する。しかしながら、図11(b)に示す通り、車両の進行方向左側が高く右側が低い傾いた路面を走行中にステアリングホイールの操舵を行わなかった場合は、車両は右方向へ旋回することになり、車両を直進させるためには、図11(c)に示す通り、ステアリングホイールを左方向に操舵させる必要がある。
【0008】
このように、路面の傾きに応じて、ステアリングホイールの操舵方向と、車両の進行方向とは必ずしも一致しない。これにより、搭乗者は進行したい方向に車両を進めたい場合、走行中の路面の傾きによって、ステアリングホイールの操舵方向を変えることになる。よって、上述した通り、ステアリングホイールの操舵方向を参照しても、必ずしも搭乗者の進行したい方向にはならない。従って、ステアリングホイールの操舵方向に基づいて走行予定軌道を選択しても、搭乗者が意図した方向とは別の方向へ車両が進行していく場合が生じるおそれがあった。
【0009】
本発明は、上述した問題点を解決するためになされたものであり、搭乗者の進行したい方向を正確に汲み取りながら走行予定軌道を選択して自動走行を行うことができる車両および車両制御プログラムを提供することを目的としている。
【課題を解決するための手段および発明の効果】
【0010】
この目的を達成するために請求項1記載の車両によれば、記憶手段に記憶された情報に基づいて、車両が走行予定軌道に沿って走行するように、走行制御手段が車両の走行を制御する。ここで設定される走行予定軌道の候補は、取得手段により複数取得される。車両には、車両の搭乗者による回転操作によって車両の操舵方向が指示される操作手段が設けられている。その操作手段に対して行われる回転操作の角速度を検出手段により検出し、その検出手段により検出された角速度から車両に付与すべき操舵角を算出して、その算出した回転操作角と車両速度とに基づいて車両のヨーレートをヨーレート推定手段により推定する。そして、その推定したヨーレートと車両速度とに基づいて所定時間後の車両位置を車両位置推定手段により推定し、その推定した車両位置に基づいて、軌道取得手段により取得された複数の走行予定軌道の候補の中から1つ走行予定軌道を選択手段によって選択して、その選択した走行予定軌道に関する情報を記憶手段に記憶する。このように、操作手段の回転操作の角速度から車両に付与すべき操舵角を算出して車両のヨーレートを推定し、そのヨーレートから所定時間後の車両位置を推定しており、搭乗者の進行したい方向を、所定時間後の車両位置まで特定して把握している。よって、その推定された車両位置に基づいて走行予定軌道を選択することによって、搭乗者の進行したい方向を正確に汲み取りながら走行予定軌道を選択して自動走行を行うことができるという効果がある。
【0011】
なお、請求項5記載の車両制御プログラムにおいても、その車両制御プログラムを車両に設けたコンピュータにて実行させることによって、請求項1記載の車両と同様の作用効果を奏する。
【0012】
ここで、請求項1記載の「軌道取得手段」及び請求項5記載の「軌道取得ステップ」は、車両の外部に設けられた装置(サーバや携帯端末等)から、その装置にて生成された複数の走行予定軌道の候補を取得するものの他、自車両内で生成した複数の走行予定軌道の候補を取得するものであってもよい。また、車両の外部と自車両内とから、複数の走行予定軌道の候補を取得するものであってもよい。
【0013】
請求項2記載の車両によれば、車両位置推定手段は、車両の車両速度が0である場合に、操舵手段により指示された操舵方向へ車両を操舵して所定の長さだけ車両を進めたと仮定した場合の車両位置を推定するように構成されている。車両速度が0の場合は、推定されるヨーレートも0であるため、そのヨーレートに基づいて所定時間後の車両位置を推定しても現在の車両位置が推定されるだけである。そこで、この場合は、操舵手段により指示された操舵方向へ車両を操舵して所定の長さだけ車両を進めたと仮定して車両位置を推定することで、請求項1記載の車両の奏する効果に加え、たとえ、車両速度が0であったとしても、搭乗者の進行したい方向を汲み取って走行予定軌道を選択できるという効果がある。なお、請求項2記載の「所定の長さだけ前記車両を進めたと仮定した場合」には、直接的に所定の長さだけ車両を進めたと仮定する場合だけでなく、間接的に所定の長さだけ車両を進めたと仮定する場合、例えば、「所定の速度で所定の時間だけ前記車両を進めたと仮定した場合」をも含む概念である。
【0014】
請求項3記載の車両によれば、軌道取得手段により取得された複数の走行予定軌道の候補の中から、車両位置推定手段により推定された車両位置に最も距離の短い候補が1つ、走行予定軌道として選択手段により選択される。これにより、推定されたヨーレートに基づいて所定時間後の車両位置として推定された位置に最も近い走行予定軌道が選択されて、その選択された走行予定軌道に関する情報が記憶手段に記憶されるので、請求項1又は2に記載の車両の奏する効果に加え、搭乗者の進行したい方向にある走行予定軌道を確実に選択できるという効果がある。
【0015】
請求項4記載の車両によれば、軌道取得手段により取得される走行予定軌道の各候補には、車両が走行すべき軌道情報と共に、その軌道上の各地点において車両の向くべき方向を示す情報が含まれている。そして、車両位置推定手段は、所定時間後の車両位置と合わせて、その車両位置において車両の向くべき方向を推定するように構成されており、軌道取得手段により取得された走行予定軌道の候補の少なくとも一部の中から、その候補において車両位置推定手段により推定された車両位置に最も近い地点における車両の向くべき方向が、車両位置推定手段により推定された車両の向くべき方向に最も近い候補を1つ、走行予定軌道として選択手段により選択する。これにより、車両位置推定手段により推定された車両位置だけでなく、車両の向くべき方向をも考慮して走行予定軌道が選択され、その選択された走行予定軌道に関する情報が記憶手段に記憶されるので、請求項1から3のいずれかに記載の車両の奏する効果に加え、搭乗者の進行したい方向にある走行予定軌道の選択の確実性を高めることができるという効果がある。
【図面の簡単な説明】
【0016】
【図1】第1実施形態における車両を模式的に示した模式図である。
【図2】走行制御装置を含む車両の電気的構成を示したブロック図である。
【図3】運転支援処理を示すフローチャートである。
【図4】推定軌道生成処理を示すフローチャートである。
【図5】推奨軌道生成処理が実行する処理の内容を模式的に示した模式図である。
【図6】(a)は、危険ポテンシャルの検出範囲を説明する図であり、(b)は、危険ポテンシャルの生成方法を説明する図である。
【図7】(a)は、車両が直線上の道路を走行する場合の危険ポテンシャルを示す図であり、(b)は、車両が右側に直角に曲がった道路を走行する場合の危険ポテンシャルを示す図である。
【図8】第1車両位置予測処理において、微小時間Δt経過後の車両1の車両位置を算出する方法を説明するための図である。
【図9】第2車両位置予測処理において車両位置を予測する方法を説明するための図である。
【図10】第2実施形態における運転支援処理を示すフローチャートである。
【図11】路面の傾きに対して、ステアリングホイールの操舵方向と車両の進行方向との関係を示した図である。
【発明を実施するための形態】
【0017】
以下、本発明を実施するための形態について添付図面を参照して説明する。図1は、本発明の第1実施形態における車両1を模式的に示した模式図である。
【0018】
まず、図1を参照して、車両1の構成について説明する。車両1は、自車両の走行を自動で制御する自動走行をさせつつ、搭乗者の意思に沿って走行経路を決定できるように構成されている。ここで、自動走行とは、搭乗者がアクセルペダル、ブレーキペダルや車両1の操舵を操作しなくても、予め定めた走行軌道に沿って車両1を走行させることである。走行軌道とは、車両1が走行すべき軌道を示したものである。
【0019】
この車両1では、搭乗者の行きたい方向を正確に汲み取りながら走行軌道を選択して、自動走行を行うように構成されている。以下、詳細に説明する。
【0020】
まず、車両1には、走行制御装置100が設けられている。走行制御装置100は、車両1の走行を制御するコンピュータ装置である。車両1の自動走行は、この走行制御装置100によって行われる。走行制御装置100の詳細構成については、図2を参照して後述する。
【0021】
車両1は、走行制御装置100、ステアリングホイール13の他に、複数(本実施形態では4輪)の車輪2FL,2FR,2RL,2RRと、それら複数の車輪2FL〜2RRの内の一部(本実施形態では、左右の前輪2FL,2FR)を回転駆動する車輪駆動装置3と、複数の車輪2FL〜2RRの内の一部(本実施形態では、左右の前輪2FL,2FR)を操舵する操舵駆動装置5及びステアリング装置6と、ステアリングホイール13と、ジャイロセンサ装置24と、運転支援スイッチ25と、第1〜第4カメラ26a〜26dと、現在位置検出装置27と、VICS(登録商標)受信装置28と、を主に有している。
【0022】
車輪2FL,2FRは、車両1の前方側に配置される左右の前輪であり、車輪駆動装置3によって回転駆動される駆動輪として構成されている。一方、車輪2RL,2RRは、車両1の後方側に配置される左右の後輪であり、車両1の走行に伴って従動する従動輪として構成されている。
【0023】
車輪駆動装置3は、左右の前輪2FL,2FRに回転駆動力を付与するものであり、デファレンシャルギヤ(図示せず)及び一対のドライブシャフト31を介して左右の前輪2FL,2FRに接続されている。車輪駆動装置3は、車両1に設けられたアクセルペダル(図示せず)の踏み込み量に応じて、ドライブシャフト31を介して左右の前輪2FL,2FRに回転駆動力を付与する。これにより、車両1は、アクセルペダルの踏み込み量に応じた速度で走行する。
【0024】
なお、車輪駆動装置3は、走行制御装置100から、目標とすべき車両速度を通知する制御信号に基づき、その通知された車両速度となるように、ドライブシャフト31を介して左右の前輪2FL,2FRに回転駆動力を付与するように構成してもよい。この場合、車輪駆動装置3は、走行制御装置100の入出力ポート95(図2参照)に接続され、走行制御装置100に設けられたCPU91(図2参照)から制御信号を受信可能に構成すればよい。
【0025】
操舵駆動装置5は、左右の前輪2FL,2FRを操舵するための装置であり、ステアリング装置6に回転駆動力を付与する電動モータ5a(図2参照)を備えて構成されている。ステアリング装置6は、ステアリングシャフト61と、フックジョイント62と、ステアリングギヤ63と、タイロッド64と、ナックルアーム65とを主に備えて構成されている。なお、ステアリング装置6は、ステアリングギヤ63がピニオン(図示せず)とラック(図示せず)とを備えたラックアンドピニオン機構によって構成されている。
【0026】
操舵駆動装置5は、走行制御装置100からの制御信号によって電動モータ5aを駆動すると、電動モータ5aの回転駆動力がステアリング装置6のステアリングシャフト61に付与される。その回転駆動力は、ステアリングシャフト61を介してフックジョイント62に伝達されると共にフックジョイント62によって角度を変えられ、ステアリングギヤ63のピニオンに回転運動として伝達される。
【0027】
そして、ピニオンに伝達された回転運動はラックの直線運動に変換され、ラックが直線運動することで、ラックの両端に接続されたタイロッド64が移動し、ナックルアーム65を介して前輪2FL,2FRRが操舵される。これにより、車両1は、走行制御装置100から指示された操舵角で、前輪2FL,2FRが操舵される。
【0028】
ステアリングホイール13は、車両1の搭乗者から回転操作されることで、車両1の操舵方向の指示を受け付けるものである。ステアリングホイール13は、搭乗者によって回転操作されると、その回転角速度を走行制御装置100へ送信する。なお、ステアリングホイール13は、搭乗者によって回転操作された回転角を走行制御装置100へ送信してもよい。そして、走行制御装置100が、ステアリングホイール13から取得した回転角を微分して、回転角速度を算出してもよい。
【0029】
走行制御装置100は、このステアリングホイール13から送信される回転角速度を積分し、ステアリングホイール13の操舵角を算出する。詳細については後述するが、走行制御装置100は、車両1が所定の領域(判定エリア)、例えば、道路が分岐する手前(交差点の手前等)を走行している場合に、新たに走行軌道を選択して設定するが、その領域を走行中に、ステアリングホイール13が搭乗者によって操作されると、その回転角速度から算出されたステアリングホイール13の操舵角を取得する。そして、走行制御装置100は、その操舵角から前輪2FL,2FRの操舵角を決定し、その操舵角で前輪2FL,2FRが操舵されるように、操舵駆動装置5へ制御信号を送信する。
【0030】
ジャイロセンサ装置24は、車両1の水平面に対するロール角およびピッチ角と、ヨー角と、ヨーレートとを検出すると共に、その検出結果を走行制御装置100へ出力するための装置であり、車両1の重心を通る基準軸(車両1の上下方向軸、左右方向軸、前後方向軸)回りの車両1の回転角(ロール角、ピッチ角、ヨー角)をそれぞれ検出するセンサ部(図示せず)と、そのセンサ部の検出結果を処理して、ロール角、ピッチ角、ヨー角およびヨーレートをCPU91へ出力する出力回路(図示せず)とを主に備えている。
【0031】
車両1が上記の判定エリア(例えば、道路が分岐する手前)を走行している場合に、ステアリングホイール13が搭乗者によって操作されると、上述した通り、そのステアリングホイール13の操舵角に応じて操舵駆動装置5により前輪2FL,2FRに所定の操舵角が付与される。これにより、車両1は旋回を始めるので、ヨーレートが発生する。
【0032】
走行制御装置100は、ジャイロセンサ装置24よりそのときのヨーレートを取得し、その取得したヨーレートと車両速度とから、所定時間後の車両1の車両位置を予測(推定)する。ここで、走行制御装置100は、予め、走行軌道の候補となる推奨軌道を複数生成している。走行制御装置100は、予測した所定時間後の車両1の車両位置に最も距離の近い推奨軌道を抽出し、それを新たな走行軌道として選択する。
【0033】
このように、車両1では、新たな走行軌道を選択して設定すべき判定エリアに車両1が位置した場合は、搭乗者によるステアリングホイール13の回転操作に基づいて、車両1が操舵され、その車両1の操舵に基づいて実際に車両1に発生したヨーレートを用いて所定時間後の車両位置を予測する。これにより、車両1が走行している路面の傾きに左右されることなく、搭乗者の進行したい方向を正確に把握できる。そして、その予測された車両位置に基づいて走行軌道が選択されるので、搭乗者の進行したい方向を正確に汲み取りながら走行軌道を選択して自動走行を行うことができる。
【0034】
運転支援スイッチ25は、自動走行により車両1を走行させたい場合に、搭乗者が押下するスイッチである。運転支援スイッチ25が搭乗者により押下され、オン状態にされると、走行制御装置100は、後述する運転支援処理(図3参照)を実行する。これにより、車両1において、搭乗者の進行した方向を正確に汲み取りながら走行軌道が選択され、自動走行が行われる。また、運転支援スイッチ25が搭乗者により再び押下されオフ状態されると、走行制御装置100は運転支援処理を終了し、車両1の自動走行が終了する。
【0035】
第1〜第4カメラ26a〜26dは、いずれも、車両1の周囲を撮像するための撮像装置であり、CCDイメージセンサや、CMOSイメージセンサなどの撮像素子が搭載されたデジタルカメラで構成されている。各第1〜第4カメラ26a〜26dは、撮像した画像を画像データに変換して走行制御装置100へ出力する。
【0036】
第1カメラ26aは、車両1の前方中央に配設され、第2カメラ26bは、車両1の右側面のサイドミラー(非図示)に配設され、第3カメラ26cは、車両1の左側面のサイドミラー(非図示)に配設され、第4カメラ26dは、車両1の後方中央に配設されている。本実施形態では、3つの第1〜第4カメラ26a〜26dにより、車両1を中心として車両1の少なくとも前方方向30m及び後方方向15mと、車両1を中心として車両1の左右方向に少なくとも24mの範囲を撮像可能に構成されている。
【0037】
走行制御装置100は、第1〜第4カメラ26a〜26dより取得した画像データを解析し、車両1の周辺情報を取得する。例えば、歩道や車線、センターラインを判断し、車両1が走行している道路の際(きわ)を判断して、車両1の周辺情報とする。
【0038】
また、画像データの解析結果から、道路上の障害物を判断したり、道路または歩道にいる歩行者、自転車、他の車両(対向車や前後左右にいる車両)の位置を判断して、車両1の周辺情報とする。更に、画像データの解析結果から、道路の状態、例えば、雨や雪により路面が滑りやすい状態にあるか否か等を判断して、車両1の周辺情報とする。
【0039】
詳細については後述するが、走行制御装置100は、自動走行を行う場合に、これらの判断結果に基づいて、走行可能な道路または車線毎に、その道路または車線上の危険ポテンシャルを算出する。危険ポテンシャルとは、道路または車線上のある地点を車両1が走行した場合のその地点における危険度を表す指標である。
【0040】
走行制御装置100は、算出した危険ポテンシャルを基に、最も危険ポテンシャルの小さい地点を車両1が自動走行するように、各道路または車線に対して、走行軌道の候補である推奨軌道を生成する。そして、走行制御装置100は、複数の道路または車線に対して生成された推奨軌道の中から走行軌道を選択し、その走行軌道に沿って車両1を自動で走行させるべく、車両1の走行を制御する。
【0041】
また、走行制御装置100は、第1〜第4カメラ26a〜26dより取得した画像データを解析して、現在車両1が進行している道路に接続された他の道路の有無を判断し、これも周辺情報とする。走行制御装置100は、この道路の有無の判断結果と、走行制御装置100に格納された地図情報データベース(以下「地図情報DB」と称す)92b(図2参照)や、VICS受信装置28で受信した交通規制情報等とに基づいて、走行可能な道路を判断する。そして、走行制御装置100は、走行可能な道路の1つ1つについて推奨軌道を生成し、生成した推奨軌道の中から走行軌道を1つ選択する。
【0042】
現在位置検出装置27は、車両1の現在位置(緯度、経度からなる絶対座標値)を検出するためのものである。この現在位置検出装置27は、人工衛星を利用して車両の位置を測定するGPS(Global Positioning System)受信装置、地磁気を検出して車両の方位を求める地磁気センサ、ジャイロセンサ、車速センサの1又は複数が使用される。更には、地図情報DB92bと走行軌道とのマップマッチング或いは地図情報DB92bと第1〜第4カメラ26a〜26dでとらえた構造物や標識等とのマッチングにより現在位置を同定してもよい。
【0043】
現在位置検出装置27で検出した車両1の現在位置は、走行制御装置100へ送信される。走行制御装置100は、現在位置検出装置27より受信した車両1の現在位置に基づいて、車両1が走行軌道を沿って走行するように、車両1の自動走行を制御する。また、走行制御装置100は、その車両1の現在位置に基づいて地図情報データDB92bから、現在車両1が進行している道路に接続された他の道路に関する道路データを取得して、推奨軌道を生成する。
【0044】
VICS受信装置28は、渋滞や交通規制などの道路交通情報を提供するVICS(Vehicle Information and Communication System)より、その道路交通情報を受信する装置である。VICS受信装置28は、受信した道路交通情報を走行制御装置100へ送信する。走行制御装置100は、その道路交通情報に含まれる交通規制情報を基に、車両1が進行している道路に接続された他の道路が走行可能か否かを判断し、走行可能な道路に対して、推奨軌道を生成する。
【0045】
次いで、図2を参照して、走行制御装置100の詳細構成について説明する。図2は、走行制御装置100を含む車両1の電気的構成を示したブロック図である。
【0046】
走行制御装置100は、CPU91、フラッシュメモリ92及びRAM93を有しており、それらがバスライン94を介して入出力ポート95に接続されている。入出力ポート95には、上述した、操舵駆動装置5、ステアリングホイール13、ジャイロセンサ装置24、運転支援スイッチ25、第1〜第4カメラ26a〜26d、現在位置検出装置27、VICS受信装置、及び、その他の入出力装置99などが接続されている。
【0047】
CPU91は、入出力ポート95に接続されたステアリングホイール13、ジャイロセンサ装置24、運転支援スイッチ25、第1〜第4カメラ26a〜26d、現在位置検出装置27、VICS受信装置28等から送信された各種の情報に基づいて、操舵駆動装置5等を制御する演算装置である。
【0048】
フラッシュメモリ92は、CPU91によって実行される制御プログラムや固定値データ等を記憶するための書き換え可能な不揮発性のメモリである。このフラッシュメモリ92には、プログラムメモリ92a及び地図情報DB92bが設けられている。
【0049】
プログラムメモリ92aは、CPU91にて実行される各種のプログラムが格納されたフラッシュメモリ92上の領域である。後述する図3のフローチャートに示す運転支援処理や図4のフローチャートに示す推奨軌道生成処理等をCPU91にて実行させるための各プログラムは、このプログラムメモリ92aに格納されている。
【0050】
CPU91は、このプログラムメモリ92aに格納された各プログラムに従って各種処理を実行することで、搭乗者の行きたい方向を正確に汲み取りながら走行軌道を選択して、車両1に自動走行を行わせる。
【0051】
地図情報DB92bは、地図および道路に関する情報が格納されたデータベースである。この地図情報DB92bでは、各種施設の場所や、各種道路の位置などが、緯度、経度からなる絶対座標値によって示されている。
【0052】
走行制御装置100は、現在位置検出装置27によって検出された車両1の現在位置と、地図情報DB92bに格納された情報とから、車両1が進行している道路に接続された他の道路を判断する。走行制御装置100は、地図情報DB92bより判断した他の道路に、第1〜第4カメラ26a〜26dにて撮像された画像データの解析結果やVICS受信装置28にて受信した道路交通情報を加味して、走行可能な道路を判断する。そして、その走行可能な道路に対して、推奨軌道を生成する。
【0053】
地図情報DB92bには、また、各道路に関する各種道路情報、例えば、その道路に対する進入禁止、車両通行止め等の各種規制情報や、その道路の幅、車線数、交差点間距離(道路の長さ)、及び、その道路における事故履歴、その他注意情報等が各道路に対して対応付けされている。
【0054】
走行制御装置100は、地図情報DB92bにおいて各道路に対応付けられた規制情報に基づいて、その道路が走行可能な道路か否かを判断する。また、走行制御装置100は、地図情報DB92bにおいて各道路に対応付けられた道路の幅や車線数、事故履歴、その他注意情報等に基づいて、各道路または車線に対し危険ポテンシャルを算出する。そして、走行制御装置100は、算出した危険ポテンシャルが最も低い地点を車両1が走行するように、各道路または車線に対し、推奨軌道を生成する。
【0055】
なお、車両1にナビゲーション装置が別途設けられている場合、走行制御装置100は、フラッシュメモリ92に地図情報DB92bを格納することに代えて、そのナビゲーション装置が有する地図情報DBを用いて上記の処理を行うようにしてもよい。この場合、ナビゲーション装置が走行制御装置100の入出力ポート95に接続され、走行制御装置100が入出力ポート95を介してナビゲーション装置より地図情報DBに格納された各種情報を取得するように構成すればよい。
【0056】
RAM93は、書き換え可能な揮発性のメモリであり、CPU91によって実行される制御プログラムの実行時に各種のデータを一時的に記憶するためのメモリである。RAM93には、推奨軌道メモリ93aと、走行軌道メモリ93bとが設けられている。
【0057】
推奨軌道メモリ93aは、走行制御装置100が生成した推奨軌道情報(推奨軌道上に位置する各点の位置および各点において車両が向くべき方向を示す情報)を推奨軌道毎に格納するために、RAM93に設けた領域である。走行制御装置100は、車両1が進行している道路(進行している車線)と、その道路に接続された他の道路と、車両1が進行している道路に複数の車線がある場合は、車両1の進行方向が同じ隣の車線と、対向車線とに対して、それらの道路または車線を走行すると仮定した場合に車両1が走行すべき推奨軌道を、各道路および車線に対して生成する。ここで各道路および車線に対して生成された1以上の推奨軌道情報が、推奨軌道毎に推奨軌道メモリ93aに格納される。
【0058】
走行軌道メモリ93bは、これから車両1が走行すべき軌道を示した走行軌道情報(走行軌道上に位置する各点の位置および各点において車両が向くべき方向を示す情報)を格納するために、RAM93に設けた領域である。走行制御装置100は、走行軌道メモリ93bに格納された走行軌道情報を取得し、その軌道に沿って車両1が走行するように、車両1の走行を制御する。
【0059】
また、走行制御装置100は、新たな走行軌道を選択して設定すべき判定エリアに車両1が位置した場合に、搭乗者によるステアリングホイール13の回転操作に基づいて、車両1を操舵し、その車両1の操舵に基づいて実際に発生した車両1のヨーレートを用いて所定時間後の車両位置を予測する。そして、推奨軌道メモリ93aに格納された1以上の推奨軌道の中から、その予測された車両位置に最も近い推奨軌道を走行軌道として選択し、その軌道情報を走行軌道情報として、走行軌道メモリ93bに格納する。
【0060】
但し、車両1の車両速度が0である場合は、車両1のヨーレートも0であるため、所定時間後の車両位置を予測しても現在の車両位置が予測されるだけである。そこで、この場合、走行制御装置100は、その時点におけるステアリングホイール13の操舵角に応じて車両1を操舵して、所定の長さだけ、または、所定の速度で所定の時間だけ、車両1を進めたと仮定した場合の車両位置を予測する。そして、走行制御装置100は、その予測された車両位置に最も近い推奨軌道を推奨軌道メモリ93aに格納された1以上の推奨軌道の中から走行軌道として選択し、その選択した推奨軌道情報を走行軌道情報として、走行軌道メモリ93bに格納する。これにより、たとえ車両速度が0であったとしても、搭乗者の進行したい方向を汲み取って走行軌道を選択できる。
【0061】
次いで、図3〜図9を参照して、車両1に搭載された走行制御装置100のCPU91により実行される運転支援処理について説明する。図3は、その運転支援処理を示すフローチャートである。運転支援処理は、搭乗者の行きたい方向を正確に汲み取りながら走行軌道を選択して車両1を自動走行させる処理である。
【0062】
運転支援処理は、運転支援スイッチ25が搭乗者によって押下され、オン状態にされると、CPU91によって処理が開始される。運転支援処理では、まず、現在位置検出装置27によって検出された車両1の現在位置を取得する(S1)。そして、推奨軌道生成処理を実行し(S2)、S1にて取得した車両1の現在位置からの走行軌道の候補として、推奨軌道を1以上生成する。
【0063】
ここで、図4、図5のフローチャート及び模式図を参照して、CPU91により実行される推奨軌道生成処理(S2)の詳細について説明する。図4は、その推奨軌道生成処理を示すフローチャートである。また、図5は、推奨軌道生成処理が実行する処理の内容を模式的に示した模式図である。
【0064】
なお、図5の模式図では、車両1が道路7を走行している場合について例示している。道路7は、車両1が走行している左側車線71と、左側車線71の右側に設置された右側車線72と、対向車線73とによって構成されている。
【0065】
この推奨軌道生成処理では、まず、車両1の進行方向で最も近い分岐点(交差点や駐車場等へ出入りする通路への接続点)を地図情報DB92bより探索し、その分岐点に関するデータ(分岐点の位置情報)を地図情報DB92bより取得する(S21)。図5(a)に示す例では、車両1の進行方向で最も近い分岐点として分岐点70に関するデータを地図情報DB92bより取得する。
【0066】
次いで、分岐点に接続している道路や駐車場への通路(以下「道路等」と称す)に関するデータ(道路や通路の位置情報)も、地図情報DB92bより取得し(S22)、現在進行中の道路に関するデータも含めてRAM93に一時的に保存する。図5(b)に示す例では、分岐点70に接続されている道路74及び75に関するデータを、地図情報DB92bより取得し、RAM93へ一時的に格納する。
【0067】
続いて、S22の処理でデータを取得した道路等の各々に対して進入可能か否かを、地図情報DB92bの道路情報に含まれる進入禁止や車両通行止め等の規制情報、事故履歴、その他注意情報と、VICS受信装置28にて受信した道路交通情報に含まれている交通規制情報と、を基に判断し、通れない道路については、その道路データをRAM93から削除する(S23)。図5(c)に示す例では、道路75が進入禁止であるため、道路75に関するデータをRAM93から削除している。
【0068】
次いで、第1〜第4カメラ26a〜26dにて撮像した画像データを解析し、車両1の周辺情報を取得する(S24)。そして、取得した周辺情報に基づいて、S22の処理でデータを取得した道路のうち、ゲートが設置されている等して進入できない道路があれば、その道路データをRAM93から削除し、また、新たな道路が設置されている等、S22の処理でデータを取得した道路以外に通行可能な道路があれば、その道路に関するデータをRAM93へ追加して格納する(S25)。
【0069】
図5(c)に示す例では、第1〜第4カメラ26a〜26dにて撮像した画像データの解析によって得られた周辺情報から、通行可能な道路76があったので、その道路76に関するデータをRAM93へ追加して格納している。
【0070】
その後、RAM93にデータが格納された各道路と、車両1の進行方向と同一方向の車線(現在走行している車線を含む。以下、同じ。)、及び、対向車線について、それぞれの道路および車線に対して危険ポテンシャルを生成する(S26)。危険ポテンシャルの生成方法については、図6を参照して後述する。
【0071】
そして、RAM93にデータが格納された各道路、車両1の進行方向と同一方向の車線、及び、対向車線の各々について、危険ポテンシャルの最も低い部分を車両1が走行するための軌道を求め、その軌道を各道路や車線の推奨軌道として、その推奨軌道情報を推奨軌道メモリ93aに格納する(S27)。
【0072】
図5(d)の例では、RAM93にデータが格納されている道路74,76と、現在車両1が走行している左側車線71と、同じ進行方向の右側車線72と、対向車線73と、の各々に対して、まず、危険ポテンシャルを生成し、そして、生成した危険ポテンシャルが最も低い部分を車両1が走行するための軌道を求め、その軌道を推奨軌道74a,76a,71a,72a,73aとして、それらの軌道情報を推奨軌道メモリ93aに格納している。
【0073】
ここで、図6を参照して、道路や車線における危険ポテンシャルの生成方法について説明する。図6(a)は、危険ポテンシャルの検出範囲を説明する図であり、図6(b)は、危険ポテンシャルの生成方法を説明する図である。
【0074】
まず、図6(a)を参照して、危険ポテンシャルの生成範囲について説明する。なお、以下の説明において使用する座標系は、いわゆる車両座標系であり、車両1の後輪軸(2RL,2RRを結んだ直線)をx軸とし、車両1中央の前後軸上をy軸とし、x軸およびy軸の交点を原点Oとしたものを用いる。また、この車両座標系において、x軸は、車両1の進行方向右側を+方向とし、y軸は、車両1の進行方向を+方向とする。
【0075】
ここで、危険ポテンシャルの生成対象となる道路または車線の境界線の座標は、車両1の進行方向右側の境界線が(x,y)〜(x,y)であるものとし、車両1の進行方向左側の境界線が(x,y)〜(x,y)であるものとする。
【0076】
ここで、危険ポテンシャルの生成対象となる道路または車線の境界線の定義について説明する。境界線を堺にある走行可能領域と走行不可能領域を表現するために、図6(a)における車両1の進行方向右側の境界線(x,y)〜(x,y)は(x,y,x,y)と表現する。これは、(x,y)を原点とし、この点から(x,y)への方向をx軸とした座標系において、y座標が正となる領域を走行可能領域、負となる領域を走行不可能領域として定義している。同様に図6(a)における車両1の進行方向左側の境界線(x,y)〜(x,y)は(x,y,x,y)と表現され、(x,y)を原点とし、この点から(x,y)への方向をx軸とした座標系において、y座標が正となる領域を走行可能領域、負となる領域を走行不可能領域として定義している。従って、図6(a)で、車両1の進行方向右側の境界線が(x,y)〜(x,y)、進行方向左側の境界線が(x,y)〜(x,y)と判断することが可能である。
【0077】
この道路または車線の境界の座標は、地図情報DB92bに格納された道路情報、及び、第1〜第4カメラ26a〜26dの画像データを解析することにより取得した周辺情報に基づいて、設定される。
【0078】
危険ポテンシャルの生成範囲は、図6(a)に示す通り、次のように設定される。即ち、自動走行時の車両1の車両速度をVとした場合に所定時間tが経過する間に車両1が進む距離L(=V×t)を基準として、y軸方向は、x軸から進行方向(+方向)に向かって距離Lまでの範囲を危険ポテンシャルの範囲とし、x軸方向は、y軸から車両1の左右両方向(±方向)に向かって距離Lまでの範囲を危険ポテンシャルの範囲とする。このように危険ポテンシャルの生成範囲を設定することで、車両1が所定時間t(例えば、5秒)の間に進むであろう範囲について、危険ポテンシャルが生成される。
【0079】
危険ポテンシャルの生成では、図6(a)で示したように危険ポテンシャルの生成範囲を設定した後、次いで、その生成範囲と、危険ポテンシャルの生成対象となる道路または車線の境界線との交点の座標を算出する。
【0080】
ここでは、車両1から一定距離先のy座標が“L”における、危険ポテンシャルの生成範囲と車両1の進行方向右側の道路または車線の境界線との交点1の座標(xc1,yc1)、及び、危険ポテンシャルの生成範囲と車両1の進行方向左側の道路または車線の境界線との交点2の座標(xc2,yc2)を、次式(2)〜(7)によって算出する。
【0081】
c1=L ・・・(2)
c1=(y−y)/(x−x) ・・・(3)
c1=(Lc1+Bc1×x−y)/Bc1 ・・・(4)
c2=L ・・・(5)
c2=(y−y)/(x−x) ・・・(6)
c2=(Lc2+Bc2×x−y)/Bc2 ・・・(7)
但し、ここで算出した交点1の座標は、次式(8)、(9)をいずれも満足する必要があり、また、交点2の座標は、次式(10)、(11)をいずれも満足する必要がある。
【0082】
−L ≦ xc1 ≦ L ・・・(8)
(y−L)(y−L) ≦ 0 ・・・(9)
−L ≦ xc2 ≦ L ・・・(10)
(y−L)(y−L) ≦ 0 ・・・(11)
この条件をいずれも満足しない場合は、交点1と交点2とのいずれもが危険ポテンシャルの生成範囲から外れた位置にあることになる。よって、この場合、危険ポテンシャルの生成範囲を広げるか、若しくは、危険ポテンシャルを生成せずに他の方法で推奨軌道を生成する。
【0083】
推奨軌道を生成する他の方法としては、推奨軌道の生成対象となる道路または車線へスムーズに進入または進行できる軌道を算出して、その軌道を推奨軌道とする方法がある。この場合、クロソイド曲線を考慮して、スムーズに進行または進入できる軌道を算出してもよいし、曲率半径が大きくなるようにスムーズに進行または進入できる軌道を算出しても良い。
【0084】
また、推奨軌道を生成する他の方法としては、その生成対象となる道路または車線へ最短距離で進行または進入できる軌道を算出して、その軌道を推奨軌道としてもよい。更に、地図情報DB92bの道路情報に、推奨軌道を含めておき、その道路情報に基づいて、推奨軌道を生成してもよい。
【0085】
さて、交点1,2の座標を、式(2)〜(7)を用いて算出し、算出した交点1,2の座標が式(8)〜(11)を満足していた場合、交点1と交点2を結んだ直線上、即ち、y軸の座標が“L”の直線上の各点に対して、危険ポテンシャルを生成する。その危険ポテンシャルの生成は、図6(b)に示す方法によって行う。
【0086】
まず、交点1(車両1の進行方向右側)を基準とし、その交点1より道路または車線の外側の部分が最も高い危険ポテンシャルを示すものとして、交点1より左側の危険ポテンシャルPを次式(12)によって算出する。
【0087】
= K×e^(−l/w) ・・・(12)
ここで、Kは、ポテンシャル係数であり、lは、車両1の全幅の1/2の長さであり、wは、交点1からの距離である。
【0088】
式(12)により算出した、交点1を基準とした危険ポテンシャルPは、図6(b)の一番上のグラフのようになる。
【0089】
次いで、交点2(車両1の進行方向左側)を基準とし、その交点2より道路または車線の外側の部分が最も高い危険ポテンシャルを示すものとして、交点2より右側の危険ポテンシャルPを算出する。ここで、Pも上記式(12)の右辺と同じ式によって算出する。これにより算出した、交点2を基準とした危険ポテンシャルPは、図6(b)の真ん中のグラフのようになる。
【0090】
そして、これら交点1を基準とした危険ポテンシャルPと交点2を基準とした危険ポテンシャルPとを合成して、車両1から一定距離先のy座標が“L”における危険ポテンシャルPを求める。即ち、危険ポテンシャルPを次式(13)により算出する。
【0091】
P = P+P ・・・(13)
式(13)により算出した危険ポテンシャルPは、図6(b)の一番下のグラフのようになる。
【0092】
なお、交点1と交点2とのいずれかが危険ポテンシャルの生成範囲にある場合は、危険ポテンシャルの生成範囲内にある交点のみ使用して、y軸の座標が“L”である直線上の各点に対して、危険ポテンシャルを生成する。例えば、交点1のみが危険ポテンシャルの生成範囲にある場合は、図6(b)の一番上のグラフに示す危険ポテンシャルPを算出して、これを危険ポテンシャルPとする。また、交点2のみが危険ポテンシャルの生成範囲にある場合は、図6(b)の真ん中のグラフに示す危険ポテンシャルPを算出して、これを危険ポテンシャルPとする。
【0093】
このように、危険ポテンシャルの生成では、まず、常に一定距離先(y座標が“L”の地点)の危険ポテンシャルPを、上記のようにして算出する。また、第1〜第4カメラ26a〜26dにて撮像した画像データの解析結果から、道路上の障害物、道路または歩道にいる歩行者、自転車、他の車両(対向車や前後左右にいる車両)の存在を把握していたり、道路の状態、例えば、雨や雪により路面が滑りやすい状態にあることを把握していた場合は、障害物等の位置や、路面の状態等に基づいて、算出した危険ポテンシャルPを補正する。
【0094】
このようにして生成した危険ポテンシャルでは、最もポテンシャルの低い場所が危険リスクの最も低い場所であると認識できる。例えば、図7(a)では、車両1が直線上の道路を走行する場合の危険ポテンシャルについて示しているが、この場合、道路の真ん中が最も危険ポテンシャルが低く、危険リスクが最も低いと認識できる。また、図7(b)では、車両1が右側に直角に曲がった道路を走行する場合の危険ポテンシャルについて示しているが、この場合、道路の境界a−bより離れるほど危険ポテンシャルが低くなり、危険リスクが低くなると認識できる。
【0095】
本実施形態では、この危険ポテンシャルの最も低い地点を車両1が自動走行するように、推奨軌道を生成する。上述した通り、車両1の走行軌道は、このようにして生成された1以上の推奨軌道の中から選択される。よって、車両1は、最も安全な地点を自動走行するように、車両1の走行が制御されるので、搭乗者は安心して車両1に自動走行を行わせることができる。
【0096】
図3に戻り、運転支援処理の説明を続ける。運転支援処理では、推奨軌道生成処理(S2)の後、次いで、車両1が新たな走行軌道を選択して設定すべき判定エリアを走行しているか否かを判断する(S3)。この判定エリアとしては、例えば、交差点や駐車場等へ出入りするための通路への接続点といった道路の分岐点の手前の領域や、進路変更が可能な領域などが挙げられる。この判定エリアか否かの判断は、S1の処理にて取得された車両1の現在位置と、地図情報DB92bに格納された地図や道路に関する情報とを比較することにより行われる。
【0097】
即ち、S3の処理では、車両1の現在位置から、車両1の前方の所定の距離(例えば、30m)範囲内に、交差点や、駐車場等へ出入りする通路への接続点が存在するか否かを、地図情報DBに格納された情報から判断する。そして、車両1の前方の所定の距離範囲内に、交差点や駐車場等へ出入りする通路への接続点が存在する場合に、車両1が判定エリアを走行していると判断する。
【0098】
また、S3の処理では、車両1の走行している道路が同一進行方向に複数車線あり、車両1の現在位置から前方へ所定距離(例えば、30m)範囲内に交差点がないか否かを、車両1の現在位置と地図情報DBに格納された情報から判断する。そして、車両1の走行している道路が同一進行方向に複数車線あり、車両1の現在位置から前方へ所定距離(例えば、100m)範囲内に交差点がない場合に、車両1が判定エリアを走行していると判断する。
【0099】
S3の処理において、車両1が判定エリアを走行していると判断した場合は(S3:Yes)、ステアリングホイール13から送信された回転角速度を積分することによって算出されたステアリングホイール13の操舵角を取得し(S4)、ステアリングホイール13の操舵角に応じた操舵角を前輪2FL,2FRへ付与するように、操舵駆動装置5へ制御信号を送信する(S5)。
【0100】
そして、車両1の車両速度が0よりも大きいか否かを判定し(S6)、車両速度が0より大きい場合は(S6:Yes)、第1車両位置予測処理を実行する(S7)。この第1車両位置予測処理では、S5の処理によって前輪2FL,2FRに操舵角が付与されたことに基づき発生した実際のヨーレートをジャイロセンサ装置24より取得し、その取得したヨーレートと車両1の車両速度とから、所定時間後の車両1の車両位置を予測する。
【0101】
ここで、図8を参照して、第1車両位置予測処理において所定時間t経過後の車両1の車両位置を予測する方法について説明する。図8は、ヨーレートと車両速度とから、微小時間Δt経過後の車両1の車両位置を算出する方法を説明するための図である。
【0102】
ある時間における車両1の車両位置を(xvn−1,yvn−1)とし、そのときの車両方向(車両1の前方方向)をθvn−1とし、そのときの車両1のヨーレートをω、車両速度をvとした場合に、微小時間Δt経過後の車両1の車両位置(xvn,yvn)及び車両方向θvnは、次式(14)〜(16)によって算出できる。なお、ここで用いられるxy座標系は、任意の方向に定義されたものであってよい。
【0103】
vn=xvn−1+v・Δtcos(θvn−1+ω・Δt/2)・・・(14)
vn=yvn−1+v・Δtsin(θvn−1+ω・Δt/2)・・・(15)
θvn=θvn−1+ω・Δt ・・・(16)
第1車両位置予測処理では、この式(14)〜(16)の計算を、車両1の現在位置からt/Δt回だけ繰り返して積分していくことにより、所定時間t経過後の車両1の車両位置を予測する。
【0104】
図3に戻って、運転支援処理の説明を続ける。S6の処理によって、車両1の車両速度が0であると判定された場合(S6:No)、第2車両位置予測処理を実行する。車両1の車両速度が0である場合は、車両1のヨーレートも0であるため、所定時間後の車両位置を予測しても現在の車両位置が予測されるだけである。そこで、第2車両位置予測処理では、この場合、その時点のステアリングホイール13の操舵角に応じて車両1を操舵して所定の長さだけ車両1を進めた、または、所定の速度で所定の時間だけ車両1を進めたと仮定した場合の車両位置を予測する。
【0105】
ここで、図9を参照して、第2車両位置予測処理において車両位置を予測する方法の一例について説明する。図9は、その第2車両位置予測処理において車両位置を予測する方法を説明するための図である。
【0106】
ステアリングホイール13の操舵角は、予め、ステアリングホイール13から送信される回転角速度を積分することにより、算出されているので、まず、そのステアリングホイール13の操舵角から、前輪2FL,2FRへ付与すべき操舵角δtを一意的に定める。そして、その操舵角δtから、操舵角δtを前輪2FL,2FRへ付与した場合の旋回半径Rを次式(17)によって算出する。
【0107】
R = L/tan(δt) ・・・(17)
ここで、Lは、前輪2FL,2FRを結ぶ前輪軸と、後輪2RL,2RRを結ぶ後輪軸との距離であるホイールベースである。
【0108】
そして、旋回半径Rにて車両1を旋回させながら車両1を所定の長さDだけ進めたと仮定した場合に、車両1の車両方向の変化量θを次式(18)によって算出する。
【0109】
θ = D/R ・・・(18)
この車両方向の変化量θと、旋回半径Rとを用いることにより、車両1の現在位置(x,y)及びそのときの車両方向θから、ステアリングホイール13の操舵角に応じて車両1を操舵して所定の長さDだけ車両1を進めたと仮定した場合の、車両1の車両位置(xvn,yvn)及び車両方向θvnを次式(19)〜(21)によって算出する。
【0110】
vn=x−R+Rcosθ ・・・(19)
vn=y+Rsinθ ・・・(20)
θvn=θ+θ ・・・(21)
このようにして、第2車両位置予測処理では、車両1の現在位置から、ステアリングホイール13の操舵角に応じて車両1を操舵して所定の長さDだけ車両1を進めたと仮定した場合の車両1の車両位置を算出する。
【0111】
図3に戻り、運転支援処理の説明を続ける。S7の第1車両位置予測処理によって、ステアリングホイール13の操舵角に応じて車両1を操舵することによって発生したヨーレートに基づいて所定時間後の車両1の車両位置が予測され、又は、S8の第2車両位置予測処理によって、ステアリングホイール13の操舵角に応じて車両1を操舵して、所定の長さだけ、若しくは、所定の速度で所定の時間だけ、車両1を進めたと仮定した場合の車両1の車両位置が予測されると、S9の処理へ移行する。
【0112】
S9の処理では、推奨軌道メモリ93aに記憶された全ての推奨軌道における全経路点(推奨軌道上に所定間隔(例えば、0.1m)毎に設けられた点)の中から、S7の第1車両位置予測処理またはS8の第2車両位置予測処理によって予測された車両位置(車両予測位置)に最も近い経路点を検索する(S9)。そして、車両予測位置に最も近い経路点を有する推奨軌道を走行軌道として選択する(S10)。これにより、車両予測位置に最も距離の近い推奨軌道が走行軌道として選択される。
【0113】
なお、S10の処理において、最も近い経路点を有する推奨軌道が複数ある場合は、それぞれの推奨軌道について、最も近いとされた経路点において定義された車両方向と、S7又はS8の処理において車両位置と共に予測された車両方向とを比較し、その経路点において、S7又はS8の処理にて予測された車両方向に最も近い車両方向が定義された推奨軌道を、走行軌道として選択する。
【0114】
また、S10の処理において、車両予測位置と、その車両予測位置に最も近いとされた推奨軌道との距離が、所定距離以上である場合には、その推奨軌道を走行軌道として選択せずに、そのままS12の処理へ移行する。車両予測位置と、その車両予測位置に最も近いとされた推奨軌道との距離が、所定距離以上である場合は、搭乗者の進行したい方向に、推奨軌道がないか、若しくは、ステアリングホイール13の操作を搭乗者が誤った可能性が考えられる。そこで、この場合は、その推奨軌道を走行軌道として選択せずに、そのままS12の処理へ移行することによって、搭乗者が想定していない思わぬ方向に車両1が走行し始めることを防止でき、車両1の走行の安全性を高めることができる。
【0115】
S10の処理の後、そのS10の処理により選択された推奨軌道情報を推奨軌道メモリ93aより読み出して、走行軌道情報として走行軌道メモリ93bに格納し(S11)、S12の処理へ移行する。
【0116】
また、S3の処理において、車両1が判定エリア外を走行していると判断した場合は(S3:No)、S4〜S11の処理をスキップして、S12の処理へ移行する。これにより、車両1が判定エリア外を走行している場合は、ステアリングホイール13が操作されても、走行軌道が決定されない。よって、不用意に走行軌道が変更されることを防止できるので、車両1を安全に自動走行させることができる。
【0117】
S12の処理では、走行制御処理を実行する(S12)。この走行制御処理は、走行軌道メモリ93bに格納された走行軌道情報に基づいて、車両1がその走行軌道に沿って走行するように、車両1の走行を制御する処理である。
【0118】
この制御方法は公知のものが多くあるので、詳細については説明を省略するが、例えば、車両1を現在の車両速度Vで走行軌道を走行させた場合に、t秒後(例えば、1秒後。車両1の車両速度に応じて変更してもよい。)における車両1の位置Ptを求める。そして、位置Ptへ移動するために必要なヨーレートωtを求め、そのヨーレートωtと車両1の車両速度Vとから、次式(22)によって前輪2FL,2FRの操舵角δtを決定する。
【0119】
δt = (1+A×V)×(L/V)×ωt ・・・(22)
ここで、Aは、車両1の操縦安定性の指標であって個々の車両1によって予め決まるスタビリティファクタであり、Lは、上述したホイールベースである。
【0120】
そして、前輪2FL,2FRの操舵角が式(1)に基づいて決定された操舵角δtとなるように、操舵駆動装置5へ制御信号を送信する。操舵駆動装置5は、制御信号に基づいて、前輪2FL,2FRの操舵角がδtとなるように、電動モータ5aを駆動する。これにより、車両1を走行軌道に沿って自動走行させることができる。
【0121】
なお、車両速度についても走行制御装置100にて自動で制御する場合は、前輪2FL,2FRの操舵角が式(1)に基づいて決定された操舵角δtとなるように、操舵駆動装置5へ制御信号を送信するのとあわせて、車両速度がVとなるように車輪駆動装置3へ制御信号を送信すればよい。これにより、車輪駆動装置3は、制御信号に基づいて、車輪速度がVとなるように電動モータ3によって前輪2FL,2FRに回転駆動力を付与する。
【0122】
S12の処理の後、運転支援スイッチ25が再び押下され、オフ状態となったか否かを判断する(S13)。その結果、運転支援スイッチ26がオン状態のままであれば(S13:No)、S1の処理へ戻り、再びS1〜S13の処理を実行する。これにより、運転支援スイッチ26がオン状態である間は、車両1の自動走行が継続して行われ、また、搭乗者の搭乗者の意思に沿って走行経路が決定される。
【0123】
なお、S1〜S13の処理は、例えば、50ミリ秒単位で実行される。これにより、車両1が走行軌道から外れても、50ミリ秒毎に、走行軌道に沿って車両1が走行されるように走行制御処理にて制御されるので、自動走行を走行軌道に沿って精度よく実行することができる。また、ステアリングホイール13が操作された場合、その操作に極めて速く反応して処理することができ、搭乗者の意思を反映した走行経路の決定を遅滞なく行うことができる。
【0124】
一方、S13の処理の結果、運転支援スイッチ26が押下されてオフ状態となったと判断された場合は(S13:Yes)、運転支援処理を終了する。
【0125】
以上説明したように、第1実施形態によれば、車両の搭乗者による回転操作によって車両の操舵方向が指示されるステアリングホイール13が設けられており、新たな走行軌道を選択して設定すべき判定エリアに車両1が位置した場合は、搭乗者によるステアリングホイール13の回転操作に基づいて、車両1が操舵され、その車両1の操舵に基づいて実際に車両1に発生したヨーレートを用いて所定時間後の車両位置を予測する。これにより、車両1が走行している路面の傾きに左右されることなく、搭乗者の進行したい方向を正確に把握できる。そして、その予測された車両位置に基づいて走行軌道が選択されるので、搭乗者の進行したい方向を正確に汲み取りながら走行軌道を選択して自動走行を行うことができる。
【0126】
また、車両1の車両速度が0である場合は、車両1のヨーレートも0であるため、所定時間後の車両位置を予測しても現在の車両位置が予測されるだけである。そこで、この場合、走行制御装置100は、その時点におけるステアリングホイール13の操舵角に応じて車両1を操舵して所定の長さだけ車両1を進めたと仮定した場合、または、車両1を操舵して所定の速度で所定の時間だけ車両1を進めたと仮定した場合の車両位置を予測する。そして、走行制御装置100は、その予測された車両位置に最も近い推奨軌道を推奨軌道メモリ93aに格納された1以上の推奨軌道の中から走行軌道として選択し、その選択した推奨軌道情報を走行軌道情報として、走行軌道メモリ93bに格納する。これにより、たとえ車両速度が0であったとしても、搭乗者の進行したい方向を汲み取って走行軌道を選択できる。
【0127】
また、推奨軌道メモリ93aに格納された1以上の推奨軌道の中から、予測された車両位置(車両予測位置)に基づいて走行軌道を選択する場合、車両予測位置に最も距離の近い推奨軌道を走行軌道として選択するので、搭乗者の進行したい方向にある走行予定軌道を確実に選択できる。
【0128】
また、車両予測位置に最も距離の近い推奨軌道が複数ある場合は、それぞれの推奨軌道について、最も近いとされた経路点において定義された車両方向と、S7又はS8の処理において車両位置と共に予測された車両方向とを比較し、その経路点において、S7又はS8の処理にて予測された車両方向に最も近い車両方向が定義された推奨軌道を、走行軌道として選択する。このように、車両予測位置だけでなく、予測された車両方向をも考慮して走行軌道が選択されるので、搭乗者が進行したい方向にある走行軌道の選択の確実性を高めることができる。
【0129】
また、S3の処理では、車両1の現在位置から、車両1の前方の所定の距離(例えば、30m)範囲内に、交差点や、駐車場等へ出入りする通路への接続点が存在するか否かを、地図情報DBに格納された情報から判断し、車両1の前方の所定の距離範囲内に、交差点や駐車場等へ出入りする通路への接続点が存在する場合に、車両1が判定エリアを走行していると判断している。よって、現在走行中の道路から駐車場等への通路や他の道路が分岐している場合に、その分岐の手前の領域で、搭乗者の進行したい方向を正確に汲み取って、搭乗者が進行したい道路や通路に設定された推奨軌道を走行軌道として選択できる。よって、搭乗者が進行したい道路や通路へ車両を確実に進行させることができる。
【0130】
次いで、図10,11を参照して、第2実施形態について説明する。第1実施形態では、車両1が判定エリアを走行中にステアリングホイール13が搭乗者によって回転操作された場合は、その操舵角に応じて車両1を操舵し、その操舵に応じて発生する車両1の実際のヨーレートから所定時間後の車両位置を予測して、複数の推奨軌道の中から予測した車両位置に最も近い推奨軌道を走行軌道として選択する場合について説明した。これに対し、第2実施形態では、ステアリングホイール13の回転角速度からステアリングホイール13の操舵角を算出し、そのステアリングホイール13の操舵角から前輪2FL,2FRへ付与される操舵角を算出して、その前輪2FL,2FRへ付与される操舵角と車両速度とに基づいて車両1のヨーレートを推定し、その推定したヨーレートから所定時間後の車両位置を予測して、複数の推奨軌道の中から予測した車両位置に最も近い推奨軌道を走行軌道として選択する。
【0131】
なお、第2実施形態において、車両1及び走行制御装置100の構成は、運転支援処理の一部処理が異なる他は、第1実施形態と同じものである。よって、第1実施形態と同一の部分については、同一の符号を付して、その図示と説明を省略する。
【0132】
図10は、第2実施形態における車両1に搭載された走行制御装置100のCPU91によって実行される運転支援処理である。第2実施形態における運転支援処理では、S3の処理によって、車両1が判定エリアを走行していると判断されると(S3:Yes)、第1実施形態において実行されたS4,S5の処理は省略され、そのままS6の処理へ移行する。そして、車両速度が0より大きいか否かを判定し(S6)、車両速度が0の場合(S6:No)、第1実施形態と同様に、第2車両位置予測処理(S8)を実行する一方、車両速度が0より大きい場合は(S6:Yes)、第1実施形態の第1車両位置予測処理に代えて、第3車両位置予測処理を実行する(S107)。
【0133】
この第3車両位置予測処理は、ステアリングホイール13の回転角速度Δδを取得してステアリングホイール13の操舵角を算出し、そのステアリングホイール13の操舵角から前輪2FL,2FRへ付与される操舵角を算出して、その前輪2FL,2FRへ付与される操舵角と車両速度とに基づいて車両1のヨーレートを推定し、その推定したヨーレートから所定時間後の車両位置を予測する処理である。
【0134】
ここで、第3車両位置予測処理において所定時間後の車両位置を予測する方法について、具体的に説明する。第3車両位置予測処理では、まず、ステアリングホイール13の回転角速度Δδを取得し、その取得した回転角速度Δδと、そのときのステアリングホイール13の操舵角δn−1とから、微小時間Δt後のステアリングホイール13の操舵角δを次式(23)より算出する。
【0135】
δ = δn−1+Δδ・Δt・Ks ・・・(23)
ここで、Ksは、ステアリングホイール13の回転角速度の影響を調整するためのゲインである。
【0136】
そして、ステアリングホイール13から回転角速度Δδを取得してから、微小時間Δt経過後に、再度ステアリングホイール13から回転角速度Δδを新たに取得し、式(23)にて算出した操舵角δを新たにδn−1として、次の微小時間Δt後のステアリングホイール13の操舵角δを式(23)によって算出する。
【0137】
そして、ステアリングホイール13からの回転角速度Δδの取得と、式(23)による計算をt/Δt回だけ繰り返して積分していくことにより、所定時間t経過後のステアリングホイール13の操舵角δが算出できる。
【0138】
第3車両位置予測処理では、所定時間t経過後のステアリングホイール13の操舵角δを算出すると、その操舵角δに対して前輪2FL,2FRへ付与される操舵角δtを次式(24)より算出する。
【0139】
δt = A・δ ・・・(24)
ここで、Aは、ステアリングホイール13の操舵角δから前輪2FL,2FRへ付与される操舵角δtへの変換係数である。
【0140】
そして、式(24)で算出した、前輪2FL,2FRへ付与される操舵角δtに基づいて、図9に示す関係から、車両1の旋回半径Rを次式(25)によって求めることができ、そして、その旋回半径Rから車両1のヨーレートを次式(26)によって推定できる。
【0141】
R = L/tan(δt−δr) ・・・(25)
ω = v/R ・・・(26)
ここで、Lは、上述したホイールベースであり(図9参照)、vは、車両1の車両速度である。また、δrは、路面の傾きに応じて車両1を直進させるために必要な前輪2FL,2FRの操舵角である。なお、路面の傾きは、ジャイロセンサ装置24より取得した車両1の回転角(ロール角、ピッチ角、ヨー角)に基づいて算出する。
【0142】
そして、式(26)にて推定したヨーレートに基づき、上述した式(14)〜(16)の計算を、車両1の現在位置からt/Δt回だけ繰り返して積分していくことにより、所定時間t経過後の車両1の車両位置を予測する。
【0143】
S107の第3車両位置予測処理によって、上記の方法で所定時間後の車両1の車両位置が予測されると、その後は、S9〜S11の処理によって、第1実施形態と同様に、S107の処理によって予測された車両予測位置に最も距離の近い推奨軌道が走行軌道として選択され、その選択した推奨軌道情報が、走行軌道情報として走行軌道メモリ93bに格納される。そして、S12の処理により、走行軌道メモリ93bに格納された走行軌道情報に基づいて、車両1が走行軌道に沿って自動走行するように、車両1の走行が制御される。
【0144】
以上説明したように、第2実施形態によれば、ステアリングホイール13の回転角速度Δδを取得してステアリングホイール13の操舵角を算出し、そのステアリングホイール13の操舵角から前輪2FL,2FRへ付与される操舵角を算出して、その前輪2FL,2FRへ付与される操舵角と車両速度とに基づいて車両1のヨーレートを推定し、その推定したヨーレートから所定時間後の車両位置を予測しているので、搭乗者の進行したい方向を、所定時間後の車両位置まで特定して把握している。よって、予測された車両位置に基づいて走行軌道を選択することによって、搭乗者の進行した方向を正確に汲み取りながら走行予定軌道を選択して、自動走行を行うことができる。
【0145】
その他、第2実施形態では、第1実施形態と同一の構成によって、第1実施形態と同一の効果を奏する。
【0146】
なお、請求項1記載の「走行予定軌道」としては各実施形態の「走行軌道」が該当し、請求項1記載の「走行予定軌道に関する情報」としては、各実施形態の「走行軌道情報」が該当する。
【0147】
以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。
【0148】
上記各実施形態では、走行制御装置100にて推奨軌道生成処理を実行し、1以上の推奨軌道を生成する場合について説明したが、必ずしも推奨軌道を走行制御装置100にて生成する必要はなく、外部装置、例えば、外部に設けられたサーバや、携帯端末装置との間で通信を行うインターフェースを走行制御装置100に接続し、その外部装置から1以上の推奨軌道を取得するように構成してもよい。また、走行制御装置100にて推奨軌道を生成する場合であっても、外部装置から更に別の推奨軌道を取得してもよい。推奨軌道を外部装置にて生成することにより、種々の方法で生成された推奨軌道を用意でき、その中から走行軌道を選択することができる。
【0149】
上記各実施形態では、推奨軌道生成処理(図4)において危険ポテンシャルを求め、その危険ポテンシャルの最も低い地点を車両1が走行するように推奨軌道または走行軌道を生成する場合について説明したが、その他の方法により推奨軌道または走行軌道を生成してもよい。例えば、推奨軌道または走行軌道の生成対象となる道路または車線へスムーズに進入または進行できる軌道を算出して、それを推奨軌道または走行軌道としてもよい。この場合、クロソイド曲線を考慮して、スムーズに進行または進入できる軌道を算出してもよいし、曲率半径が大きくなるようにスムーズに進行または進入できる軌道を算出しても良い。また、その生成対象となる道路または車線へ最短距離で進行または進入できる軌道を算出して、その軌道を推奨軌道または走行軌道としてもよい。更に、地図情報DB92bの道路情報に、推奨軌道または走行軌道を含めておき、その道路情報に基づいて、推奨軌道または走行軌道を生成してもよい。
【0150】
上記第2実施形態では、S3の処理を実行し、新たな走行軌道を選択して設定すべき判定エリアを車両1が走行しているか否かを判定して、車両1が判定エリア外を走行している場合は、S6〜S11,S107の処理をスキップすることで、判定エリア外を走行中は、走行軌道が決定されないようにして、車両1の自動走行の安全性を高める場合について説明した。しかしながら、第2実施形態においては、S3の処理を行わず、即ち、判定エリアを車両1が走行しているか否かの判断を行わずに、常に、S6〜S11,S107の処理を行って、走行軌道が決定できるようにしてもよい。第2実施形態では、ステアリングホイール13を操作しても、即座に車両1が操舵されないので、判定エリアを設けなくても、車両1を安全に走行させることができる。また、判定エリアを設けずに、どの場所でも走行軌道が決定できるようにすれば、車両1における走行軌道の選択の幅が広がるので、搭乗者の意思をより強く自動走行に反映できる。
【0151】
上記第2実施形態では、S6の処理において車両速度が0より大きいと判断した場合に(S6:Yes)、第3車両位置予測処理(S107)を実行する場合について説明した。これに代えて、S6の処理において車両速度が0より大きいと判断した場合に(S6:Yes)、更に、車両1が走行している路面が平坦か否かを判断し、路面が平坦であれば、第3車両位置予測処理を実行し、路面が平坦でなく傾いていれば、第1車両位置予測処理を実行してもよい。但し、この場合、路面が平坦でない場合は、ステアリングホイール13の操舵角に応じて、前輪2FL,2FRに操舵角を付与して、車両1を操舵させる必要がある。第3車両位置予測処理では、式(25)に示した通り、車両1が走行している路面の傾きを考慮して、旋回半径Rを算出し、ヨーレートを推定することになるため、路面の傾きによって推定したヨーレートに多少の誤差が含まれてしまう。これに対し、車両1が走行中の路面が平坦であれば、第3車両位置予測処理を実行し、路面が傾いていれば、第1車両位置予測処理を実行することによって、車両1の路面の傾きに拘わらず、所定時間後の車両1の車両位置をより正確に予測できる。また、車両1が平坦な路面を走行中は、ステアリングホイール13の回転操作によって車両1を操舵させなくても、車両1の所定時間後の車両位置を正確に予測できる。
【0152】
上記各実施形態では、第1〜第4カメラ26a〜26dを搭載して、車両1の周辺情報を取得する場合について説明したが、周辺情報を取得する手段として、ステレオカメラを用いてもよいし、ミリ波レーダ、レーザレーダ、UWB(Ultra Wide Band)レーダ等の各種レーダや、ソナーを用いてもよい。また、道路と車両との間の通信である路車間通信や、他車との間の通信による車車間通信によって、他車や障害物の位置情報を取得してもよい。
【0153】
例えば、レーザレーダは、レーザビームを車両1の周囲へ照査し、その反射の有無や反射を検出した方向およびレーザビームを照射してから反射を検出するまでの時間に基づいて、車両1の周辺にある道路や物体の形状等を把握するものである。走行制御装置100は、このレーザレーダを用いることにより、レーザレーダにより照射したレーザビームの反射の検出結果から、車両1の周辺に存在する物体等の形状をマップ化し、パターンマッチング等により、現在走行中の道路の形状や、現在走行中の道路に接続された道路の有無、障害物の存在を把握し、それを周辺情報として、危険ポテンシャルを生成し、また、推奨軌道を生成するように構成してもよい。
【0154】
上記各実施形態では、操舵装置5がラック&ピニオン式のステアリングギヤとして構成される場合について説明したが、必ずしもこれに限られるものではなく、ボールナット式等の他のステアリングギヤ機構を採用することは当然可能である。
【符号の説明】
【0155】
1 車両
13 ステアリングホイール(操作手段)
24 ジャイロセンサ装置(ヨーレート検出手段)
91 CPU(コンピュータ)
92a プログラムメモリ(車両制御プログラム)
93b 走行軌道メモリ(記憶手段)
S2 推奨軌道生成手段(軌道取得手段、軌道取得ステップ)
S3 (位置判断手段、位置判断ステップ)
S5 (操舵手段、操舵ステップ)
S7 第1車両位置予測処理(ヨーレート取得手段、推定手段の一部、ヨーレート取得ステップ、推定ステップの一部)
S8 第2車両位置予測処理(推定手段の一部、推定ステップの一部)
S10 (選択手段、選択ステップ)
S11 (記憶手段に記憶させる手段、記憶手段に記憶させるステップ)
S12 走行制御処理(走行制御手段、走行制御ステップ)

【特許請求の範囲】
【請求項1】
車両が走行すべき軌道を示した走行予定軌道に関する情報を記憶する記憶手段と、
その記憶手段に記憶された情報に基づいて、前記車両が前記走行予定軌道に沿って走行するようにその車両の走行を制御する走行制御手段と、
前記走行予定軌道の候補を複数取得する軌道取得手段と、
前記車両の搭乗者による回転操作によって前記車両の操舵方向が指示される操作手段と、
その操作手段に対して行われる回転操作の角速度を検出する検出手段と、
その検出手段により検出された角速度から前記車両に付与すべき操舵角を算出し、その操舵角と車両速度とに基づいて前記車両のヨーレートを推定するヨーレート推定手段と、
そのヨーレート推定手段により推定されたヨーレートと車両速度とに基づいて所定時間後の車両位置を推定する車両位置推定手段と、
その車両位置推定手段により推定された前記車両位置に基づいて、前記軌道取得手段により取得された複数の走行予定軌道の候補の中から1つ走行予定軌道を選択する選択手段と、
その選択手段により選択された走行予定軌道に関する情報を前記記憶手段に記憶させる手段と、を備えることを特徴とする車両。
【請求項2】
前記車両位置推定手段は、前記車両の車両速度が0である場合に、前記操舵手段により指示された操舵方向へ前記車両を操舵して所定の長さだけ前記車両を進めたと仮定した場合の車両位置を推定するものであることを特徴とする請求項1記載の車両。
【請求項3】
前記選択手段は、前記軌道取得手段により取得された複数の走行予定軌道の候補の中から、前記車両位置推定手段により推定された前記車両位置に最も距離の短い候補を1つ、走行予定軌道として選択するものであることを特徴とする請求項1又は2に記載の車両。
【請求項4】
前記軌道取得手段により取得される走行予定軌道の各候補には、前記車両が走行すべき軌道情報と共に、その軌道上の各地点において前記車両の向くべき方向を示す情報が含まれ、
前記車両位置推定手段は、前記所定時間後の車両位置と合わせて、その車両位置において前記車両の向くべき方向を推定するものであり、
前記選択手段は、前記軌道取得手段により取得された走行予定軌道の候補の少なくとも一部の中から、その候補において前記車両位置推定手段により推定された車両位置に最も近い地点における前記車両の向くべき方向が、前記推定手段により推定された前記車両の向くべき方向に最も近い候補を1つ、走行予定軌道として選択するものであることを特徴とする請求項1から3のいずれかに記載の車両。
【請求項5】
コンピュータと、そのコンピュータにより用いられ且つ車両が走行すべき軌道を示した走行予定軌道に関する情報を記憶する記憶手段と、を備えた車両の前記コンピュータにより実行される車両制御プログラムであって、
前記コンピュータに、
前記走行予定軌道の候補を複数取得する軌道取得ステップと、
前記車両の搭乗者による回転操作によって前記車両の操舵方向が指示される操作手段に対して行われた回転操作の角速度を検出する検出ステップと、
その検出ステップにより検出された角速度から前記車両に付与すべき操舵角を算出し、その操舵角と車両速度とに基づいて前記車両のヨーレートを推定するヨーレート推定ステップと、
そのヨーレート推定ステップにより推定されたヨーレートと車両速度とに基づいて所定時間後の車両位置を推定する車両位置推定ステップと、
その車両位置推定ステップにより推定された前記車両位置に基づいて、前記軌道取得ステップにより取得された複数の走行予定軌道の候補の中から1つ走行予定軌道を選択する選択ステップと、
その選択ステップにより選択された走行予定軌道に関する情報を前記記憶手段に記憶させるステップと、
そのステップにより前記記憶手段に記憶された前記走行予定軌道に関する情報に基づいて、前記車両が前記走行予定軌道に沿って走行するようにその車両の走行を制御する走行制御ステップと、を実行させる車両制御プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−214124(P2012−214124A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−81046(P2011−81046)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(591261509)株式会社エクォス・リサーチ (1,360)
【Fターム(参考)】