説明

透明導電膜付きガラス板およびその製造方法

【課題】ガラス板とその上に形成された酸化錫膜とを備えた透明導電膜付きガラス板を改良し、可視域から近赤外域にかけての広い波長域において光を効果的に散乱させるに適した構造とする。
【解決手段】本発明による透明導電膜付きガラス板においては、ガラス板1の上に形成された透明導電膜3が、酸化錫を主成分とする層31と、層31の表面上に配置された酸化亜鉛または酸化インジウムを主成分とする島部32とを有し、透明導電膜3の表面に、島部からなる第1凸部32とともに、層の表面に存在する第2凸部33が露出している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薄膜型太陽電池の基板としての使用に適した透明導電膜付きガラス板およびその製造方法に関する。
【背景技術】
【0002】
環境への負担を抑制する観点から、クリーンエネルギーを生成する太陽電池が注目されている。さらに、省資源化の観点から、半導体材料の使用量が少ない薄膜型太陽電池への期待が高まっている。薄膜型太陽電池は、一般に、ガラス板等の透明基板上に、透明導電膜(表面電極)、光電変換層および導電膜(裏面電極)を順次積層して構成される。
【0003】
透明基板側から入射する光を透明導電膜において散乱させることにより、光電変換層における光路長を延長して光電変換効率を向上させる技術が知られている。光路長を延長するため、薄膜型太陽電池を構成する透明導電膜の表面には微細な凹凸形状を付与することが求められている。これまで、透明導電膜の表面の微細な凹凸は、膜を構成する結晶を発達させることにより、あるいはエッチング加工を施すことにより、実現されてきた。
【0004】
熱CVD法により成膜した酸化錫膜の表面には、発達した結晶粒により微細な凹凸が現れる。この微細な凹凸が入射光の散乱に適していることは周知である。エッチング加工によって膜の表面の凹凸形状を大きくする技術は、成膜したままの状態では膜の表面の粗さが不足している場合に適用される。エッチングに適した代表的な導電性酸化物は酸化亜鉛およびITO(錫添加酸化インジウム)であり、エッチング加工による凹凸の付与はこれらの酸化物からなる透明導電膜に施されるのが通例である。例えば、特許文献1には、エッチングにより粗面化した酸化亜鉛膜が開示されている。なお、酸化亜鉛およびITOとは異なり、酸化錫は、耐エッチング性が高く、エッチングによる凹凸の付与には適していない。
【0005】
現在のところ、膜の特性、製造コスト等を含む総合的な観点から、薄膜型太陽電池の透明導電膜の形成方法としては、熱CVD法による酸化錫膜の成膜が最も優れていると考えられている。特に、ガラス板製造ラインにおける高温のガラスリボン上で実施する熱CVD法により酸化錫膜を形成する成膜方法(オンラインCVD法)は、酸化錫の結晶粒が発達しやすく、製造コスト面でも格段に有利である。特許文献2には、オンラインCVD法による透明導電膜付きガラス板の製造方法の一例が開示されている。
【0006】
なお、透明導電膜の表面は、光電変換層となるアモルファスシリコン層を形成する際に水素プラズマに曝される。このため、透明導電膜を構成する材料の耐プラズマ性が低いと、膜の表面が還元され、透明導電膜の光線透過率が低下する。酸化錫膜の耐プラズマ性は、ITO膜の耐プラズマ性よりも優れているものの、酸化錫膜の表面に保護膜を形成して耐プラズマ性をさらに改善することが提案されている。
【0007】
特許文献3には、酸化錫を主成分とする透明導電膜の上に、酸化亜鉛、酸化チタンなどの耐プラズマ性に優れた保護膜を形成することが開示されている。保護膜は、通常、その機能を果たし得るように透明導電膜の表面全面を覆うように形成される。また、厚すぎる保護膜は、光電変換層と透明導電膜との間の電気抵抗を増大させ、さらには光電変換層に入射する光を減少させる。このため、保護膜の厚さはごく薄い範囲に設定される。特許文献3における保護膜の厚さは50〜200Å(5〜20nm)である。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−115599号公報
【特許文献2】特開2001−53307号公報
【特許文献3】特開昭63−80413号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述したように、ガラス板とその上に形成された酸化錫膜とを備えた透明導電膜付きガラス板は、薄膜型太陽電池の基板として適しており、現実の製品にも多く用いられている。しかし、この透明導電膜付きガラス板には、その特性面において改善の余地がある。
【0010】
例えば、波長が比較的長い光、特に可視域の長波長域から近赤外域の光、を透明導電膜において散乱させる必要がある場合には、膜表面の凹凸形状を大きくすることが望ましい。しかし、酸化錫の結晶粒を発達させてこの結晶粒により構成される膜表面の凸部を大きくすることには限界がある。
【0011】
また、幅広い波長域における光散乱機能を実現するためには、透明導電膜の表面に異なる大きさの凸部が混在することが望ましい。しかし、酸化錫の結晶粒の発達の程度に影響を及ぼす温度等の成膜条件を、膜を形成する領域内に設定した微小領域ごとに区々設定することは現実には不可能である。このため、酸化錫の結晶粒により構成される膜表面の凸部の大きさの分布の範囲を広げることには限界がある。
【0012】
本発明は、ガラス板とその上に形成された酸化錫膜とを備えた透明導電膜付きガラス板を改良し、可視域から近赤外域にかけての広い波長域において光を効果的に散乱させるに適した構造を有する透明導電膜付きガラス板を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、
ガラス板と、前記ガラス板の上に形成された透明導電膜と、を備え、
前記透明導電膜が、酸化錫を主成分とする層と、前記層の表面上に配置された酸化亜鉛または酸化インジウムを主成分とする島部とを有し、
前記透明導電膜の表面に、前記島部からなる第1凸部とともに、前記層の表面に存在する第2凸部とが露出している、
透明導電膜付きガラス板、を提供する。
【0014】
本発明は、その別の側面から、
ガラス板の上に形成された酸化錫を主成分とする層の表面に、酸化亜鉛または酸化インジウムを主成分とする被エッチング層を形成する工程と、
前記被エッチング層をエッチングすることにより、前記酸化錫を主成分とする層の表面上に前記被エッチング層の一部を島部として残すとともに、前記酸化錫を主成分とする層の表面の一部を露出させ、前記酸化錫を主成分とする層および前記島部から構成されていて前記島部からなる第1凸部と前記酸化錫を主成分とする層の表面に存在する第2凸部とが表面に露出した透明導電膜を形成する工程と、
を具備する、透明導電膜付きガラス板の製造方法、を提供する。
【0015】
なお、本明細書において、「主成分」は、慣用のとおり、含有率が50質量%以上を占める成分を指す用語として用いる。
【発明の効果】
【0016】
本発明によれば、可視域から近赤外域にかけての広い波長域における光の効果的な散乱に適した構造を有する透明導電膜付きガラス板を提供することができる。
【図面の簡単な説明】
【0017】
【図1】本発明による透明導電膜付きガラス板の一例を模式的に示す断面図である。
【図2】本発明による透明導電膜付きガラス板の製造方法の一例の各工程を示す工程図である。
【図3】実施例1により得た透明導電膜付きガラス板の表面を原子間力顕微鏡(AFM)を用いて観察した結果を示す図である。
【図4】実施例5により得た透明導電膜付きガラス板の表面をAFMを用いて観察した結果を示す図である。
【図5】比較例1により得た透明導電膜付きガラス板の表面をAFMを用いて観察した結果を示す図である。
【図6】実施例1,5および比較例1により得た透明導電膜付きガラス板の拡散光透過率の波長依存性を示す図である。
【図7】実施例1により得た透明導電膜付きガラス板の表面の凹凸形状をAFMを用いて測定した結果を示す図である。
【図8】比較例1により得た透明導電膜付きガラス板の表面の凹凸形状をAFMを用いて測定した結果を示す図である。
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態について、図面を参照しつつ説明する。
【0019】
図1に示した透明導電膜付きガラス板は、ガラス板1と、ガラス板1の上に形成された透明導電膜3とを備えている。ガラス板1と透明導電膜3との間には下地膜2が介在しており、下地膜2は、ガラス板1側から、第1下地層21および第2下地層22を備えた2層構造膜となっている。
【0020】
透明導電膜3は、酸化錫を主成分とする層31と、層31の表面上に形成された島部32とを備えている。島部32は、酸化亜鉛または酸化インジウムを主成分としている。透明導電膜3の表面において島部32が形成されていない領域からは、層31の表面が露出している。このため、透明導電膜3の表面には、島部32からなる凸部(第1凸部)とともに、層31の表面に存在する微細凸部(第2凸部)33が存在している。
【0021】
酸化錫を主成分とする層31は多結晶膜であり、層31に含まれる結晶粒が表面に露出して微細凸部33を形成している。この微細凸部33は、層31に含まれる結晶粒が発達するほど大きくなる傾向がある。結晶粒の発達の程度は層31の成膜法に大きく依存することが知られている。結晶粒が大きく発達する代表的な成膜法は熱CVD法である。熱CVD法による成膜の場合、一般に、基板温度(ガラス板温度)が高いほど、また膜が厚いほど、結晶粒は大きく発達する傾向がある。しかし、高い成膜温度を実現できるガラスリボン上における熱CVD法を採用したとしても、酸化錫を主成分とする膜の成膜温度は、通常、750℃程度以下に止まる。また、薄膜型太陽電池の透明導電膜が厚すぎると、膜の光吸収が増大して光電変換効率が低下する。このため、透明導電膜の膜厚は、通常、1000nm程度以下に制限される。したがって、結晶粒の発達に伴って形成される微細凸部33を大きくすることには限界がある。
【0022】
また、熱CVD法に代表される薄膜の形成方法では、大きさがほぼ揃った微細凸部33が形成される。言い換えれば、微細凸部33の大きさの分布は狭い範囲に制限される傾向がある。結晶粒の発達の程度に影響を及ぼす温度等の成膜条件は、透明導電膜3の膜厚等を定める要因でもあり、したがって膜3の光学的および電気的特性に大きな影響を及ぼす。このため、通常、透明導電膜3を形成するべき領域の全域において同じ成膜条件が適用され、膜の表面形状はほぼ同一となる。このような事情から、結晶粒の発達に伴って形成される微細凸部33の大きさの分布の範囲を広げることは難しい。
【0023】
以上の理由から、酸化錫を主成分とする層31の表面の微細凸部33には、大きく成長させることが容易ではなく、その大きさの分布の範囲を広げることも容易ではない、という制約が伴う。しかし、透明導電膜3の表面には島部(第1凸部)32が存在するため、透明導電膜3の表面における凸部の大きさおよびその分布は、微細凸部(第2凸部)33の大きさおよびその分布の制約による制限を受けない。
【0024】
第1凸部32は、第2凸部33を覆うように層31の表面上に形成されており、第2凸部33よりも相対的に高い位置に頂部を有し、第2凸部33よりも大きい凸部を構成している。相対的に大きい第1凸部32は、相対的に小さい第2凸部33よりも、波長が長い光の拡散への寄与が大きいものとなる。また、透明導電膜3の表面には、相対的に大きい第1凸部32および相対的に小さい第2凸部33が存在するため、いずれかの凸部のみが存在する場合よりも、広い波長域において入射光を効果的に散乱させることができる。
【0025】
光電変換層を構成する半導体材料の種類によって必要性の程度は相違するが、薄膜型太陽電池では、可視域のみならず、可視域の長波長域から近赤外域にかけての波長域においても、入射光を散乱させることが望ましいことがある。2種類の凸部31,32をその表面に有する透明導電膜3は、基本的に、薄膜型太陽電池の光電変換効率の向上に適した構造を備えている。
【0026】
第1凸部32の高さは200nm〜600nm、特に300nm〜500nmが好ましい。また、第1凸部32の直径は0.5μm〜2.0μm、特に0.7μm〜1.5μmが好ましい。第1凸部32が小さすぎると光の散乱効果が十分に得られない。他方、第1凸部32が大きすぎると光電変換層の膜質が劣化することがある。第2凸部33はごく微細であるため、その大きさは、凸部の高さおよび直径ではなく、酸化錫を主成分とする層31の表面の粗さとして表すことが適切である。層31の表面粗さRaは、透明導電膜3の表面に露出している領域(第1凸部32が存在しない領域)において、10nm〜50nm、特に20nm〜30nmであることが好ましい。
【0027】
酸化錫を主成分とする層31は、透明導電膜3の下方に存在する下部構造(図1に示した形態では第2下地層22)を覆うように形成された連続層である(本明細書では、下部構造を露出させないように覆う層を「連続層」ということがある)。層31の厚さは、400nm〜900nm、さらには500nm〜800nm、特に600nm〜800nmが好ましい。層31が薄すぎると、透明導電膜3に求められる導電性が確保できない。他方、層31が厚すぎると、透明導電膜3の光吸収の増大に伴う光電変換層への入射光量の低下が導電性向上による効果を上回って光電変換効率が低下する。
【0028】
透明導電膜3の表面の少なくとも一部は島部(第1凸部)32により覆われ、膜3の表面の残部においては酸化錫を主成分とする層31が露出している。望ましい光学特性を得るためには、層31の表面を適切な割合で島部32が覆っていることが好ましい。透明導電膜3の表面において、島部32が形成されている領域D1と酸化錫を主成分とする層31が露出している領域D2との比は、80:20〜50:50、特に75:25〜60:40が適切である。この比は、後述するように、原子間力顕微鏡を用いて測定された粗さ曲線から算出することができる。
【0029】
本発明による透明導電膜付きガラス板は、可視域の長波長域から近赤外域における光散乱効果に優れている。この光散乱効果は、波長800nmにおけるヘイズ率により表示して、好ましくは10%以上、さらに好ましくは15%以上に至り、例えば15〜30%である。測定波長域380nm〜760nmにおけるヘイズ率は、好ましくは30%以上、さらには40%以上、例えば45〜60%である。また、この光散乱効果は、波長800nmにおける拡散光透過率により表示して、好ましくは10%以上、例えば15〜20%である。
【0030】
透明導電膜3の導電性は、用いる薄膜型太陽電池の要求特性に基づいて適宜設定すればよいが、膜表面のシート抵抗値により表示して、通常、30Ω/□以下、さらに20Ω/□以下、特に5〜15Ω/□以下が好ましい。
【0031】
酸化錫を主成分とする層31には、導電性を高めるために、通常、公知のドーパントが添加される。酸化錫へのドーパントとしては、フッ素およびアンチモンを例示できる。また、必要に応じて、島部32にドーパントを添加してもよい。島部32へのドーパントの添加は、透明導電膜3とその上に形成する光電変換層との接触抵抗の低下に効果がある。酸化亜鉛を主成分とする島部へのドーパントとしては、ホウ素、アルミニウム、ガリウムおよびインジウムを例示できる。酸化インジウムを主成分とする島部へのドーパントとしては錫を例示できる。錫をドープした酸化インジウムはITOと呼ばれている。
【0032】
図1に示したように、ガラス板1と透明導電膜3との間に下地膜2を介在させてもよい。下地膜2は、透明導電膜付きガラス板の光学的特性の調整、さらにはガラス板1からのアルカリ成分の拡散防止のために、必要に応じて形成される。下地膜2は、単一の層から構成されていてもよいが、2以上の層から構成されていてもよく、好ましくは第1下地層21および第2下地層22から構成される。ガラス板1に接して形成される第1下地層21は、酸化珪素、酸化チタン、酸化亜鉛、または酸炭化珪素を主成分とすることが好ましく、特に酸化錫を主成分とすることが好ましい。第2下地層22は、酸化珪素または酸化アルミニウムを主成分とすることが好ましく、特に酸化珪素を主成分とすることが好ましい。第1下地層21の好ましい膜厚は、10nm〜100nm、特に20nm〜70nmである。第2下地層22の好ましい膜厚は、5nm〜80nm、特に10nm〜40nmである。
【0033】
ガラス板1は、その種類に制限はないが、汎用のソーダ石灰ガラスを用いればよい。ガラス板1の厚みは、例えば2mm〜5mmが好適である。
【0034】
以下、図2を参照しながら透明導電膜付きガラス板の製造方法を説明する。
【0035】
まず、ガラス板1上に酸化錫を主成分とする層31が形成された積層体を準備する。図示した積層体では、ガラス板1と層31との間に、任意の層である下地膜2が介在している。酸化錫を主成分とする層31は、酸化錫が耐エッチング性に優れているため、エッチングによる厚さの減少を見込んで成膜する必要はない。したがって、層31は、上記に例示した範囲の厚さとなるように成膜するとよい。層31の好ましい成膜法は、CVD法、特に基板が有する熱により原料ガスを反応させて実施する熱CVD法である。熱CVD法による酸化錫を主成分とする導電層の成膜方法の詳細は、例えば特許文献2に開示されている。熱CVD法により成膜された層31の表面には、結晶粒の発達に伴って微細凸部(第2凸部33)が現れる。
【0036】
次いで、図2(a)に示すように、酸化錫を主成分とする層31の表面上に、酸化亜鉛または酸化インジウムを主成分とする層35を形成する。層35は、酸化錫を主成分とする層31の表面の全域を覆う連続層として形成される。層35は、次の工程でエッチングされるため、本明細書では「被エッチング層」と呼ぶ。
【0037】
被エッチング層35は、次工程で実施するエッチングによる厚さの減少と形成するべき島部の高さとを勘案して定めた所定の厚さとなるように成膜するべきである。被エッチング層35の厚さは、400nm〜1000nm、特に600nm〜900nmが好ましい。被エッチング層35の成膜方法は、特に制限されず、スパッタリング法、電子ビーム蒸着法、スプレーパイロリシス法、CVD法に代表される公知の成膜方法とすればよい。被エッチング層35は、より具体的には、例えばITO層であり、また例えば、必要に応じてアルミニウム、ガリウム等が添加された酸化亜鉛層(ZnO層、ZnO:Al層、ZnO:Ga層等)である。
【0038】
引き続き、図2(b)(c)に示すように、被エッチング層35をその表面からエッチングする。エッチングの進行に伴い、被エッチング層35の表面には微細な凹凸が現れる。図2(b)に示した段階では、被エッチング層35は、下部構造である層31の全面を被覆する連続層としての形態を維持している。従来、エッチングにより光散乱特性を付与するべき場合、透明導電膜のエッチング加工は、層35の連続層としての形態を維持する段階(図2(b))で停止されていた。層35が面内方向(図示左右方向)について分断されると、透明導電膜の導電性を確保することが難しくなるためである。
【0039】
これに対し、図示した方法では、被エッチング層35のエッチング加工がさらに継続され、酸化錫を主成分とする層31の表面の一部が露出する状態に至る。エッチング加工は、さらに、酸化錫を主成分とする層31の表面に存在する微細な凹凸が光散乱効果に十分寄与しうる程度にまで層31の露出表面が拡大するように行われる(図2(c))。この段階に至ると、被エッチング層35は、酸化錫を主成分とする層31の表面において、互いに分離した島部32となって残存する。この状態では、透明導電膜3の導電性は酸化錫を主成分とする層31により確保されることになる。こうして、例えばフッ素がドープされた酸化錫層(SnO2:F層)である連続層31と、層31の表面の一部を被覆するとともにこの表面から上方へと立ち上がる島部32とを備えた透明導電膜3が形成される。
【0040】
エッチングは、公知の方法に従って実施すればよい。エッチャント(エッチング用の腐食液)としては、塩酸、硝酸、硫酸、リン酸、酢酸等の酸が適している。複数種の酸を含む王水のようなエッチャントを用いても構わない。なお、エッチングは、エッチャントを用いるウェットエッチングによって実施することができるが、これに限らず、エッチングガスを被エッチング層35の表面に供給するドライエッチングにより実施してもよい。ドライエッチングに用いるエッチングガスとしては、塩化水素等のハロゲン化水素が適している。ただし、ハロゲン化水素系のガスに限らず、透明電極のパターニング技術において使用されている有機ガス系のエッチングガスを用いてもよい。
【0041】
図1に表れている島部(第1凸部)32の側面は、エッチングにより現れた面である。この側面は、図示したように、断面に現れる曲線が、底部から頂部に向かうにつれて傾きが膜面垂直方向(紙面上下方向)に近づく傾向を有する。言い換えれば、島部32の側面は、透明導電膜3の膜厚方向に沿って切断した断面において、当該島部32の底部から頂部に向かうにつれて膜3の膜厚方向との角度が小さくなる曲線により近似される。エッチングにより形成された凸部は、結晶粒を発達させて同程度の大きさとした凸部よりも、その表面が全体として滑らかであるため、透明導電膜3の上に形成される光電変換層の特性に及ぼす悪影響の程度が小さい。
【実施例】
【0042】
以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例により制限されるものではない。
【0043】
(実施例1)
CVD法により、ソーダライムシリカガラスからなるガラス板(厚さ3.2mm)上に、第1下地層(酸化錫層:厚さ25nm)、第2下地層(酸化珪素層:厚さ25nm)をこの順に成膜した。次いで、第1下地層および第2下地層からなる下地膜を形成したガラス板を基板搬送型大気圧CVD装置に投入し、ガラス板を550℃まで加熱するとともに、下地膜を形成したガラス板の表面に、ジメチルスズジクロライド(DMT)、水蒸気、酸素、塩化水素、フッ化水素およびキャリアガスとしての窒素からなる混合ガスを供給し、フッ素ドープ酸化錫(SnO2:F)からなる厚さ600nmの連続層を成膜した。
【0044】
引き続き、フッ素ドープ酸化錫層を形成したガラス板を上記CVD装置に投入し、ガラス板を550℃にまで加熱するとともに、フッ素ドープ酸化錫層の表面に、ジメチル亜鉛(DMZ)、水蒸気およびキャリアガスとしての窒素からなる混合ガスを供給し、被エッチング層として、酸化亜鉛からなる厚さ830nmの連続層を成膜した。こうして、ガラス板の上に4層の薄膜が積層された薄膜積層ガラス板を得た。
【0045】
その後、薄膜積層ガラス板を濃度0.05mol/Lの塩酸に室温で40秒間浸漬して酸化亜鉛層(被エッチング層)のエッチングを実施した。最後に、市水での流水洗浄、空気吹き付けによる乾燥を実施し、酸化亜鉛層が島状に分離して残存した透明導電膜付きガラス板を得た。
【0046】
(実施例2,3)
エッチング時間を10秒(実施例2)、30秒(実施例3)とした以外は、実施例1と同様にして、酸化亜鉛層が島状に分離して残存した透明導電膜付きガラス板を得た。
【0047】
(実施例4,5)
エッチング時間を30秒(実施例4)、40秒(実施例5)に、酸化亜鉛層を熱CVD法により成膜するときのガラス板の温度を660℃とした以外は、実施例1と同様にして、酸化亜鉛層が島状に分離して残存した透明導電膜付きガラス板を得た。
【0048】
(比較例1)
酸化亜鉛層の成膜およびエッチングを実施しないことを除いては、実施例1と同様にして透明導電膜付きガラス板を得た。このガラス板には、フッ素ドープ酸化錫層のみが形成されている。
【0049】
(比較例2)
エッチング時間を70秒とした以外は、実施例1と同様にして、酸化亜鉛層がすべて溶け出した透明導電膜付きガラス板を得た。
【0050】
(比較例3,4,5)
比較例3〜5では、実施例1において、フッ素ドープ酸化錫層を形成せず、下地膜の上に酸化亜鉛層を直接形成して薄膜積層ガラス板を得た。この薄膜積層ガラス板を用い、実施例1と同様にして、酸化亜鉛層のエッチングを実施して、透明導電膜付きガラス板を得た。ただし、エッチング時間は0秒(エッチングせず;比較例3)、30秒(比較例4)、70秒(比較例5)とした。比較例4からは酸化亜鉛層が島状に分離して残存した透明導電膜付きガラス板が、比較例5からは酸化亜鉛層がすべて溶け出した透明導電膜付きガラス板が得られた。
【0051】
実施例1〜5および比較例1〜5から得た透明導電膜付きガラス板について、ヘイズメーター(日本電色工業社製NDH2000)を用い、ガラス板側から光を入射させてヘイズ率を測定した。なお、ヘイズ率の測定波長域は380nm〜760nmである。また、ダイアインスツルメンツ社製MCP−TESTER LORESTA−FPを用いて透明導電膜の表面のシート抵抗値を測定した。
【0052】
さらに、原子間力顕微鏡(AFM;エスアイアイナノテクノロジー社製SPF−400)を用いて、透明導電膜の平均粗さRa、酸化亜鉛からなる島部の直径Dおよび高さH、ならびに酸化亜鉛からなる島部が形成されている領域D1と酸化錫からなる連続層が露出した領域D2との面積比を測定した。Raは、解析ソフト(エスアイアイテクノロジー社製NanoNavi)を用いて測定した。
【0053】
AFMを用いて測定した、各実施例および比較例4から得た透明導電膜の粗さ曲線からは、酸化錫からなる連続層の表面では観察されない巨大凸部(高さ200nm以上、幅0.5μm以上)の存在が確認できた。巨大凸部を除去した粗さ曲線から計算されるRaが、酸化亜鉛層を形成していない膜(酸化錫層からなる透明導電膜)のRaと同じになるように、粗さ曲線から巨大凸部に相当する部分を除去し、巨大凸部除去後の粗さ曲線の平均線を求めた。この平均線の一例は、図7の粗さ曲線に交差するように水平方向に延びている線分である。さらに、この平均線を基準として、各巨大凸部(高さ200nm以上、幅0.5μm以上)について、幅(平均線と粗さ曲線との2つの交点の距離)および高さを測定した。
【0054】
上記による測定を、各透明導電膜の表面に任意に定めた1辺5μmの正方形領域5ヶ所においてこの領域をそれぞれ縦横に横断する2つの線分に沿って実施した(測定回数の合計は10回である)。そして、巨大凸部の幅および高さの平均値を求め、その平均値を島部の直径Dおよび高さHとした。なお、膜面に垂直な方向から観察した結果に基づいて、この方向から観察した島部の形状を円形とみなし、幅Wを直径Dとみなすこととした。島部の直径Dに基づいて膜面に占める島部の面積比率を求め、領域D1と領域D2との比を算出した。
【0055】
図3〜図8に測定データの一部を示す。また、測定結果を表1および表2にまとめて示す。なお、表中に示した平均粗さRaは、透明導電膜全体について測定して得られた値(島部が形成された膜については島部を含む膜表面全体についての値)である。
【0056】
【表1】

【0057】
【表2】

【0058】
連続層とこの層の上に形成された島部とからなる透明導電膜が形成された各実施例の透明導電膜付きガラス板は、高いヘイズ率を示し(表1)、可視域から近赤外域にかけての広い波長域において高い拡散光透過率を示した(図6)。比較例4から得た透明導電膜付きガラス板は、他の比較例よりは高いヘイズ率を示したものの、透明導電膜が分断されているためにシート抵抗値が高くなった。
【符号の説明】
【0059】
1 ガラス板
2 下地膜
3 透明導電膜
21 第1下地層
22 第2下地層
31 酸化錫を主成分とする層
32 島部(第1凸部)
33 微細凸部(第2凸部)
35 被エッチング層


【特許請求の範囲】
【請求項1】
ガラス板と、前記ガラス板の上に形成された透明導電膜と、を備え、
前記透明導電膜が、酸化錫を主成分とする層と、前記層の表面上に配置された酸化亜鉛または酸化インジウムを主成分とする島部とを有し、
前記透明導電膜の表面に、前記島部からなる第1凸部とともに、前記層の表面に存在する第2凸部とが露出している、
透明導電膜付きガラス板。
【請求項2】
前記透明導電膜の表面において、前記島部が形成されている領域D1と前記酸化錫を主成分とする層が露出している領域D2との比が、80:20〜50:50の範囲にある、請求項1に記載の透明導電膜付きガラス板。
【請求項3】
前記島部の高さが200nm〜600nmである、請求項1または2に記載の透明導電膜付きガラス板。
【請求項4】
前記酸化錫を主成分とする層の膜厚が500〜800nmである請求項1〜3のいずれか1項に記載の透明導電膜付きガラス板。
【請求項5】
ガラス板の上に形成された酸化錫を主成分とする層の表面に、酸化亜鉛または酸化インジウムを主成分とする被エッチング層を形成する工程と、
前記被エッチング層をエッチングすることにより、前記酸化錫を主成分とする層の表面上に前記被エッチング層の一部を島部として残すとともに、前記酸化錫を主成分とする層の表面の一部を露出させ、前記酸化錫を主成分とする層および前記島部から構成されていて前記島部からなる第1凸部と前記酸化錫を主成分とする層の表面に存在する第2凸部とが表面に露出した透明導電膜を形成する工程と、
を具備する、透明導電膜付きガラス板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図6】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−6735(P2013−6735A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−140156(P2011−140156)
【出願日】平成23年6月24日(2011.6.24)
【出願人】(000004008)日本板硝子株式会社 (853)
【Fターム(参考)】