説明

非晶質半導体膜の評価方法、及び半導体装置の製造方法

【課題】フラットパネルディスプレイの高性能化に伴い、その製造工程でのアモルファスシリコン(a−Si)膜の評価・管理の必要性が高まってきた。
【解決手段】ガラス基板上にa−Si膜を成膜した試料32に対してレーザ光照射手段36からレーザ光を照射する。試料32におけるレーザ光を照射した各サンプリング点に、マイクロ波照射手段38からマイクロ波を照射し、反射波検出手段40でその反射強度を測定する。各サンプリング点での反射強度の測定結果に基づいて、基板面内でのa−Si膜の物性の均一性を評価する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非晶質半導体膜の物性の評価方法、及び非晶質半導体膜を用いて製造される半導体装置の製造方法に関する。
【背景技術】
【0002】
液晶ディスプレイのようなパネル状の表示装置は、ガラス基板の上に薄膜トランジスタ(Thin Film Transistor:TFT)を形成され、当該TFTをスイッチ素子として用いて各画素の選択や画素信号の印加を行う。TFTにてチャネルとなる活性層には、これまで、非晶質シリコン(amorphous silicon:a−Si)からなる半導体膜が広く用いられてきたが、これをキャリア移動度が高い多結晶シリコン(polycrystalline silicon:poly−Si)からなる半導体膜に変える試みがなされており、低い温度で成膜できる低温ポリシリコン(Low Temperature Poly-Silicon:LTPS)技術が開発されている。
【0003】
LTPS膜は通常、a−Si膜をレーザ結晶化するプロセスにより形成される。LTPSはガラス基板として変形温度が低い安価なものを用いることを可能とし、高温ポリシリコン技術よりも基板の大型化に適している。ここで、LTPSの電子移動度μは30〜300cm/V・s程度であり、a−Siの電子移動度μが0.5〜1.0cm/V・s程度であるのと比べると2桁程度大きい一方で、その幅も大きい。この電子移動度の範囲の広さはレーザ結晶化にて生じるものであり、結晶粒界の大きさや欠陥密度の違いが反映されている。
【0004】
このLTPS膜の結晶性を評価する技術として、下記非特許文献1はマイクロ波光導電減衰法(Microwave-Photo-Conductivity Decay:μ−PCD)を用いる方法を開示している。μ−PCD法は、試料とする半導体にレーザ光を照射して当該半導体中にキャリア(電子及び正孔)を生成すると共に、マイクロ波を照射し、キャリア密度の変化をマイクロ波の反射強度により観測する。キャリア密度が高いほど半導体の抵抗率は低下するので、レーザ照射位置に照射するマイクロ波の反射率はキャリア密度に比例して変化する。生成されたキャリアが再結合により消滅するまでのライフタイムは試料の物理的特性を反映するので、マイクロ波の反射率の時間変化から試料の結晶状態を非接触・非破壊で測定することができる。
【0005】
一方、a−Si膜を用いたフラットパネルディスプレイ(FPD)等の半導体装置の製品製造において、その途中で非破壊でa−Si膜の物理的特性を測定することは従来行われていない。その理由として、a−Si膜がLTPS膜のように特性のばらつきを大きくする結晶化を伴わず、敢えて製造ラインにて特性を測定する必要性が低かったことが考えられる。なお、従来は製品完成後において、ディスプレイの点灯検査などによりデバイス特性を評価したり、切り出したサンプルに対してフーリエ変換赤外分光光度計(FT−IR)、二次イオン質量分析計(SIMS)、ラザフォード後方散乱分光法(RBS)、電子スピン共鳴(ESR)等の分析技術を用いて非晶質半導体の物性を評価することが必要に応じて行われていた。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】住江伸吾 他、「低温ポリシリコンTFTプロセスにおける結晶欠陥の評価−ライフタイム測定技術の応用−」,神戸製鋼技法,Vol.57,No.1,2007年4月,pp8−16.
【発明の概要】
【発明が解決しようとする課題】
【0007】
一般に半導体装置は高集積化、高速駆動化が図られている。FPDにおいても大画面化と共に、画素数増加による高精細化や、動解像度向上や3D映像表示に対応したフレームレート増加による高速駆動化が図られている。a−SiはLTPSに比べて製造コストが低いというメリットから特に大型のFPDにおいて依然として広く用いられている。上述の電子移動度のように、a−Si膜の特性は、LTPS膜とは異なり結晶化プロセスの影響を受けないことなどから、LTPS膜と比べてばらつきを小さくし易いと考える。しかし上記製品動向の中では、a−Si膜の物性値に対する目標範囲やガラス基板の面内での物性値の均一性に対する要求が厳しくなっている。ちなみに、ガラス基板のサイズは拡大の一途を辿り、第10世代(G10)のサイズはおよそ3m角になる。
【0008】
本発明はFPDなどの製造ラインにおける上記要求に応えることを課題としてなされたものであり、当該要求に応えることを可能とする、半導体装置の製造工程にて成膜される非晶質半導体膜の評価方法、及び当該非晶質半導体膜を用いて製造される半導体装置の製造方法を提供する。
【課題を解決するための手段】
【0009】
本発明に係る非晶質半導体膜の評価方法は、絶縁体からなる基板上に非晶質半導体膜を成膜した評価対象基板に対してレーザ光を照射するレーザ光照射ステップと、前記評価対象基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記非晶質半導体膜の物性の均一性を評価する評価ステップと、を有する。
【0010】
本発明に係る半導体装置の製造方法は、基板上に非晶質半導体膜を成膜する成膜工程を含んで半導体装置を製造する方法であって、前記成膜工程により絶縁体からなる基板上に前記非晶質半導体膜を形成した評価対象基板に対して、レーザ光を照射するレーザ光照射ステップと、前記評価対象基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、前記評価対象基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記非晶質半導体膜の物性の均一性を評価し前記成膜工程の不良を前記半導体装置の製造完了前に検出する評価ステップと、を有する。
【0011】
他の本発明に係る半導体装置の製造方法は、絶縁体からなる基板上に薄膜トランジスタのゲート電極を形成する工程と、前記ゲート電極を覆って前記基板上にゲート絶縁膜を成膜する絶縁膜成膜工程と、前記ゲート絶縁膜上に非晶質半導体膜を成膜し、前記薄膜トランジスタの活性層を形成する半導体膜成膜工程とを含んで、前記薄膜トランジスタを用いた半導体装置を製造する方法であって、前記薄膜トランジスタの製造と並行して前記絶縁膜成膜工程及び前記半導体膜成膜工程において前記基板上に前記ゲート絶縁膜及び前記非晶質半導体膜を積層して標本基板を作製する標本作製ステップと、前記標本基板に対して、レーザ光を照射するレーザ光照射ステップと、前記標本基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、前記標本基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記非晶質半導体膜の物性の均一性を評価し前記半導体膜成膜工程の不良を前記半導体装置の製造完了前に検出する評価ステップと、を有し、前記半導体装置の製造途中にて前記半導体膜成膜工程の不良への対処を可能とする。
【0012】
さらに他の本発明に係る半導体装置の製造方法は、絶縁体からなる基板上に非晶質半導体膜を成膜する半導体膜成膜工程と、前記非晶質半導体膜中の水素含有量を低減させる脱水素工程と、前記脱水素工程後の前記非晶質半導体膜をレーザ光の照射により結晶化して、薄膜トランジスタの活性層とする多結晶半導体膜を形成するレーザ結晶化工程とを含んで、前記薄膜トランジスタを用いた半導体装置を製造する方法であって、前記薄膜トランジスタの製造と並行して前記半導体膜成膜工程において前記基板上に前記非晶質半導体膜を成膜し、前記脱水素工程において当該非晶質半導体膜中の水素含有量を低減して標本基板を作製する標本作製ステップと、前記標本基板に対して、レーザ光を照射するレーザ光照射ステップと、前記標本基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、前記標本基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、前記非晶質半導体膜の脱水素の程度及びその基板面内での均一性を前記レーザ結晶化工程前に評価する評価ステップと、前記評価ステップにて前記脱水素の不足が検出された場合に追加の脱水素処理を行う追加脱水素工程と、を有する。
【0013】
別の本発明に係る半導体装置の製造方法は、絶縁体からなる基板上に薄膜トランジスタのゲート電極を形成する工程と、前記ゲート電極を覆って前記基板上にゲート絶縁膜を成膜する絶縁膜成膜工程と、前記ゲート絶縁膜上に前記薄膜トランジスタの活性層となる非晶質半導体膜を成膜する半導体膜成膜工程と、前記非晶質半導体膜上に前記活性層と前記薄膜トランジスタのソース電極及びドレイン電極との間のオーミック接触層となる低抵抗非晶質半導体膜を成膜するオーミック層成膜工程とを含んで、前記薄膜トランジスタを用いた半導体装置を製造する方法であって、前記薄膜トランジスタの製造と並行して前記絶縁膜成膜工程及び前記オーミック層成膜工程において前記基板上に前記ゲート絶縁膜及び前記低抵抗非晶質半導体膜を積層して標本基板を作製する標本作製ステップと、前記標本基板に対して、レーザ光を照射するレーザ光照射ステップと、前記標本基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、前記標本基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記低抵抗非晶質半導体膜の物性の均一性を評価し前記オーミック層成膜工程の不良を前記半導体装置の製造完了前に検出する評価ステップと、を有し、前記半導体装置の製造途中にて前記オーミック層成膜工程の不良への対処を可能とする。
【発明の効果】
【0014】
本発明の非晶質半導体膜の評価方法によれば、非晶質半導体膜の物性をその成膜後、非破壊で速やかに測定することができる。また、本発明の半導体装置の製造方法によれば、非晶質半導体膜を用いたTFTやFPD等の完成を待たずに当該非晶質半導体膜を評価することができる。つまり、当該非晶質半導体膜の形成に続く工程を行う前に。当該非晶質半導体膜の良否を判断し不良への対処を可能とするので、不良な非晶質半導体膜を用いた無駄な後続作業の発生を回避し、また半導体装置の歩留まりを向上させることが可能となる。
【図面の簡単な説明】
【0015】
【図1】IPS方式の液晶パネルのアレイ基板に形成されるTFTの一例の模式的な垂直断面図である。
【図2】本発明の実施形態で用いる非晶質半導体膜評価装置を説明する模式図である。
【図3】第1実施形態における試料基板の垂直断面構造を示す模式図である。
【図4】メンテナンス前のCVD装置でa−Si膜を成膜した試料基板についての評価装置による測定結果を示すグラフである。
【図5】メンテナンス後のCVD装置でa−Si膜を成膜した試料基板についての評価装置による測定結果を示すグラフである。
【図6】CVD装置のメンテナンス後の試料基板の端部、メンテナンス前の試料基板の中央部及び端部におけるTFTのV−I特性を示すグラフである。
【図7】CVD装置のメンテナンス前の試料基板の中央部及び端部の切片について測定したSIMSプロファイルである。
【図8】液晶ディスプレイの製造工程の概略を示すフロー図である。
【図9】第2実施形態における液晶ディスプレイの製造方法を説明する模式図である。
【図10】第3実施形態における試料基板でのa−Si膜の水素含有量と反射強度との関係を示すグラフである。
【図11】第3実施形態における試料基板の垂直断面構造を示す模式図である。
【図12】a−Si膜の成膜直後と脱水素後とでの反射強度とダングリングボンド密度との関係を示すグラフである。
【図13】第3実施形態における液晶ディスプレイの製造方法を説明する模式図である。
【図14】第4実施形態に関しn a−Si膜の4端子抵抗率の逆数と反射強度との関係を示すグラフである。
【図15】第4実施形態に関しn a−Si膜の2端子抵抗値の逆数と反射強度との関係を示すグラフである。
【図16】異なる成膜条件のn a−Si膜を用いたTFTについてのオン電流と反射強度との関係を示すグラフである。
【図17】第4実施形態における液晶ディスプレイの製造方法を説明する模式図である。
【図18】第5実施形態における液晶ディスプレイの製造方法を説明する模式図である。
【図19】第6実施形態における液晶ディスプレイの製造方法を説明する模式図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0017】
実施形態に係る非晶質半導体膜の評価方法の原理、及び評価装置に関して説明する。
【0018】
液晶表示装置の液晶パネルはバックライト側のアレイ基板と表示面側のカラーフィルタ基板と、それらの間隙に封入された液晶層とを有する。例えば、IPS(In-Plane Switching)型の液晶パネルでは、アレイ基板の液晶層側の表面に配置される画素電極に印加する電圧によって画素毎に液晶層の配向を制御する。
【0019】
図1はIPS方式の液晶パネルのアレイ基板に形成されるTFTの一例の模式的な垂直断面図である。TFT2は、画面の垂直方向に配列される複数の走査信号線(図示せず)と画面の水平方向に配列される複数のデータ信号線(図示せず)とが交差する部分毎に設けられる。TFT2は逆スタガ構造であり、ガラス基板4の表面にTFT2のゲート電極6が形成され、その上にゲート絶縁膜8を介してTFT2のチャネル部となる活性層10が半導体膜で積層される。本実施形態では当該半導体膜はa−Si膜である。活性層10にそれぞれオーミック接触層12を介してドレイン電極14及びソース電極16が接続される。このTFT2の液晶層に面する表面は保護膜18で覆われ、保護膜18表面に形成された画素電極20が保護膜18に形成されたコンタクトホール22を介してソース電極16に接続される。一方、ゲート電極6は走査信号線に接続され、ドレイン電極14はデータ信号線に接続される。
【0020】
走査信号線にはTFT2のオン/オフを制御する信号が印加され、データ信号線には液晶層を制御するための電圧信号が印加される。TFT2は走査信号線の信号に応じてデータ信号線と画素電極20との断続を制御するスイッチ素子として機能し、TFT2がオンするとデータ信号線から画像信号に応じた電圧信号が画素電極20に印加される。
【0021】
ゲート絶縁膜8、保護膜18はそれぞれシリコン窒化膜(SiNx)からなり、以下、g−SiNxはゲート絶縁膜8、またPAS−SiNxは保護膜18を意味する。また、オーミック接触層12はn型不純物を高濃度にドープして低抵抗化した低抵抗a−Si(na−Si)からなる。ちなみに画素電極20は透明導電膜であるITO(Indium Tin Oxide:酸化インジウムスズ)膜で形成されている。なお、画素電極20の下にはITOで形成されたコモン電極24が配置され、コモン電極24はゲート電極6と同じ金属膜で形成されたコモン線26により電位を設定される。
【0022】
液晶表示装置においてTFT2のオン特性が劣化すると、画素へのデータ信号の書込み不足により輝度低下が発生し得る。TFTのオン特性劣化の主要因としては、(a)g−SiNx膜の膜厚・膜質、(b)a−Si膜の活性層としての電荷の通りやすさ(半導体物性)、(c)na−Si膜の抵抗値及びキャリア密度、が挙げられる。
【0023】
要因(a)に関しては、g−SiNx膜が厚い領域ではオン特性は低下する。
【0024】
要因(b)に関しては、a−Si膜が(i)高純度、(ii)低ダングリングボンド量、及び(iii)電子が通りやすい原子構造であるほどオン特性は良くなる。ここで、ダングリングボンドは、a−Siの共有結合性の原子構造において結合に関与していない不対電子のことであり、TFT動作時において電荷の移動の妨げになる性質がある。
【0025】
要因(c)に関しては、na−Si層の抵抗値がオーミック接触層として十分に低抵抗であればオン特性は良好となる。
【0026】
本発明は非晶質半導体膜の評価に関するもので、例えば、図1のTFT2においては活性層10を形成するa−Si膜やオーミック接触層12を形成するna−Si膜を評価することができ、また上記要因(b),(c)に伴うオン特性の不良を液晶表示装置の製造途中にて検出して対処を可能とする。
【0027】
本発明に係る非晶質半導体膜の評価はμ−PCD法を用いた評価装置により行う。当該装置は従来、LTPS膜の結晶性評価に用いられていた装置と基本原理は同じであるが、既に述べたように非晶質半導体膜はキャリア移動度が多結晶半導体膜に比べて遙かに小さくマイクロ波の反射強度が微弱となるので、LTPS膜測定より一層の高感度が要求される。そのような高感度の測定を可能とする装置は最近になって開発され提供されつつある。例えば、高感度化を図る技術として差動μ−PCDが用いられる。
【0028】
図2は、本実施形態で用いる非晶質半導体膜評価装置30を説明する模式図であり、同図を用いてμ−PCD法及び評価装置30の概略を説明する。評価装置30は試料32を載置するステージ34、レーザ光照射手段36、マイクロ波照射手段38及び反射波検出手段40を備え、同図には試料32を載置したステージ34の垂直断面に各手段36,38,40が表されている。レーザ光照射手段36は、YLF(リチウム・イットリウム・フロライド)の3倍高調波(波長349nm)を半導体レーザで励起して出力するパルスレーザを光源として備え、光学系で試料32の目標位置にパルス幅数十nS程度のレーザ光を照射する。マイクロ波照射手段38は、ガンダイオードを用いて発振された周波数26GHzのマイクロ波を出力するマイクロ波発振器、導波管等を含んで構成される。差動μ−PCD法では、発振器から出力されたマイクロ波は2つに分岐され、一方の導波管はレーザ光の照射位置にマイクロ波を導くと共にその反射波を取り出し、他方の導波管はレーザ光を照射していない位置にマイクロ波を導くと共にその反射波を取り出す。そして反射波検出手段40はそれら2つの反射波の強度差に基づいて、試料32の目標位置での反射率を示す信号を生成する。このように差動μ−PCD法はレーザ光の照射による試料32の物性の変化分のみを抽出する手法であるため、マイクロ波発振器のノイズや機械的振動による外乱をキャンセルでき高感度を実現できる。
【0029】
絶縁性基板42上に半導体膜44を形成した試料32にレーザをパルス照射すると半導体膜44に過剰キャリア(電子・正孔対)が生成され、半導体膜44の物理的特性によって決まるライフタイムの後、再結合して消滅する。過剰キャリアの生成は試料32の導電率を増加させるため、その位置でのマイクロ波の反射率は過剰キャリアの密度に対応して変化する。μ−PCD法は既に述べたように、マイクロ波の反射率の時間変化からライフタイムを非接触・非破壊で測定する。ステージ34は水平面内にて二次元的に移動可能であり、試料32上の測定目標位置を変更して基板面内でのマップを作成することができる。本評価方法では、試料32の各サンプリング点でのマイクロ波の反射強度(反射率)や、ライフタイムの基板面内のマップに基づいて、a−Si膜やn a−Si膜といった非晶質半導体膜の物性値や、その基板面内での変動の有無又は均一性を推定し評価する。
【0030】
基本的に反射率Rは過剰キャリアの密度が大きいほど高くなり、従って、ライフタイムτが長いほど或る測定時間での反射強度Vは大きくなる。V値にはa−Si層の膜厚、不純物量、ダングリングボンド密度、原子構造などが影響する。またn a−Si層に関してはさらに、ドーピング量や抵抗率といった値も影響する。これら因子のうち膜厚はa−Si層等の物性とは関係ないが、他は全て半導体物性やオーミックコンタクト層としての物性に関係がある。すなわち仮に膜厚が一定であるとするとV値は移動度μやオン電流IonといったTFTのオン特性を反映するので、V値に基づいて上述の書込み不足についての評価を行うことができる。例えば、マッピング表示したV値に基づいてTFTのオン特性の均一性を評価することができる。
【0031】
以上、本発明に係る評価方法の原理、及び評価装置について説明した。以下、本発明を適用した非晶質半導体膜の評価の形態、及び実験結果を説明する。さらに、非晶質半導体膜を用いて形成される半導体装置の一例であるFPDについて本発明を適用した製造方法の形態を説明する。
【0032】
[第1実施形態]
本実施形態はa−Si膜の評価方法に関する。ここでは、液晶パネルのアレイ基板に形成されるTFTの活性層10に用いられるa−Si膜の評価に適用した例を説明する。液晶パネルの製造工程では、図1に示したTFT2がガラス基板上に形成される。このTFT2を作成する工程に実質的に並行して、試料32とする試料基板50を作成する。試料基板50は液晶パネルと同じサイズに形成される。図3は本実施形態における試料基板50の垂直断面構造を示す模式図であり、ガラス基板4(厚さ0.7mm)の上にゲート絶縁膜8の成膜プロセスで形成したSiNx膜52(厚さ370nm)、活性層10の成膜プロセスで形成したa−Si膜54(厚さ160nm)、及び保護膜18の成膜プロセスで形成したSiNx膜56(厚さ480nm)が順次、CVD(Chemical Vapor Deposition:化学気相成長 )装置で積層される。なお、試料基板50の各層は基本的に基板全面に成膜されパターニングせずに次の層が積層される。
【0033】
相当期間運転したCVD装置についてメンテナンス前とメンテナンス後とでそれぞれ活性層10(又はa−Si膜54)を成膜した基板(横82cm、縦46cm)を用いて液晶パネル及び試料基板50を作製した。
【0034】
液晶パネルについては中間調の一様な画像の画像信号を入力して点灯試験を行った。ここで、試料基板50と対比するために液晶パネルはマザーガラスにおける位置が試料基板50と同じであるものを用いる。TFT2のオン特性の相違は低温状態にて顕著に表れる傾向があるので、当該点灯試験は−20℃で行った。その結果、メンテナンス前のCVD装置で活性層10を成膜した液晶パネルでは、右端5cm程度の領域の輝度が顕著に低下していることが視認され、画面内での輝度不均一の発生が確認された。一方、メンテナンス後のCVD装置で活性層10を成膜した液晶パネルでは画面内での輝度不均一は認められず、液晶パネルとして健全であることが確認された。
【0035】
図4、図5は試料基板50を上記評価装置30で測定した結果を示すグラフであり、図4はメンテナンス前のCVD装置でa−Si膜54を成膜した試料基板50に関するものであり、図5はメンテナンス後のものである。計測はステージ34を用いて基板面(XY面)全体について二次元的に行ったが、図示の都合上、ここでは基板横方向に沿った測定結果を示している。グラフの横軸は基板上での横方向(X方向)の座標を表し、縦軸はマイクロ波の反射強度Vの測定値であり、基板の縦方向(Y方向)の中央での値を示している。
【0036】
メンテナンス前に対応する図4の測定結果には反射光量の2種類の変化が現れている。一つは基板の左側で値が低く、左側から中央へ向けて徐々に値が大きくなる緩やかな分布である。もう一つは、右端に近づくに連れて著しく値が小さくなる分布である。ここで、X方向中央では反射強度信号は112mVであったが、右端では82mVであった。前者の緩やかな分布は、a−Si膜厚がマップの左半分で薄く、外周に近づくにつれて厚くなる膜厚分布を反映していると考えられる。右端の値が小さい領域は、上述した液晶パネルの低輝度領域に対応したものであり、a−Si膜の膜質が悪く、これに起因して液晶パネルではTFT特性が劣化している領域と考えられる。
【0037】
メンテナンス後に対応する図5の測定結果には、図4の場合には観察された基板右端での輝度低下は見られなかった。一方、膜厚分布と考えられる基板左端から右へ向かって反射強度Vが緩やかに上昇する傾向は同様に存在して、右端領域では比較的大きな反射強度(127mV)に達している。
【0038】
メンテナンス前の端部での輝度不良の原因を明らかにするために、液晶パネルのサンプル領域でのTFT特性を評価し、また当該サンプル領域を試料基板50から切り出して不純物量を調べた。サンプル領域として以下の3個所Sm1,Sm2,Sm3を設定した。
Sm1:CVDメンテナンス後の右端部(上述のV値が127mVであった個所)
Sm2:CVDメンテナンス前の中央部(上述のV値が112mVであった個所)
Sm3:CVDメンテナンス前の右端部(上述のV値が82mVであった個所)
【0039】
図6は、各サンプル領域に対応するTFTのV−I特性を対比して示している。グラフの横軸がゲート電圧V(ゲート−ソース間電圧Vgs)であり、縦軸がドレイン電流I(ソース−ドレイン間電流Ids)である。図6(a)が領域Sm1のTFTについての測定結果であり、また図6(b)が領域Sm2、図6(c)が領域Sm3に関する測定結果である。TFTのチャネル幅Wは1000μm、チャネル長Lは5μmであり、ドレイン−ソース間電圧Vdsは10.1Vに設定し、3通りの温度20℃、0℃及び−20℃にて測定を行った。
【0040】
図6は、サンプルSm3はSm1,Sm2と比較して、いずれの温度、ゲート電圧Vにおいてもオン電流Iの値が低く、TFT特性が劣化していることを示している。
【0041】
図7は、領域Sm2,Sm3での試料基板50の切片について測定したSIMSプロファイルであり、左側のグラフがSm2、右側のグラフがSm3に対応している。グラフの横軸は試料表面からの深さであり、横軸に沿って表面側からPAS−SiNx、Si及びg−SiNxとの表記で示す範囲はそれぞれSiNx膜56、a−Si膜54及びSiNx膜52の深さ範囲である。また縦軸は収量であり、右側の軸がイオンカウント値、左側の軸が元素の濃度に対応している。観測された元素のうち収量が多い水素(H)、窒素(N)、シリコン(Si)及びフッ素(F)についてのプロファイルを示している。図7(a)が領域Sm2の試料切片についての測定結果であり、また図7(b)が領域Sm3の測定結果である。Sm2とSm3との大きな違いは、N及びFのプロファイルにある。a−Si層中の含有量で比較すると、Nは7倍程度、Fは20倍程度、中央(Sm2)と比べて端(Sm3)に多く存在している。NやFの含有量を定量する上で、Si層の原子の密度が5.0×1022atoms/ccであると仮定すると、中央部においてNの原子濃度は0.06at%、Fの原子濃度は0.006at%であり、端部においてNは0.40at%、Fは0.14at%となる。特に端部におけるNの含有量は不純物としてかなり多い値である。FはPAS−SiNx、g−SiNxの各層中においても端部では中央部より5倍程度多い。
【0042】
なお、図示しないが酸素(O)や炭素(C)は中央と端とで有意差はなく、またナトリウム(Na)、アルミニウム(Al)、カリウム(K)、カルシウム(Ca)、鉄(Fe)、銅(Cu)の各元素に関しては検出下限以下で、リン(P)は中央と端とで同程度(1015atoms/cc程度)であった。
【0043】
以上述べたTFT特性及びSIMSプロファイルの測定・解析から、液晶パネルの輝度むら等の不良が、基板面内にて局所的に不純物が増加することによるa−Si膜の物性劣化に起因することが分かった。
【0044】
そして、μ−PCD法を応用した本発明の評価方法は、試料基板50を用いて基板面内にてa−Si膜の物性劣化部分が存在することを検出し、それに伴う液晶パネルでの輝度不足や輝度むらの発生を推定することを可能とする。すなわち、試料基板50にて測定された反射強度Vが、上述のような液晶パネルと試料基板50との対比によって予め測定した閾値より小さい場合には、当該試料基板50と並行して製造しているアレイ基板については輝度不足が発生するおそれがあると判断することができる。また基板面内での反射強度の変動幅が予め測定で求めた閾値以上である場合には、輝度むらが発生するおそれがあると判断することができる。このように、試料基板50の作成段階での評価にて液晶パネルでの輝度不足や輝度むら等の不良が予見される場合には例えば、後続の製造工程を中止してCVD装置のメンテナンスを実施する等の対処を行うことができる。
【0045】
ここで、μ−PCD法は半導体層の下に導電体が存在するとその影響を受ける。そこで、上述の実施形態では試料基板50として、ゲート電極6を形成するための金属膜を成膜しない基板を液晶パネル製造用のアレイ基板と並行して作製し、当該試料基板50を評価装置30で測定した。しかし、アレイ基板においてもa−Si膜の下に金属膜が配されていない領域は存在する。そのような領域は例えば、画像領域や周辺回路の形成領域以外の部分に存在し、基板の縁にはそのような領域が存在しやすい。a−Si膜54を成膜した時点で下に金属膜が存在しない当該領域を基板の縁に沿って見い出し、又は予め設計で設けておき、当該領域に評価装置30のスポット状のレーザ光及びマイクロ波を照射してアレイ基板内でのa−Si膜の物性の均一性を評価することが可能である。
【0046】
[第2実施形態]
本実施形態は活性層10をa−Si膜で形成したTFTを用いた液晶ディスプレイの製造方法に関する。図8は液晶ディスプレイの製造工程の概略を示すフロー図であり、TFTアレイ工程、カラーフィルタ(CF)工程、セル工程、及びモジュール(MD)工程を含む。TFTアレイ工程はガラス基板上に、フォトリソグラフィ工程、成膜工程を繰り返してTFT等の構造を形成し、アレイ基板を作製する工程である。具体的には、ゲート電極6のパターニング後、CVD装置でg−SiNx膜(ゲート絶縁膜8)、a−Si膜(活性層10)及びn a−Si膜(オーミック接触層12)を連続成膜し、活性層10及びオーミック接触層12をパターニングする。さらにドレイン電極14及びソース電極16、保護膜18、コンタクトホール22を形成した後、ITO膜を成膜、パターニングし画素電極20が形成される。
【0047】
CF工程はガラス基板にブラックマトリクス、及び赤(R)、緑(G)及び青(B)等のカラーフィルタを形成し、カラーフィルタ基板を作製する工程である。
【0048】
セル工程は、TFTアレイ工程で作製したアレイ基板と、CF工程で作製したカラーフィルタ基板とを組合わせ、その間に液晶物質を入れる工程である。具体的には、両基板の液晶側表面にポリイミドからなる配向膜を印刷し、ラビング処理を行う。さらに、シール剤塗布、基板貼り合わせ、液晶注入を含む組み立てが行われる。一般にTFTアレイ工程及びCF工程は大面積のマザーガラスを用いて行われ、それらの組み立て後、マザーガラス内に複数面作製された液晶パネルが切り分けられる。切断された個々の液晶パネルには偏光板が貼り付けられる。
【0049】
MD工程は、液晶パネルにバックライトや駆動用電源などを組み付け、液晶ディスプレイを完成させる工程である。具体的には、ドライバICの実装、バックライトの取り付け等を行い、最後に点灯検査を行う。
【0050】
図9は本実施形態における液晶ディスプレイの製造方法を説明する模式図である。ガラス基板として、実際にアレイ基板を作製するための実基板と、試料32を作製するための評価用基板とが用意される。例えば、製造ロットを構成する複数のガラス基板(マザーガラス)の一部を評価用基板としたり、所定数のロット毎に評価対象ロットを定め、その一部のガラス基板を評価用基板に設定することができる。
【0051】
実基板であるガラス基板4には上述の第1実施形態と同様、図1に示したTFT2が形成される。一方、このTFT2を作製する工程に並行して評価用基板を用いて試料基板を作製する。具体的には、実基板70にはゲートメタル(GM)膜72をスパッタリングにより成膜し(S100)、これをパターニングして例えばゲート電極6が形成される(S102)。ゲート電極6の形成後、CVD装置を用いて、g−SiNx膜74、a−Si膜76及びna−Si膜78が連続成膜される(S104)。図9にはここまでの工程を経たアレイ基板のゲート電極6近傍での模式的な垂直断面構造80が示されている。
【0052】
実基板70に対するここまでの工程において、評価用基板90にはg−SiNx膜74及びa−Si膜76が成膜され試料基板が作製される(S110)。この成膜工程S110は実基板70における成膜工程S104と同じCVD装置を用い、評価用基板90上のg−SiNx膜74及びa−Si膜76は実基板70におけると同一の条件で成膜される。図9には試料基板の模式的な垂直断面構造92が示されている。
【0053】
本実施形態の液晶ディスプレイの製造方法では、試料基板を実基板70における3層連続成膜工程S104と並行して作製すると、次に試料基板を用い、第1実施形態で述べた評価方法に基づいてa−Si膜76の物性評価を行う(S112)。具体的には、当該試料基板を上述した評価装置30にセットして、レーザ光照射及びマイクロ波照射を行い、例えば反射強度Vのマップを測定する。そして当該評価装置30の測定結果に基づいて、基板面内にてa−Si膜の物性劣化部分が存在することを検出し、それに伴う液晶ディスプレイでの輝度不足や輝度むらの発生を推定する。例えば、試料基板にて測定された反射強度Vが、第1実施形態で述べたような液晶パネルの点灯検査との対比により予め測定した閾値より小さい場合には、当該試料基板と並行して製造している実基板については輝度不足が発生するおそれがあると判断することができる。また基板面内での反射強度の変動幅が予め測定で求めた閾値以上である場合には、輝度むらが発生するおそれがあると判断することができる。
【0054】
実基板70における成膜工程S104に続く、n a−Si膜78及びa−Si膜76のパターニング(S106)以降の工程は、このa−Si膜の物性評価S112の結果、a−Si膜76の成膜プロセスが良好であると判断された場合に実施される。一方、物性評価S112の結果、当該成膜プロセスが不良と判断される場合には、後続処理は行わずに、不良原因の調査やCVD装置のメンテナンス等を実施する(S114)。
【0055】
このように液晶ディスプレイの製造プロセスの極めて初期の段階で行われるa−Si膜の成膜プロセスについて、次の工程に移る前といった早い段階で評価することで、ラインの問題点を速やかに把握することができる。例えば、試料基板を用いた評価により品質不良が検出された場合には、当該試料基板と並行して作製された仕掛品の実基板についてはそれ以降の多数の工程を無駄に実施することを回避できる。また、従来は当該不良は点灯検査などのかなり後の工程で検出されるので、或るロットにてa−Si膜成膜の不良が発生してからその点灯検査までの間に後続ロットにて不良な仕掛品が作られ続けるおそれがあったところ、本発明の製造方法によればそれを防止できる。このようにして本発明の液晶ディスプレイの製造方法によれば歩留まりやラインの生産性が向上する。
【0056】
なお、上記実施形態では、試料基板を用いたa−Si膜の評価結果が出るまで、実基板70について、a−Si膜76を成膜した工程S104の直後の工程S106の実行を停止した。しかし、評価結果が出るまで実基板70について工程を多少進めることは本発明において許容される。
【0057】
[第3実施形態]
本実施形態は活性層10をLTPS膜で形成したTFTを用いた液晶ディスプレイの製造方法に関する。本実施形態も上記第2実施形態と同様、図8に示した液晶ディスプレイの製造工程のうち、TFTアレイ工程でのTFTの活性層10の形成工程に関係する。
【0058】
活性層10のLTPS膜は、CVD装置で成膜したa−Si膜を結晶化させて形成される。レーザ結晶化法を用いる場合にはa−Si膜中の水素を除去してからレーザ照射しないと、アブレーションという膜が破壊する現象が生じるおそれがあることが知られている。
【0059】
以下、a−Si膜中に含有される水素の影響に関して行った実験・解析結果を説明する。
【0060】
図10は、反射強度VとCVD装置で成膜したa−Si膜中の水素含有量との関係を示すグラフであり、横軸が反射強度V、縦軸は原子濃度で表した水素含有量である。図11はこの測定に用いた試料の垂直断面構造を示す模式図であり、6インチφの石英基板の上にSiN膜(厚さ148nm)、SiO膜(厚さ170nm)、及びa−Si膜(厚さ50nm)が順次、CVD装置で積層された構造を有する。当該構造にて水素含有量が異なる数種類の試料を作製し、試料毎に測定領域内での反射強度Vを測定した。図10には、各試料の反射強度Vの最大値、最小値、及びピーク値(平均値)をプロットし、最大値、最小値、ピーク値それぞれについての回帰直線120,122,124を示している。図10に示すように、反射強度Vと水素含有量とは比例関係にある。よって、上述した評価装置30で反射強度Vを測定し、当該測定値からa−Si膜中の水素含有量を評価することが可能であることがわかった。
【0061】
図12は、反射強度Vとa−Si膜中のダングリングボンド密度との関係を示すグラフであり、横軸が反射強度V、縦軸がダングリングボンド密度である。成膜直後及び脱水素後それぞれのa−Si膜について測定を行った。成膜直後と脱水素後とではダングリングボンド密度が大きく異なり、また反射強度Vも大きく異なる。具体的には、成膜直後はダングリングボンド密度が低く、かつ反射強度Vは高い測定結果が得られ、脱水素後は逆にダングリングボンド密度が高く、かつ反射強度Vは低い測定結果が得られた。成膜直後に関する測定結果は、膜中の水素がa−Si膜中のダングリングボンドを終端化しているために、評価装置30のレーザ照射により発生したキャリアのライフタイムτが比較的長いことによる。一方、脱水素後には終端化している水素が抜けてしまいダングリングボンドが増加するために、キャリアのライフタイムτは短くなり反射強度Vは小さくなる。
【0062】
上記実験・解析結果から評価装置30によりa−Si膜中の水素量を評価できることがわかる。
【0063】
次に、脱水素処理後のレーザ照射による結晶化に関する実験結果について述べる。6インチφの石英基板(厚さ0.625mm)の上にSiNx膜(厚さ150nm)、SiO膜(厚さ170nm)、及びa−Si膜(厚さ55nm)を順次、CVD装置で積層した試料に、レーザ光を照射する。レーザは照射出力を50〜85Wの範囲で5Wずつ変え、各出力での照射領域及び非照射領域での反射強度Vを測定した。照射出力が60W以上の領域は、a−Si膜が結晶化したことによりキャリアのライフタイムτが長くなり、レーザ光の非照射領域よりも反射強度Vが増加した。一方、50Wの照射領域全体と55Wの半分程度の領域は、非照射領域よりも反射強度Vが減少した。これは、弱いレーザを照射したことにより、結晶化はしない範囲で瞬間的に温度が上昇して脱水素がさらに進んだ結果、この領域のダングリングボンド密度が増加したことによる。この実験結果から、弱い出力のレーザを照射して脱水素処理を行うことが可能であることが分かった。また、評価装置30によりa−Si膜中から水素が抜けた現象を確認できることを示している。
【0064】
図13は本実施形態における液晶ディスプレイの製造方法を説明する模式図である。第2実施形態と同様、ガラス基板として実基板と評価用基板とが用意される。実基板であるガラス基板にはLTPS膜からなる活性層を有するTFTが形成される。ここでは当該LTPS TFTはボトムゲート型とし、実基板150上にGM膜152をスパッタリングにより成膜し(S180)、これをパターニングして例えばゲート電極154が形成される(S182)。ゲート電極154の形成後、CVD装置を用いて、g−SiNx膜156、g−SiO膜158(ゲート酸化膜)及びa−Si膜160が連続成膜される(S184)。しかる後、アニール炉を用いてガラス基板の融点以下の高温、例えば450℃程度でアニールして脱水素処理を行う(S186)。ちなみに、レーザアニールは水素の突沸により上述のアブレーションを起こすため、この段階での脱水素処理には用いられない。図13にはここまでの工程を経た実基板のゲート電極154近傍での模式的な垂直断面構造162が示されている。
【0065】
実基板150にTFTを形成するための上述の工程と並行して、評価用基板170を用いて試料基板を作成する。実基板150に対する脱水素処理S186までの工程において、評価用基板170には実基板150の成膜工程S184と同一のCVD装置及び同一条件でg−SiNx膜156、g−SiO膜158及びa−Si膜160が成膜される(S190)。しかる後、評価用基板170上のa−Si膜160についても実基板150における脱水素処理S186と同一条件の脱水素処理が行われて試料基板が作製される(S192)。図13には試料基板の模式的な垂直断面構造172が示されている。
【0066】
本実施形態の液晶ディスプレイの製造方法では、試料基板を実基板150における3層連続成膜工程S184及び脱水素処理S186と並行して作製すると、次に試料基板を用い第1実施形態で述べた評価方法に基づいてa−Si膜160の物性評価を行う(S194)。具体的には、当該試料基板を評価装置30にセットして、レーザ光照射及びマイクロ波照射を行い、例えば反射強度Vのマップを測定する。
【0067】
そして上述した実験等で得られた知見に基づいて、当該評価装置30の測定結果から試料基板のa−Si膜160中の水素量又はその面内分布を評価する。例えば、図10の実験結果を利用して、試料基板面内での反射強度Vがa−Si膜160内の水素含有量が十分に減少していることを示す値であるか判断し、脱水素処理が良好であるか否かを判断する。脱水素処理が良好である場合は、実基板150について脱水素処理S186の次のSi層レーザ結晶化工程に進める(S188)。一方、脱水素が不十分であると判断する場合には例えばアニール炉を用いて再度450℃程度に維持する脱水素処理S186をやり直す。ここでやり直しの脱水素処理S186は上述の実験での知見に基づいて、既に或る程度、水素量が低下してアブレーションのおそれが低い場合には低照射出力のレーザアニールで行うこともでき、この方法はアニール炉による処理より短時間で処理を完了させることができる。このレーザアニールを適用可能か否かの判断を的確に行うには脱水素後の水素量を確認する必要があるが、μ−PCD法を利用した物性評価S194はこれを可能とする。
【0068】
このように液晶ディスプレイの製造プロセスの極めて初期の段階で行われるLTPS膜の脱水素処理について次のレーザ結晶化工程に移る前に評価することで、脱水素処理が不十分である場合に追加処理を行って水素量を低減させ、レーザ結晶化でのアブレーションを回避することができ、歩留まりが向上する。
【0069】
従来はLTPS TFT製造プロセスにおいて、a−Si膜を結晶化した後のSi膜の管理の重要が認識され、当該管理にμ−PCD法を用いた評価が利用されてきた。しかし、結晶化前のスターティングマテリアルとしてのCVD成膜のa−Si膜の管理も同様に重要であり、本実施形態のLTPS TFT製造プロセスではこのa−Si膜の管理を上述の本発明の評価方法を利用して好適に行う。
【0070】
[第4実施形態]
本実施形態は第2実施形態と同様、活性層10をa−Si膜で形成したTFTを用いた液晶ディスプレイの製造方法に関する。第2実施形態では、GM膜のパターニングS102後、連続成膜されるg−SiNx膜74、a−Si膜76及びn a−Si膜78のうちa−Si膜76を試料基板に形成してその良否を判定した。これに対し、本実施形態では、n a−Si膜78を試料基板に形成してその良否を判定する。
【0071】
具体的には、オーミック接触層12としてのn a−Si膜78の良否はその物性のうち例えば、抵抗値に基づいて評価できる。G6ガラス基板(厚み0.7mm)上に条件を変えてn a−Si膜(厚み25nm)を作製し、ガラス基板の中央部と端部とでそれぞれ約10cm角の領域について反射強度Vと4端子抵抗率及び2端子抵抗値とを測定した。n a−Si膜の成膜条件はCVDに用いるモノシラン(SiH)ガスに混ぜるホスフィン(PH)ガスのパーセンテージを変え、PH/SiH流量比を2.8〜4.6%にて0.6%ステップで4段階の試料を作製した。またCVD装置のメンテナンス前と後とでそれぞれ試料を作製し測定を行った。
【0072】
図14、図15は各試料の測定結果を示す散布図であり、n a−Si膜の反射強度Vと抵抗との相関を示している。横軸は図14,図15共に反射強度Vである。図14の縦軸は4端子抵抗率の逆数に比例する値であり、図15の縦軸は2端子抵抗値の逆数に比例する値である。図14,図15から反射強度Vが大きいと抵抗が小さい傾向が存在することが読み取れ、反射強度Vが大きいほどオーミック接触層12としての物性が良いと判断することができる。ちなみに今回の測定ではPH/SiH流量比が2.8%で、メンテナンス直前の基板の端での反射強度Vの測定値が高かった。
【0073】
評価装置30によるn a−Si膜の評価においては以下の特徴がある。まずリン(P)をドーピングしていることによりa−Si膜よりキャリアが多く、その分、マイクロ波の反射率が大きくなり、大きな反射強度Vが観察される。また、Pの含有量や活性化率等の影響を受け、存在するキャリアの量に従い測定値が大きくなる。すなわち測定値が大きいほど抵抗率が低い。
【0074】
上述のいくつかの試料条件でのn a−Si膜を使って、図1に示すようなTFTを作製して特性を比較した。具体的には、CVD装置のメンテナンス前にてPH/SiH流量比を2.8%と4.6%としてn a−Si膜を作製した。そして基板の中央部のTFTと端部のTFTとについて、ドレイン−ソース間電圧Vdsを0.1Vに設定し、3通りの温度20℃、0℃及び−20℃にてV−I特性を測定した。図16は当該特性におけるゲート−ソース間電圧Vgsが23Vでのドレイン電流Iと、反射強度Vとの関係を示しており、横軸が反射強度V、縦軸がドレイン電流Iである。図16に示す結果から、測定温度が下がるとオン電流Iの値は小さくなるが、いずれの温度においてもn a−Si膜の反射強度Vが小さいとオン電流Iも小さくなる傾向が現れている。つまりn a−Si膜の反射強度Vが小さいことは、図1における活性層10とドレイン電極14及びソース電極16との間のオーミック接触層12の抵抗値が高いことを意味し、その結果、TFTのオン電流値が小さくなる。
【0075】
上記実験・解析結果から評価装置30によりa−Si TFT製造プロセスにおけるn a−Si膜の物性管理が可能であることがわかった。
【0076】
図17は本実施形態における液晶ディスプレイの製造方法を説明する模式図である。第2実施形態と同様、ガラス基板として実基板と評価用基板とが用意される。実基板70であるガラス基板にはa−Si膜からなる活性層を有するTFTが形成される。当該TFTは第2実施形態と同様であり、図17の実基板70について記載(図の左半分)は図9の左半分と同じである。第2実施形態との相違は、実基板70と並行して作製する試料基板が評価用基板200上にg−SiNx膜74及びna−Si膜78を連続成膜されるものである点である(S210)。この成膜工程S210は実基板70における成膜工程S104と同じCVD装置を用いて実基板70と同一の条件で成膜される。図17には試料基板の模式的な垂直断面構造202が示されている。
【0077】
本実施形態の液晶ディスプレイの製造方法では、試料基板を実基板70における3層連続成膜工程S104と並行して作製すると、次に試料基板を用い第1実施形態で述べた評価方法に基づいてn a−Si膜78の物性評価を行う(S212)。具体的には、第2実施形態と同様に試料基板について反射強度Vのマップを測定する。そして上述した実験等で得られた知見に基づいて、当該評価装置30の測定結果から試料基板のn a−Si膜78の抵抗又はその面内均一性を評価する。例えば、試料基板面内でのn a−Si膜78の抵抗が十分に小さいか、また均一であるか判断し、n a−Si膜78の成膜が良好であるか否かを判断する。
【0078】
実基板70における成膜工程S104に続く、n a−Si膜78及びa−Si膜76のパターニング(S106)以降の工程は、このn a−Si膜の物性評価S212の結果、n a−Si膜78の成膜プロセスが良好であると判断された場合に実施される。一方、物性評価S212の結果、抵抗増加等の問題があると判断される場合には、CVD装置に何らかの異常があるか、成膜条件設定が誤っていると判断して、装置のメンテナンスあるいは条件を設定し直す(S214)。
【0079】
このように液晶ディスプレイの製造プロセスの極めて初期の段階で行われるn a−Si膜の成膜プロセスについて、次の工程に移る前といった早い段階で評価することで、ラインの問題点を速やかに把握することができる。よって、第2実施形態と同様の効果が得られる。すなわち、例えば、試料基板を用いた評価により品質不良が検出された場合には、当該試料基板と並行して作製された仕掛品の実基板についてはそれ以降の多数の工程を無駄に実施することを回避できる。また、従来は当該不良は点灯検査などのかなり後の工程で検出され、或るロットにてa−Si膜成膜の不良が発生してからその点灯検査までの間に後続ロットにて不良な仕掛品が作られ続けるおそれがあったところ、本発明の製造方法によればそれを防止できる。このようにして本発明の液晶ディスプレイの製造方法によれば歩留まりやラインの生産性が向上する。
【0080】
なお、試料基板を用いたn a−Si膜の評価結果が出るまで、実基板70について工程を多少進めることは第2実施形態と同様、許容される。
【0081】
[第5実施形態]
本実施形態は第2及び第4実施形態と同様、活性層10をa−Si膜で形成したTFTを用いた液晶ディスプレイの製造方法に関する。第2実施形態ではa−Si膜76を試料基板に形成してその良否を判定し、第4実施形態ではn a−Si膜78を試料基板に形成してその良否を判定した。これに対し、本実施形態では、実基板に対するプロセスと並行して、当該2種類の試料基板を作製してその良否を判定する。
【0082】
図18は本実施形態における液晶ディスプレイの製造方法を説明する模式図である。第2〜第4の実施形態と同様、ガラス基板として実基板と評価用基板とが用意される。実基板70であるガラス基板にはa−Si膜からなる活性層を有するTFTが形成される。当該TFTは第2及び第4実施形態と同様であり、図18の実基板70について記載(図の左半分)は図9及び図17の左半分と同じである。
【0083】
本実施形態では評価用基板を2枚用意し、一方の評価用基板90を用いて垂直断面構造92を有する第2実施形態と同様の試料基板を作製し(S110)、他方の評価用基板200を用いて垂直断面構造202を有する第4実施形態と同様の試料基板を作製する(S210)。この成膜工程S110,S210は実基板70における成膜工程S104と同じCVD装置を用いて実基板70と同一の条件で成膜される。そして、各試料基板を用い第1実施形態で述べた評価方法に基づいて第2及び第4実施形態と同様にしてa−Si膜76の物性評価とn a−Si膜78の物性評価とを行う(S220)。そしてa−Si膜76の成膜プロセス及びn a−Si膜78の成膜プロセスが良好である場合に、実基板70における工程S106以降に実施される。一方、a−Si膜76の成膜プロセス又はn a−Si膜78の成膜プロセスが不良と判断される場合には、CVD装置のメンテナンスを行う(S222)。
【0084】
このように液晶ディスプレイの製造プロセスの極めて初期の段階で行われるa−Si膜及びn a−Si膜の成膜プロセスについて早い段階で評価することで、第2及び第4実施形態で述べた効果が得られる。
【0085】
[第6実施形態]
本実施形態はガラス基板上に成膜したa−Si膜をレーザでアニールして結晶性シリコン膜を形成し、当該結晶化Si膜を用いてトランジスタ等を形成する半導体装置の製造方法に関する。
【0086】
LTPS等のpoly−Si膜の移動度はa−Si膜よりは大きいが、単結晶Siと比較すると小さい。そこでトランジスタ等の素子の高速化等を図るため、a−Si膜をレーザアニールにより溶融・結晶化し、単結晶(c−Si)膜又は擬似的なc−Si膜を形成する技術が存在する。当該技術を用いれば、大面積のガラス基板にc−Si膜を形成することが可能である。
【0087】
本実施形態では液晶ディスプレイのアレイ基板に形成されるTFTを、当該技術によりガラス基板上に形成したc−Si膜を用いて形成する例を説明する。c−Si膜を用いたTFTでは、c−Si膜は活性層を構成し、その上にゲート電極、ドレイン電極及びソース電極が形成される。
【0088】
図19は本実施形態における液晶ディスプレイの製造方法を説明する模式図である。本製造方法では、上述した第2〜5の実施形態と相違し、実基板と別個に評価用基板を用意する必要はなく、実基板そのものを評価に用いる。
【0089】
実基板であるガラス基板250の表面に、汚染防止膜とするSiNx膜252、及び結晶化対象となるa−Si膜をCVD装置で連続成膜する(S270)。ここでSiNx膜252は、レーザアニール時にガラス基板250から半導体膜の特性を劣化させる不純物がa−Si膜へ拡散することを防止するために設けられる。
【0090】
レーザアニール前にアブレーション防止のためにa−Si膜に対して脱水素処理を行う(S272)。しかる後に、レーザ光を照射してa−Si膜の結晶化を行いc−Si膜254を形成する(S274)。図19には試料基板の模式的な垂直断面構造256が示されている。
【0091】
本実施形態の液晶ディスプレイの製造方法では、a−Si膜の結晶化を行うと、形成されたc−Si膜のパターニング等の後続処理を行う前に第1実施形態で述べた評価方法に基づいてc−Si膜254の結晶性の評価を行う(S276)。具体的には、レーザ結晶化処理後の実基板を評価装置30にセットして、レーザ光照射及びマイクロ波照射を行い、例えば反射強度Vのマップを測定する。
【0092】
第3実施形態で述べたように、a−Si膜の結晶化によりキャリアのライフタイムτは長くなり反射強度Vは増加する。よって、反射強度Vに基づいてc−Si膜254の結晶性を評価することができる。
【0093】
よって反射強度Vから良好に結晶化されていると判断する場合は、c−Si膜のパターニング処理S278、ゲート絶縁膜となるSiO膜の成膜S280等の実基板についての後続工程が開始される。一方、結晶化が不十分であったり不均一である等、結晶化処理の不良が判断される場合には、レーザ結晶化装置のメンテナンスを行う(S282)。
【0094】
このように液晶ディスプレイの製造プロセスの極めて初期の段階で行われるa−Si膜の結晶化によるc−Si膜の成膜プロセスについて、当該c−Si膜を用いたトランジスタ等の素子の形成前に評価することで、上述の実施形態で述べたように液晶ディスプレイの歩留まりやラインの生産性が向上する。
【符号の説明】
【0095】
2 TFT、4,250 ガラス基板、6,154 ゲート電極、8 ゲート絶縁膜、10 活性層、12 オーミック接触層、14 ドレイン電極、16 ソース電極、18 保護膜、20 画素電極、22 コンタクトホール、30 評価装置、32 試料、34 ステージ、36 レーザ光照射手段、38 マイクロ波照射手段、40 反射波検出手段、50 試料基板、52,56,252 SiNx膜、54,76,160 a−Si膜、70,150 実基板、72,152 ゲートメタル膜、74,156 g−SiNx膜、158 g−SiO膜、78 na−Si膜、254 c−Si膜。

【特許請求の範囲】
【請求項1】
絶縁体からなる基板上に非晶質半導体膜を成膜した評価対象基板に対してレーザ光を照射するレーザ光照射ステップと、
前記評価対象基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、
前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記非晶質半導体膜の物性の均一性を評価する評価ステップと、
を有することを特徴とする非晶質半導体膜の評価方法。
【請求項2】
基板上に非晶質半導体膜を成膜する成膜工程を含んで半導体装置を製造する方法において、
前記成膜工程により絶縁体からなる基板上に前記非晶質半導体膜を形成した評価対象基板に対して、レーザ光を照射するレーザ光照射ステップと、
前記評価対象基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、
前記評価対象基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記非晶質半導体膜の物性の均一性を評価し前記成膜工程の不良を前記半導体装置の製造完了前に検出する評価ステップと、
を有することを特徴とする半導体装置の製造方法。
【請求項3】
絶縁体からなる基板上に薄膜トランジスタのゲート電極を形成する工程と、前記ゲート電極を覆って前記基板上にゲート絶縁膜を成膜する絶縁膜成膜工程と、前記ゲート絶縁膜上に非晶質半導体膜を成膜し、前記薄膜トランジスタの活性層を形成する半導体膜成膜工程とを含んで、前記薄膜トランジスタを用いた半導体装置を製造する方法であって、
前記薄膜トランジスタの製造と並行して前記絶縁膜成膜工程及び前記半導体膜成膜工程において前記基板上に前記ゲート絶縁膜及び前記非晶質半導体膜を積層して標本基板を作製する標本作製ステップと、
前記標本基板に対して、レーザ光を照射するレーザ光照射ステップと、
前記標本基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、
前記標本基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記非晶質半導体膜の物性の均一性を評価し前記半導体膜成膜工程の不良を前記半導体装置の製造完了前に検出する評価ステップと、
を有し、前記半導体装置の製造途中にて前記半導体膜成膜工程の不良への対処を可能とすることを特徴とする半導体装置の製造方法。
【請求項4】
絶縁体からなる基板上に非晶質半導体膜を成膜する半導体膜成膜工程と、前記非晶質半導体膜中の水素含有量を低減させる脱水素工程と、前記脱水素工程後の前記非晶質半導体膜をレーザ光の照射により結晶化して、薄膜トランジスタの活性層とする多結晶半導体膜を形成するレーザ結晶化工程とを含んで、前記薄膜トランジスタを用いた半導体装置を製造する方法であって、
前記薄膜トランジスタの製造と並行して前記半導体膜成膜工程において前記基板上に前記非晶質半導体膜を成膜し、前記脱水素工程において当該非晶質半導体膜中の水素含有量を低減して標本基板を作製する標本作製ステップと、
前記標本基板に対して、レーザ光を照射するレーザ光照射ステップと、
前記標本基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、
前記標本基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、前記非晶質半導体膜の脱水素の程度及びその基板面内での均一性を前記レーザ結晶化工程前に評価する評価ステップと、
前記評価ステップにて前記脱水素の不足が検出された場合に追加の脱水素処理を行う追加脱水素工程と、
を有することを特徴とする半導体装置の製造方法。
【請求項5】
絶縁体からなる基板上に薄膜トランジスタのゲート電極を形成する工程と、前記ゲート電極を覆って前記基板上にゲート絶縁膜を成膜する絶縁膜成膜工程と、前記ゲート絶縁膜上に前記薄膜トランジスタの活性層となる非晶質半導体膜を成膜する半導体膜成膜工程と、前記非晶質半導体膜上に前記活性層と前記薄膜トランジスタのソース電極及びドレイン電極との間のオーミック接触層となる低抵抗非晶質半導体膜を成膜するオーミック層成膜工程とを含んで、前記薄膜トランジスタを用いた半導体装置を製造する方法であって、
前記薄膜トランジスタの製造と並行して前記絶縁膜成膜工程及び前記オーミック層成膜工程において前記基板上に前記ゲート絶縁膜及び前記低抵抗非晶質半導体膜を積層して標本基板を作製する標本作製ステップと、
前記標本基板に対して、レーザ光を照射するレーザ光照射ステップと、
前記標本基板の前記レーザ光を照射した各サンプリング点に、前記レーザ光照射ステップに引き続いてマイクロ波を照射し、その反射強度を測定するマイクロ波照射ステップと、
前記標本基板の前記各サンプリング点での前記反射強度の測定結果に基づいて、基板面内での前記低抵抗非晶質半導体膜の物性の均一性を評価し前記オーミック層成膜工程の不良を前記半導体装置の製造完了前に検出する評価ステップと、
を有し、前記半導体装置の製造途中にて前記オーミック層成膜工程の不良への対処を可能とすることを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2013−30542(P2013−30542A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−164215(P2011−164215)
【出願日】平成23年7月27日(2011.7.27)
【出願人】(506087819)パナソニック液晶ディスプレイ株式会社 (443)
【Fターム(参考)】