説明

医療用観察システム

【課題】電子スコープ等の撮像手段から被検体までの撮影距離を測定するのに好適な構成の医療用観察システムを提供すること。
【解決手段】被検体を撮影する撮影手段と、該撮影手段の撮影範囲内において被検体を不均一に照明する照明手段と、該照明された被検体の撮影範囲内における輝度分布を検出する輝度分布検出手段と、該検出された輝度分布に基づいて撮影手段から被検体までの撮影距離を計算する撮影距離計算手段とを有することを特徴とした医療用観察システムを提供する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、電子スコープから被検体までの撮影距離を測定する医療用観察システムに関連し、詳しくは、被検体の照明するための既存の構成要素を利用して輝度分布ムラを意図的に生成し、該生成された輝度分布ムラに基づいて撮影距離を測定する医療用観察システムに関する。
【背景技術】
【0002】
医師が患者の体腔内を診断する際に使用する医療機器として、電子スコープが一般的に知られている。電子スコープを使用する医師は、電子スコープの挿入部を体腔内に挿入して、挿入部先端に備えられた先端部を被検体近傍に導く。医師は、先端部に搭載されたCCD(Charge Coupled Device)等の固体撮像素子により体腔内を撮影するため、電子スコープやビデオプロセッサの操作部を必要に応じて操作する。医師は、各種操作を行った結果得られる体腔内の映像をモニタを通じて観察し診断や施術等を行う。
【0003】
近年の医療用観察システムには、医師による診断を補助すべく、電子スコープの先端から被検体までの撮影距離を測定する測距機能を実装したものがある。測距機能を有する医療用観察システムの具体的構成例は、例えば特許文献1〜3に記載されている。
【0004】
特許文献1に記載の医療用観察システムは、回動自在な一対の反射板の角度を制御しつつ、一対のレーザ光源から発振されたレーザ光を各反射板で反射させて被検体上で交差させる。当該医療用観察システムは、二つのレーザ光が交差したときの各反射板の角度に基づいてCCDの撮像面と被検体との撮影距離を測定する。
【0005】
特許文献2に記載の医療用観察システムは、所定の測定光が電子スコープの先端部から斜めに角度付けされて放射される。電子スコープの先端部から被検体までの撮影距離は、撮影範囲内における測定光のスポット形成位置に基づいて計算される。
【0006】
特許文献3に記載の医療用観察システムは、照明光の発光位置から被検体までの撮影距離が相違する別個独立した二系統の照明光学系を備えている。当該医療用観察システムにおいては、各照明光学系によって照明された被検体の画像が光源の発光の切替に同期して独立に撮影される。次いで、撮影された各照明光学系に対応する二枚の画像の輝度比に基づいて被検体までの撮影距離が測定される。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2005−278980号公報
【特許文献2】特許第3446272号明細書
【特許文献3】特開2002−65581号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、特許文献1に記載の医療用観察システムにおいては、反射板の角度調節を高精度に行う小型かつ精密な駆動機構が必要であり、先端部の構成が複雑化すると共に製造コスト面の負担が大きい問題が指摘される。
【0009】
特許文献2に記載の医療用観察システムにおいては、電子スコープの基端から先端に至るまで測定光を伝送させるための専用の導光路を照明光用の導光路以外に別途組み込む必要がある。そのため、電子スコープの挿入部が大径化する。挿入部が大径化するほど、挿入部を患者の体腔内の微少な隙間に円滑に挿入させ難くなり、患者にかかる負担が大きいため望ましくない。
【0010】
特許文献3に記載の医療用観察システムにおいては、照明用光源が複数灯必要とされるため、製造コスト面の負担が大きいことが問題視される。
【0011】
なお、医師が電子スコープの鉗子チャンネルにメジャーを挿入し通して被検体に直接当てて、被検体までの距離を測定する方法が存在する。しかし、この種の測定作業には熟練を要するため、正確な測定が難しい問題が指摘されている。
【0012】
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、電子スコープ等の撮像手段から被検体までの撮影距離を測定するのに好適な構成の医療用観察システムを提供することである。
【課題を解決するための手段】
【0013】
上記の課題を解決する本発明の一形態に係る医療用観察システムは、被検体を撮影する撮影手段と、該撮影手段の撮影範囲内において被検体を不均一に照明する照明手段と、該照明された被検体の撮影範囲内における輝度分布を検出する輝度分布検出手段と、該検出された輝度分布に基づいて撮影手段から被検体までの撮影距離を計算する撮影距離計算手段とを有することを特徴としたシステムである。
【0014】
かかる構成によれば、例えば測距用の複雑な駆動機能や測定光用の専用の光路等を別途設けることなく、既存の構成要素である照明手段による配光を利用して撮影距離を測定することができる。そのため、測距機能の実装に伴う装置の大型化や製造コストの増加が好適に抑えられる。
【0015】
本発明に係る医療用観察システムは、撮影範囲内における照明手段による配光を均一な又は不均一な配光の何れかに切り替える配光切替手段を更に有する構成としてもよい。
【0016】
照明手段は、照明光を放射する光源と、該放射された照明光を導光する複数本の導光路とを有し、複数本の導光路から照明光が射出されたときに撮影範囲内において被検体を均一に照明するように構成されたものとしてもよい。配光切替手段は、少なくとも一つの導光路を除く一以上の導光路からの照明光の放射又は遮蔽を切り替える照明光放射切替手段を有する構成としてもよい。照明光放射切替手段の具体的構成例としては、液晶シャッタ、メカニカルシャッタ等が挙げられる。
【0017】
別の形態の照明手段は、複数の光源を有し、該複数の光源から照明光が射出されたときに撮影範囲内において被検体を均一に照明するように構成されたものであってもよい。配光切替手段は、少なくとも一つの光源を除く一以上の光源を消灯する光源制御手段を有する構成としてもよい。
【0018】
本発明に係る医療用観察システムは、配光切替手段による配光の切替を操作するための配光切替操作手段を更に有する構成としてもよい。当該配光切替操作手段による不均一な配光への切替操作に連動して、輝度分布検出手段による輝度分布の検出処理、及び撮影距離計算手段による撮影距離の計算処理が実行されるようにしてもよい。
【0019】
ここで、輝度分布検出手段は、撮影手段により撮影された一フレームを複数の領域に分割し、該分割された各分割領域に対応する輝度値をサンプリングし、該サンプリングされた輝度値のなかからピーク値を検出する構成としてもよい。撮影距離計算手段は、該ピーク値と、所定の分割領域に対応する輝度値との比を計算し、該計算された比に基づいて撮影距離を計算する構成としてもよい。
【0020】
上記所定の分割領域は、例えばその領域中心が、ピーク値に対応する分割領域の中心と、撮影範囲の中心を通る仮想的な直線上であって、該撮影範囲の中心を挟んで該ピーク値に対応する該分割領域と反対側の該撮影範囲周辺に位置する領域としてもよい。
【0021】
ここで、撮影距離計算手段は、所定の関数を保持しており、計算された輝度比を用いて所定の関数を計算して撮影距離を求める構成としてもよい。
【0022】
別の形態において、撮影距離計算手段は、輝度比と撮影距離とを対応付けた変換テーブルを有しており、計算された輝度比を用いて変換テーブルを参照して撮影距離を求める構成としてもよい。
【0023】
本発明に係る医療用観察システムは、撮影手段により撮影される画像の輝度を設定する輝度設定手段を更に有する構成としてもよい。かかる場合、撮影距離計算手段は、設定される輝度毎に対応した所定の関数又は変換テーブルを保持しており、計算された輝度比を用いて所定の関数又は変換テーブルを参照して撮影距離を求める。
【0024】
本発明に係る医療用観察システムは、撮影距離計算手段により計算された撮影距離を表現する表示情報を生成する表示情報生成手段と、該生成された表示情報を所定の表示装置に出力する表示情報出力手段とを更に有する構成としてもよい。
【0025】
本発明に係る医療用観察システムは、撮影距離計算手段により計算された撮影距離と、撮影手段が有する対物光学系の焦点距離に基づいて、該撮影手段に撮影されている被検体のサイズを計算するサイズ計算手段と、該計算されたサイズを表現する情報を所定の表示装置に出力するサイズ情報出力手段とを更に有する構成としてもよい。
【発明の効果】
【0026】
本発明の医療用観察システムによれば、例えば測距用の複雑な駆動機能や測定光用の専用の光路等を別途設けることなく、既存の構成要素である照明手段による配光を利用して撮影距離を測定することができる。そのため、測距機能の実装に伴う装置の大型化や製造コストの増加が好適に抑えられる。
【図面の簡単な説明】
【0027】
【図1】本発明の実施形態の医療用観察システムの外観図である。
【図2】本発明の実施形態の医療用観察システムの構成を模式的に示すブロック図である。
【図3】本発明の実施形態の電子スコープの挿入先端部の正面図である。
【図4】本発明の実施形態においてプロセッサの距離算出部が実行する距離算出処理を示すフローチャート図である。
【図5】一方の配光窓から放射された照明光だけで照明された被検体の輝度分布と撮影距離との関係を説明するための図である。
【図6】一方の配光窓から放射された照明光だけで照明された被検体の輝度分布と撮影距離との関係を説明するための図である。
【図7】一方の配光窓から放射された照明光だけで照明された被検体の輝度分布と撮影距離との関係を説明するための図である。
【図8】図5〜図7の各図(a)の直線L上の輝度分布を示した輝度分布図である。
【図9】別の実施形態の電子スコープの挿入先端部の構成を模式的に示す図である。
【発明を実施するための形態】
【0028】
以下、添付された各図面を参照しつつ、本発明の実施形態の医療用観察システムについて説明する。なお、電子スコープには、一般に、鉗子チャンネルや送気送水ノズル等が備えられているが、本明細書又は各図面においては、本発明の特徴に直接的には関係しないこの種の構成要素は、その説明又は図示を便宜上省略している。
【0029】
図1は、本実施形態の医療用観察システム1の外観図である。図1に示されるように、医療用観察システム1は、患者の体腔内を撮像する電子スコープ100を有している。電子スコープ100は、可撓管によって外装された挿入可撓部11を有している。挿入可撓部11の先端には、硬質性を有する樹脂製筐体によって外装された挿入先端部12が連結されている。挿入可撓部11と挿入先端部12との連結箇所は、挿入可撓部11の基端に連結された手元操作部13からの遠隔操作によって屈曲自在に構成されている。挿入先端部12の方向が上記遠隔操作による屈曲動作に応じて変わることにより、電子スコープ100による撮影領域が移動する。
【0030】
図1に示されるように、医療用観察システム1は、プロセッサ200を有している。プロセッサ200は、電子スコープ100からの信号を処理する信号処理装置と、自然光の届かない体腔内を電子スコープ100を介して照明する光源装置とを一体に備えた装置である。別の実施の形態では、信号処理装置と光源装置を別体で構成してもよい。
【0031】
プロセッサ200には、電子スコープ100の基端に設けられたコネクタ10に対応するコネクタ部20が設けられている。コネクタ部20は、コネクタ部10に対応する連結構造を有し、電子スコープ100とプロセッサ200とを電気的、光学的に接続するように構成されている。
【0032】
図2は、医療用観察システム1の構成を模式的に示すブロック図である。図2に示されるように、医療用観察システム1は、所定のケーブルを介してプロセッサ200に接続されたモニタ300を有している。なお、図1においては、図面を簡略化するため、本発明に係る特徴的構成を有さないモニタ300を図示省略している。
【0033】
図2に示されるように、プロセッサ200は、システムコントローラ202、タイミングコントローラ204を有している。システムコントローラ202は、医療用観察システム1を構成する各要素を制御する。タイミングコントローラ204は、信号の処理タイミングを調整するクロックパルスを医療用観察システム1内の各種回路に出力する。
【0034】
プロセッサ200の電源が投入されたとき、ランプ電源206からランプ208に電源が供給されてランプ208が点灯して、白色光を放射する。ランプ208には、キセノンランプ、ハロゲンランプ、水銀ランプ、メタルハライドランプなどの高輝度ランプが適している。ランプ208から放射された照明光は、集光レンズ210により集光されつつ絞り212を介して適正な光量に制限されて、電子スコープ100が有するLCB(light carrying bundle)102の入射端に入射される。
【0035】
絞り212には、図示省略されたアームやギヤなどの伝達機構を介してモータ214が機械的に連結されている。モータ214は例えばDCモータであり、ドライバ216のドライブ制御下で駆動する。絞り212は、モニタ300に表示される映像を適正な明るさにするため、モータ214によって動作されて開度が変化して、ランプ208から放射された照明光の光量を開度に応じて制限する。適正とされる映像の明るさの基準は、術者によるフロントパネル218の輝度調節操作に応じて変更される。なお、ドライバ216を制御して輝度調整を行う調光回路は周知の回路であり、本明細書においては省略することとする。
【0036】
LCB102の入射端に入射された照明光は、LCB102の内部を全反射を繰り返すことによって伝播される。LCB102は、入射端から射出端に向かう途中、二本のバンドル102A、102Bに分岐されている。照明光は、LCB102の分岐点において光量が分けられて、バンドル102A又は102Bを伝播される。各バンドル102A、102Bを伝播された照明光は、電子スコープ100の先端に配された各バンドル102A、102Bの射出端から射出される。
【0037】
バンドル102Aの射出端から射出された照明光は、配光レンズ104A、カバーガラス106Aを介して被検体を照明する。バンドル102Bの射出端から射出された照明光は、液晶シャッタ120、配光レンズ104B、カバーガラス106Bを介して被検体を照明する。液晶シャッタ120は、手元操作部13に設けられた手元スイッチ又はフロントパネル218に設けられたパネルスイッチによる操作に応じて液晶の配向が切り替わり、照明光を透過させ又は遮蔽する。具体的には、液晶シャッタ120は、手元スイッチ又はパネルスイッチがオフされている間、照明光を透過させる。手元スイッチ又はパネルスイッチがオンされている間は、照明光を遮蔽する。手元スイッチ又はパネルスイッチは初期的にはオフされている。
【0038】
図3は、挿入先端部12の正面図である。図3に示されるように、各バンドル102A、102Bに対応する二つの配光窓(図3中カバーガラス106A、106B)は、対物レンズ110及び固体撮像素子112を有する撮像系(図3では、外観に現れるカバーガラス108が示されている)の光軸を通る中心線Yを挟んで対称の位置に配置されている。説明を加えると、二つのカバーガラス106A、106Bは、挿入先端部12を正面から臨んだときの撮像系までの距離が等しくなるように配置されている。また、電子スコープ100が有する各種光学部品は、液晶シャッタ120が光透過状態である場合に、各カバーガラス106A、106Bを介して放射される照明光量が等しくなるように設計されている。二つのカバーガラス106A、106Bを介して照明光が放射されたとき、被検体は、挿入先端部12と被検体とが所定距離以上離れていることを条件として(別の表現によれば、挿入先端部12が被検体に過度に接近しない限り)、撮影範囲内においてほぼ均一な光量分布で照明される。なお、配光窓を複数配することによって配光ムラを無くす構成は、電子スコープの製品分野において一般的に知られた構成である。
【0039】
照明光によって照明された被検体からの反射光は、カバーガラス108を介して対物レンズ110に入射され、対物レンズ110のパワーにより固体撮像素子112の受光面上で光学像を結ぶ。
【0040】
固体撮像素子112は、例えばベイヤ型画素配置を有する単板式カラーCCDであり、受光面上の各画素で結像した光学像を光量に応じた電荷として蓄積して、R、G、Bの各色に応じた画像信号に変換する。変換された画像信号は、プリアンプ114により増幅されてドライバ信号処理回路116に入力される。
【0041】
ドライバ信号処理回路116は、タイミングコントローラ204のクロックパルスに基づき、固体撮像素子112をプロセッサ200側で処理される映像のフレームレートに同期したタイミングで駆動制御する。メモリ118には、電子スコープ100固有の情報(例えば固体撮像素子112の画素数や感度、対応可能なレート、或いは型番など)が格納されている。ドライバ信号処理回路116は、メモリ118にアクセスして電子スコープ100固有の情報を読み出す。
【0042】
ドライバ信号処理回路116は、読み出された固有情報をシステムコントローラ202に、画像信号を信号処理回路220に、それぞれ出力する。ドライバ信号処理回路116とシステムコントローラ202又は信号処理回路220との間には、フォトカップラなどを使用した絶縁回路(不図示)が配置されている。すなわち、電子スコープ100とプロセッサ200は、電気的に絶縁されている。
【0043】
システムコントローラ202は、ドライバ信号処理回路116からの上記固有情報に基づいて各種演算を行い、制御信号を生成する。システムコントローラ202は、生成された制御信号を用いて、プロセッサ200に接続中の電子スコープに適した処理がされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。また、システムコントローラ202は、電子スコープの型番と、該型番の電子スコープに適した制御情報とを対応付けたテーブルを有した構成としてもよい。かかる場合、システムコントローラ202は、対応テーブルの制御情報を参照して、プロセッサ200に接続中の電子スコープに適した処理がされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。
【0044】
信号処理回路220は、ドライバ信号処理回路116からの画像信号に、クランプ、ニー、γ補正、補間処理、AGC(Auto Gain Control)等の所定の信号処理を施してA/D変換し、フレーム単位のバッファリングを行う。信号処理回路220は、バッファリングされたフレーム単位の画像信号をタイミングコントローラ204によるタイミングで掃き出して、NTSC(National Television System Committee)やPAL(Phase Alternating Line)等の所定の規格に準拠した映像信号に変換して、モニタ300に順次出力する。これにより、被検体のカラー画像がモニタ300に表示される。
【0045】
信号処理回路220は、手元スイッチ又はパネルスイッチのオンに連動して距離算出処理を実行する距離算出部250を有している。図4は、距離算出部250によって実行される距離算出処理を示すフローチャート図である。距離算出処理は、手元スイッチ又はパネルスイッチがオンされている期間、繰り返し実行される。手元スイッチ又はパネルスイッチをオフすると、距離算出処理は強制的に終了する。なお、以降の本明細書中の説明並びに図面において、処理ステップは「S」と省略して記す。
【0046】
手元スイッチ又はパネルスイッチがオンされて液晶シャッタ120の配向が切り替わると、バンドル102Bの射出端から射出された照明光は、液晶シャッタ120によって遮蔽される。そのため、被検体は、カバーガラス106Aを介して放射された照明光のみにより照明される。このときの光量分布は、撮影範囲内において不均一になる。
【0047】
図5〜図8は、カバーガラス106Aを介して放射された照明光だけで照明された被検体の輝度分布を説明するための図である。
【0048】
図5〜図7の各図の(a)は、被検体の輝度分布と撮影範囲との関係を模式的に示す図である。図5〜図7の各図(a)において、被検体の輝度分布は、等高線モデルを用いて示されている。曲率半径の小さい等高線ほど照明光の中心に近く、被検体が明るく照明されていることを示している。なお、図5〜図7の各図(a)中、符号Oは、撮影範囲の中心を、符号Lは、撮影範囲中最も輝度の高い点及び中心Oを通る直線を、それぞれ示している。
【0049】
図5〜図7の各図の(b)は、各図の(a)に対応する図であって、電子スコープ100の挿入先端部12から被検体400までの撮影距離Dを模式的に示す図である。なお、各図の(b)においては、図面を簡素化するため、電子スコープ100の構成要素のうち各バンドル102A、102B、対物レンズ110、固体撮像素子112、液晶シャッタ120以外の構成要素の図示を省略している。
【0050】
また、図5〜図7の各図の(b)においては、対物レンズ110の主点から被検体400までの距離を便宜上撮影距離Dとして示したに過ぎない。ここで、電子スコープ100の各種要素(例えば対物レンズ110の主点、挿入先端部12の前面、固体撮像素子112の受光面等)の相対位置は既知である。よって、撮影距離Dは、例えば挿入先端部12の前面から被検体400までの距離と定義してもよく、或いは固体撮像素子112の受光面から被検体400までの距離と定義してもよい。
【0051】
図8は、図5〜図7の各図の(a)の直線L上の輝度分布を示した輝度分布図である。図8中縦軸が輝度値を、横軸が直線L上の座標を、それぞれ示している。図8中、符号BD1は、撮影距離Dが図5の場合の輝度分布を、符号BD2は、撮影距離Dが図6の場合の輝度分布を、符号BD3は、撮影距離Dが図7の場合の輝度分布を、それぞれ示している。
【0052】
図5〜図8を参照するところ、挿入先端部12と被検体400とが接近するほど輝度分布のピーク位置が撮影範囲の中心Oから離れていくことが分かる。本実施形態の距離算出処理においては、このような輝度分布の特性を利用して撮影距離Dを測定する。
【0053】
図6(a)及び図8を用いて図4の距離算出処理を具体的に説明すると、距離算出部250は、一フレーム中の各画像領域を細分化する。距離算出部250は、バッファリングされた画像信号から、細分化された各分割画像領域に対応する輝度値をサンプリングする(S101)。具体的には、距離算出部250は、輝度値をサンプリングするため、各分割画像領域に属する画素の輝度信号を用いてヒストグラム処理を行う。次いで、生成されたヒストグラムデータを用いて、分割画像領域毎に輝度の平均値を算出してサンプリングデータを得る。
【0054】
距離算出部250は、サンプリングデータに基づいてピークとなる輝度値、及び該輝度値に対応する分割画像領域R1を計算する(S102)。距離算出部250は、計算された分割画像領域R1の中心と撮影範囲の中心Oを通る仮想的な直線Lを定義する(S103)。距離算出部250は、定義された直線L上の分割画像領域のなかから所定条件を満たす分割画像領域R2を特定する(S104)。分割画像領域R2は、例えばその領域中心が直線L上であって、中心Oを挟んで分割画像領域R1と反対側の撮影範囲周辺に位置する(撮影範囲の最周辺から所定画素分離れた位置の)分割画像領域として定義される。距離算出部250は、サンプリングデータのなかから分割画像領域R2に対応する輝度値を取得する(S105)。距離算出部250は、分割画像領域R1とR2の輝度値の比(以下、「輝度比」と記す。)を計算する(S106)。
【0055】
ここで、前述したように、輝度分布のピーク位置は、撮影距離Dに応じて撮影範囲の中心Oとの距離が変化する。してみると、撮影距離Dと輝度比との間には、所定の関係が成立するといえる。当該関係は、輝度比をBRと定義した場合、所定の関数D=f(BR)によって表現される。距離算出部250は、所定の関数D=f(BR)を保持している。距離算出部250は、S106の処理において計算された輝度比を用いて所定の関数D=f(BR)を計算し、撮影距離Dを求める(S107)。なお、別の実施形態において距離算出部250は、輝度比と撮影距離Dとを対応付けた変換テーブルを有したものとしてもよい。かかる場合、距離算出部250は、所定の関数D=f(BR)に代替して、変換テーブルを用いてS107の処理を行う。
【0056】
撮影距離Dと輝度比との関係は、フロントパネル218の輝度調節操作で設定された目標となる明るさに依存して変わる。そのため、距離算出部250は、設定輝度(或いは絞り212の開度)毎に対応する関数又は変換テーブルを保持した構成としてもよい。かかる場合、距離算出部250は、設定輝度(或いは絞り212の開度)に応じた関数又は変換テーブルを参照して、輝度調節操作時においても撮影距離Dを求めることができる。また、かかる構成によれば、各設定輝度(或いは絞り212の開度)に適した関数又は変換テーブルを用いて撮影距離Dが計算されるため、撮影距離Dの精度が向上する効果が得られる。撮影距離Dの計算には、全ての色の輝度値を用いてもよく、或いは特定の色の輝度値(例えばRの輝度値)だけを用いてもよい。
【0057】
輝度比は、被検体が色相の変化が大きいものである場合に、その影響を比較的受け難いパラメータである。よって、かかる場合には測定距離誤差が小さく好適である。
【0058】
距離算出部250は次いで、計算された撮影距離Dを表す情報(例えばキャラクタやスケール等)の信号を生成する(S108)。距離算出部250は、生成されたキャラクタ情報等の信号を、信号処理回路220から出力される画像信号に加算する(S109)。これにより、撮影距離Dを示すキャラクタ情報等が、被検体のカラー画像と共にモニタ300に表示される。
【0059】
本実施形態の医療用観察システム1によれば、測距用の複雑な駆動機能や測定光用の専用の光路を別途設けることなく、既存のバンドルを利用して距離算出処理を行うことができる。距離算出処理を行うために挿入先端部12に追加される部品は、液晶シャッタ120だけでよく、挿入先端部12の大型化や製造コストの増加が最小限に抑えられている。
【0060】
以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えば電子スコープ100は、LCB102を三本以上のバンドルに分岐した構成としてもよい。この場合、電子スコープ100は、通常の観察時には、被検体を三以上の配光窓からの照明光によって均一に照明する。距離算出処理を行う際には、一以上の配光窓からの照明光を遮蔽しつつ、少なくとも一つの配光窓からの照明光によって被検体を照明して、輝度分布ムラを意図的に生成する。
【0061】
電子スコープ100は、液晶シャッタ120の代替として、メカニカルシャッタを有する構成としてもよい。
【0062】
撮影された被検体の大きさは、撮影距離Dと対物レンズ110の焦点距離を用いて計算することができる。かかる計算機能を距離算出部250に付加してモニタ300上に表示させるようにしてもよい。
【0063】
図9(a)、(b)は、別の実施形態の電子スコープ100の挿入先端部12の構成を模式的に示す図である。別の実施形態の電子スコープ100は、LCB102(各バンドル102A、102Bを含む)の代替として、二つのLED(Light Emitting Diode)130A、130Bを有している。手元スイッチ又はパネルスイッチがオフされている間は、図9(a)に示されるように、二つのLED130A、130Bが点灯して、被検体をほぼ均一な照度で照明する。手元スイッチ又はパネルスイッチがオンされている間は、図9(b)に示されるように、LED130Aのみが消灯して、被検体を不均一に照明する。別の実施形態においても、輝度分布ムラを意図的に生成することにより、撮影処理Dを測定することができる。
【符号の説明】
【0064】
1 医療用システム
100 電子スコープ
102A,102B バンドル
112 固体撮像素子
120 液晶シャッタ
200 プロセッサ
202 システムコントローラ
220 信号処理回路
250 距離算出部
300 モニタ

【特許請求の範囲】
【請求項1】
被検体を撮影する撮影手段と、
前記撮影手段の撮影範囲内において前記被検体を不均一に照明する照明手段と、
前記照明された被検体の前記撮影範囲内における輝度分布を検出する輝度分布検出手段と、
前記検出された輝度分布に基づいて前記撮影手段から前記被検体までの撮影距離を計算する撮影距離計算手段と、
を有することを特徴とする医療用観察システム。
【請求項2】
前記撮影範囲内における前記照明手段による配光を均一な又は不均一な配光の何れかに切り替える配光切替手段を更に有することを特徴とする、請求項1に記載の医療用観察システム。
【請求項3】
前記照明手段は、
照明光を放射する光源と、
前記放射された照明光を導光する複数本の導光路と、
を有し、
前記複数本の導光路から前記照明光が射出されたときに前記撮影範囲内において前記被検体を均一に照明し、
前記配光切替手段は、
一以上であって前記複数未満の数の前記導光路からの照明光の放射又は遮蔽を切り替える照明光放射切替手段を有することを特徴とする、請求項2に記載の医療用観察システム。
【請求項4】
前記照明光放射切替手段は、液晶シャッタ又はメカニカルシャッタであることを特徴とする、請求項3に記載の医療用観察システム。
【請求項5】
前記照明手段は、
複数の光源を有し、
前記複数の光源から前記照明光が射出されたときに前記撮影範囲内において前記被検体を均一に照明し、
前記配光切替手段は、
一以上であって前記複数未満の数の前記光源を消灯する光源制御手段を有することを特徴とする、請求項2に記載の医療用観察システム。
【請求項6】
前記配光切替手段による配光の切替を操作するための配光切替操作手段を更に有し、
前記配光切替操作手段による不均一な配光への切替操作に連動して、前記輝度分布検出手段による輝度分布の検出処理、及び前記撮影距離計算手段による前記撮影距離の計算処理が実行されることを特徴とする、請求項2から請求項5の何れか一項に記載の医療用観察システム。
【請求項7】
前記輝度分布検出手段は、
前記撮影手段により撮影された一フレームを複数の領域に分割し、
前記分割された各分割領域に対応する輝度値をサンプリングし、
前記サンプリングされた輝度値のなかからピーク値を検出し、
前記撮影距離計算手段は、
前記ピーク値と、所定の前記分割領域に対応する輝度値との比を計算し、
前記計算された比に基づいて前記撮影距離を計算することを特徴とする、請求項1から請求項6の何れか一項に記載の医療用観察システム。
【請求項8】
前記所定の分割領域は、その領域中心が、前記ピーク値に対応する前記分割領域の中心と、前記撮影範囲の中心を通る仮想的な直線上であって、該撮影範囲の中心を挟んで該ピーク値に対応する該分割領域と反対側の該撮影範囲周辺に位置する分割領域であることを特徴とする請求項7に記載の医療用観察システム。
【請求項9】
前記撮影距離計算手段は、
所定の関数を保持し、
前記比を用いて前記所定の関数を計算し、前記撮影距離を求めることを特徴とする、請求項7又は請求項8の何れか一項に記載の医療用観察システム。
【請求項10】
前記撮影手段により撮影される画像の輝度を設定する輝度設定手段を更に有し、
前記撮影距離計算手段は、前記設定される輝度毎に対応した前記所定の関数を保持していることを特徴とする、請求項9に記載の医療用観察システム。
【請求項11】
前記撮影距離計算手段は、
前記比と前記撮影距離とを対応付けた変換テーブルを有し、
前記比を用いて前記変換テーブルを参照し、前記撮影距離を求めることを特徴とする、請求項7又は請求項8の何れか一項に記載の医療用観察システム。
【請求項12】
前記撮影手段により撮影される画像の輝度を設定する輝度設定手段を更に有し、
前記撮影距離計算手段は、前記設定される輝度毎に対応した前記変換テーブルを有していることを特徴とする、請求項11に記載の医療用観察システム。
【請求項13】
前記撮影距離計算手段により計算された前記撮影距離を表現する表示情報を生成する表示情報生成手段と、
前記生成された表示情報を所定の表示装置に出力する表示情報出力手段と、
を更に有することを特徴とする、請求項1から請求項12の何れか一項に記載の医療用観察システム。
【請求項14】
前記撮影距離計算手段により計算された前記撮影距離と、前記撮影手段が有する対物光学系の焦点距離に基づいて、該撮影手段に撮影されている前記被検体のサイズを計算するサイズ計算手段と、
前記計算されたサイズを表現する情報を所定の表示装置に出力するサイズ情報出力手段と、
を更に有することを特徴とする、請求項1から請求項13の何れか一項に記載の医療用観察システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−19691(P2011−19691A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2009−166703(P2009−166703)
【出願日】平成21年7月15日(2009.7.15)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】