説明

原子層堆積装置

【課題】ウェットエッチングによるクリーニングの頻度を低減させることができる原子層堆積装置を提供する。
【解決手段】基板上に薄膜を形成する原子層堆積装置であって、内部が真空に維持される成膜容器と、成膜容器の内部に配置される加熱部と、成膜容器の開口に取り付け可能な筒状のインジェクタと、インジェクタを介して成膜容器の内部に薄膜の原料である原料ガスを供給する原料ガス供給部と、インジェクタを介して成膜容器の内部に原料ガスと反応して薄膜を形成する反応ガスを供給する反応ガス供給部と、不活性ガスを供給する不活性ガス供給部と、を備え、インジェクタは、原料ガスが流れる原料ガス供給口と、反応ガスが流れる反応ガス供給口と、不活性ガスが流れる不活性ガス供給口と、を備え、不活性ガス供給口は、インジェクタと成膜容器との隙間に不活性ガスが流れるように、インジェクタの外表面に設けられていることを特徴とする原子層堆積装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板上に薄膜を形成する原子層堆積装置に関する。
【背景技術】
【0002】
段差被覆性に優れ、薄膜を均一に形成する技術として、原子層堆積法(ALD:Atomic Layer Deposition)が知られている。ALD法では、形成しようとする薄膜を構成する元素を主成分とする2種類のガスを基板上に交互に供給し、基板上に原子層単位で薄膜を形成する。ALD法では、表面反応の自己停止作用が用いられる。表面反応の自己停止作用とは、原料ガスを供給している間に、1層あるいは数層の原料ガスだけが基板表面に吸着し、余分な原料ガスは成膜に寄与しない作用である。そのため、ALD法を用いて原子層単位で繰り返し基板上に薄膜を形成することにより、所望の膜厚の薄膜を形成することができる。
【0003】
一般的なCVD(Chemical Vapor Deposition)法と比較して、ALD法は段差被覆性と膜厚制御性に優れている。そのため、メモリ素子のキャパシタや、「high-kゲート」と呼ばれる絶縁膜の形成にALD法を用いることが期待されている。
また、ALD法では、300℃以下の温度で絶縁膜を形成することができる。そのため、液晶ディスプレイなどのようにガラス基板を用いる表示装置において、薄膜トランジスタのゲート絶縁膜の形成にALD法を用いることが期待されている。
【0004】
ALD法は、反応の活性化手段の違いにより、熱ALD法とプラズマALD法とに大別される。熱ALD法は、加熱により反応ガスの反応を促進する方法である。また、プラズマALD法は、プラズマにより反応ガスの反応を促進する方法である。
【0005】
ALD法により薄膜の形成を繰り返し行うと、成膜容器の内表面にも薄膜が付着する。成膜容器の内表面に付着した薄膜の厚さが厚くなると、堆積した薄膜が剥離し、その一部分がパーティクルとなり、基板上に形成される薄膜の質が劣化する原因となる。そのため、成膜容器の内表面に付着した薄膜を定期的に除去することが好ましい。
【0006】
成膜容器のクリーニング方法として、ウェットエッチング方法やガスエッチング方法がある。ウェットエッチング方法では、例えば、フッ酸などの液体を用いて、成膜容器の内表面に付着した薄膜を除去する。一方、ガスエッチング方法では、成膜容器の内部にエッチングガスを供給することにより、成膜容器の内表面に付着した薄膜を除去する。
【0007】
従来、チャンバの内壁に堆積した堆積物を非晶質膜で覆うことにより、チャンバの内壁に堆積した堆積物からのガスの発生を抑制する気相成長装置が知られている(特許文献1)。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2006−351655号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記従来の気相成長装置によればクリーニングの頻度を低減することは可能であるが、チャンバの内壁に堆積した堆積物や堆積物を覆う非晶質膜の厚さが所定の厚さ以上になった場合、ウェットエッチング方法を用いてクリーニングを行う必要がある。
しかし、ウェットエッチング方法では、成膜容器を開放するため、成膜容器が大型になるにつれて、開放作業の手間が大きくなるため、ガスエッチング方法を用いることができる場合は、ガスエッチング方法を用いることが好ましい。
【0010】
しかし、ガスエッチング方法によりエッチングを行うためには、成膜容器の内壁面の薄膜の付着部分を所定の温度以上に加熱する必要があるが、ヒーターから離れた部分では、必要な加熱温度に達せず、ガスエッチングを行うのが困難になる。そのため、ガスエッチングを行いにくい場所にある程度の量の薄膜が付着した場合、成膜容器を開放してウェットエッチングを行う必要が生じる。
【0011】
本発明は、ウェットエッチングによるクリーニングの頻度を低減させることができる原子層堆積装置を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するため、本発明の原子層堆積装置は、基板上に薄膜を形成する原子層堆積装置であって、内部が真空に維持される成膜容器と、前記成膜容器の内部に配置される加熱部と、前記成膜容器の開口に取り付け可能な筒状のインジェクタと、前記インジェクタを介して前記成膜容器の内部に前記薄膜の原料である原料ガスを供給する原料ガス供給部と、前記インジェクタを介して前記成膜容器の内部に前記原料ガスと反応して前記薄膜を形成する反応ガスを供給する反応ガス供給部と、不活性ガスを供給する不活性ガス供給部と、を備え、前記インジェクタは、前記原料ガスが流れる原料ガス供給口と、前記反応ガスが流れる反応ガス供給口と、前記不活性ガスが流れる不活性ガス供給口と、を備え、前記不活性ガス供給口は、前記インジェクタと前記成膜容器との隙間に前記不活性ガスが流れるように、前記インジェクタの外表面に設けられていることを特徴とする。
【0013】
また、前記不活性ガス供給口は、更に、前記インジェクタの内表面にも前記不活性ガスが流れるように、前記インジェクタの内表面に設けられていることが好ましい。
【0014】
また、前記インジェクタは、前記筒状の内部空間に、前記基板を前記成膜容器に搬入/搬出する際に開閉するゲートバルブを備えることが好ましい。
【0015】
また、前記成膜容器と前記インジェクタとが接触する場所にOリングが配置されて前記成膜容器はシールドされ、前記インジェクタの前記外表面に設けられている前記不活性ガス供給口は、前記Oリングによりシールドされた前記成膜容器側に位置することが好ましい。
【0016】
また、前記成膜容器の内部において、前記基板が配置される位置より下流側には防着板が配置されていることが好ましい。
【発明の効果】
【0017】
本発明の原子層堆積装置によれば、ウェットエッチングによるクリーニングの頻度を低減させることができる。
【図面の簡単な説明】
【0018】
【図1】実施形態の原子層堆積装置の一例を示す概略構成図である。
【図2】図1に示されるインジェクタの拡大図である。
【図3】図2に示されるインジェクタを右側から見た図である。
【図4】実施形態の原子層堆積方法の一例を示すフローチャートである。
【図5】基板の上に薄膜が形成される工程を示す図である。
【発明を実施するための形態】
【0019】
(原子層堆積装置の構成)
まず、図1を参照して、本実施形態の原子層堆積装置の構成を説明する。図1は、本実施形態の原子層堆積装置の一例を示す概略構成図である。本実施形態の原子層堆積装置10は、原料ガスと反応ガスとを交互に供給し、基板S上に原子層単位で薄膜を形成する。その際、反応活性を高めるため、基板Sを加熱させることができる。特に、本実施形態では原料ガスとしてTMA(Tri-Methyl-Alminum)を用い、反応ガスとしてオゾンを用いることにより、アルミナの薄膜を形成する例について説明するが、これに限定されるものではない。
本実施形態の原子層堆積装置10は、成膜容器20と、排気部30と、インジェクタ50と、原料ガス供給部70と、反応ガス供給部72と、不活性ガス供給部74と、制御部80と、を備える。
【0020】
まず、成膜容器20について説明する。成膜容器20は、支持部22と、加熱部24と、を備える。
基板Sは、成膜容器20の下方から支持部22を貫通するリフトピン26によって支持される。リフトピン26は昇降機構28によって上下方向に昇降可能であり、リフトピン26が基板Sを支持した状態で昇降機構28がリフトピン26を下方向に移動させることにより、基板Sは支持部22の上に載置される。
また、加熱部24は、支持部22の内部に設けられており、加熱部24により基板Sの温度を調整することができる。加熱部24は、例えば、基板Sを500℃に調整することができる。なお、加熱部24の温度は、不図示の温度制御部により制御される。
また、成膜容器20の内部には、支持部22と成膜容器20の内壁との間にOリング36、38が設けられている。
【0021】
排気部30は、排気管32を介して、成膜容器20内に供給された原料ガス、反応ガス、パージガス(不活性ガス)を排気する。排気部30は、例えば、ドライポンプである。排気部30が成膜容器20内を排気することにより、原料ガス、反応ガス、パージガスが成膜容器20内に供給されても、成膜容器20内の真空度は、10Pa〜100Pa程度に維持される。
【0022】
また、基板Sが配置される位置より下流側には、防着板34が配置されている。防着板34は、成膜容器20の内壁に薄膜が付着するのを抑制する。防着板34は、成膜容器20の内部や排気管32の内部のうち、加熱部24により加熱されにくい部分に配置されることが好ましい。
【0023】
次に、インジェクタ50について説明する。インジェクタ50は、成膜容器20の開口に取り付け可能な筒状のものであり、原料ガスや反応ガスの流れの上流側に位置する。インジェクタ50の筒状の内部空間は、成膜容器20へ基板Sの搬入/搬出を行うための空間となっている。インジェクタ50は、原料ガス供給口52と、反応ガス供給口54と、不活性ガス供給口56、58、60と、ゲートバルブ62と、を備える。また、インジェクタ50は、原料ガス供給部70、反応ガス供給部72、不活性ガス供給部74と接続されている。原料ガスと反応ガスは、インジェクタ50を介して成膜容器20の内部に供給される。
【0024】
ここで、図2及び図3を参照して、インジェクタ50の構成を詳細に説明する。図2は、図1に示されるインジェクタ50の拡大図である。図3は、図2に示されるインジェクタ50を右側から見た図である。
図2及び図3に示されるように、インジェクタ50には、水平方向に細長い原料ガス供給口52と、水平方向に細長い反応ガス供給口54と、が形成されている。図2に示されるように、原料ガス供給口52と反応ガス供給口54とは、成膜容器20の内部に位置する。原料ガス供給部70から供給される原料ガス(TMA)は、原料ガス供給口52を通って、成膜容器20の内部に供給される。また、反応ガス供給部72から供給される反応ガス(O)は、反応ガス供給口54を通って、成膜容器20の内部に供給される。これらの供給口はいずれも細長い開口であるが、複数の円状の開口が水平に列状に並んだ構成であってもよい。
【0025】
また、図2及び図3に示されるように、インジェクタ50には、水平方向に細長い不活性ガス供給口56、58が形成されている。図2に示されるように、不活性ガス供給口56、58は、インジェクタ50と成膜容器20との隙間に不活性ガス(例えば、Nガス)が流れるように、インジェクタ50の外表面に設けられている。また、インジェクタ50の内表面にも不活性ガスが流れるように、インジェクタ50の内表面には不活性ガス供給口60が形成されている。
【0026】
成膜容器20とインジェクタ50との間には隙間がないことが好ましい。しかし、成膜容器20にインジェクタ50を取り付け可能とするため、成膜容器20とインジェクタ50との間にはわずかに隙間が存在することがある。成膜容器20とインジェクタ50との隙間に原料ガスや反応ガスが入り込むと、成膜容器20とインジェクタ50との間に薄膜が形成されてしまい、パーティクルの発生原因となり得る。
本実施形態では、成膜容器20とインジェクタ50との隙間に不活性ガスが流れるように、インジェクタ50の外表面に不活性ガス供給口56、58が形成されているため、成膜容器20とインジェクタ50との隙間に薄膜が形成されるのを抑制することができる。
【0027】
また、筒状のインジェクタ50の内部空間に面する内表面にインジェクタ50の内表面に原料ガスや反応ガスが入り込むと、インジェクタ50の内表面に薄膜が形成されていまい、パーティクルの発生原因となり得る。
本実施形態では、インジェクタ50の内表面に不活性ガスが流れるように、インジェクタ50の内表面の周りに不活性ガス供給口60が形成されているため、インジェクタ50の内表面に薄膜が形成されるのを抑制することができる。なお、図2に示される例では、不活性ガス供給口60は、インジェクタ50の上側の内表面と下側の内表面にそれぞれ形成されている。
【0028】
なお、成膜容器20とインジェクタ50との間にはOリング40が設けられている。具体的には、インジェクタ50の外表面に位置する不活性ガス供給口56、58がOリング40によりシールドされた成膜容器20の側に位置する。そのため、成膜容器20とインジェクタ50との隙間が存在する場合にも、Oリング40により成膜容器20の内部の気密が保たれる。
【0029】
図1に戻り、ゲートバルブ62は、筒状のインジェクタ50の内部空間の上流側(図1の左側)に配置されている。基板Sを成膜容器20の内部に搬入する際にゲートバルブ62は開き、基板Sを成膜容器20の内部から搬出する際にゲートバルブ62は閉じる。
【0030】
原料ガス供給部70は、インジェクタ50を介してTMAなどの原料ガスを成膜容器20の内部に供給する。
反応ガス供給部72は、インジェクタ50を介してOなどの反応ガスを成膜容器20の内部に供給する。
不活性ガス供給部74は、インジェクタ50の外表面に設けられた不活性ガス供給口56、58や、インジェクタ50の内表面に設けられた不活性ガス供給口60から、Nガスなどの不活性ガスを供給する。
なお、不活性ガス供給部74から供給される不活性ガスは、パージガスとしても用いられる。
【0031】
制御部80は、原料ガス供給部70、反応ガス供給部72、不活性ガス供給部74と接続されている。
制御部80は、原料ガス供給部70が原料ガスを供給するタイミング、反応ガス供給部72が反応ガスを供給するタイミング、不活性ガス供給部74が不活性ガスを供給するタイミングをそれぞれ独立に制御する。
以上が本実施形態の原子層堆積装置10の概略構成である。
【0032】
(原子層堆積方法)
次に、図4、図5を参照して、本実施形態の原子層堆積装置10を用いた原子層堆積方法について説明する。図4は、本実施形態の原子層堆積方法の一例を示すフローチャートである。また、図5(a)〜(d)は、基板Sの上に薄膜が形成される工程を示す図である。
【0033】
まず、原料ガス供給部70が成膜容器20の内部に原料ガスを供給する(ステップS101)。具体的には、原料ガス供給部70が原料ガスを供給するように、制御部80が原料ガス供給部70を制御する。原料ガス供給部70は、例えば、0.1秒間、成膜容器20の内部に原料ガスを供給する。図5(a)に示されるように、ステップS101によって、成膜容器20の内部に原料ガス110が供給され、基板Sの上に原料ガス110が吸着して、吸着層102が形成される。
【0034】
また、ステップS101において、不活性ガス供給部74がインジェクタ50の外表面や内表面に不活性ガスを供給する。具体的には、不活性ガス供給部74が不活性ガスを供給するように、制御部80が不活性ガス供給部74を制御する。本実施形態では、ステップS101のみでなく、後述するステップS102〜104も含めて、不活性ガス供給部74が常に不活性ガスを供給する。そのため、ステップS101において、原料ガス供給部70が成膜容器20の内部に原料ガスを供給する際に、成膜容器20とインジェクタ50との隙間に原料ガスが入り込むのを抑制することができる。
【0035】
次に、原料ガスの供給を停止し、不活性ガス供給部74が、成膜容器20の内部にパージガス(不活性ガス)112を供給する(ステップS102)。不活性ガス供給部74は、例えば、0.1秒間、成膜容器20の内部にパージガス112を供給する。また、排気部30が成膜容器20の内部の原料ガス110やパージガス112を排気する。排気部30は、例えば、2秒間、成膜容器20の内部の原料ガス110やパージガス112を排気する。図5(b)に示されるように、ステップS102によって、成膜容器20の内部にパージガス112が供給され、基板Sの上に吸着していない原料ガス110が成膜容器20からパージされる。
【0036】
次に、反応ガス供給部72が、成膜容器20の内部に反応ガスを供給する(ステップS103)。具体的には、反応ガス供給部72が反応ガスを供給するように、制御部80が反応ガス供給部72を制御する。反応ガス供給部72は、例えば、1秒間、成膜容器20の内部に反応ガスを供給する。図5(c)に示されるように、ステップS103によって、成膜容器20の内部に反応ガス114が供給される。
【0037】
また、ステップS103においても、不活性ガス供給部74がインジェクタ50の外表面や内表面に不活性ガスを供給する。そのため、ステップS103において、不活性ガス供給部74が成膜容器20の内部に不活性ガスを供給する際に、成膜容器20とインジェクタ50との隙間に不活性ガスが入り込むのを抑制することができる。
【0038】
次に、反応ガスの供給を停止し、不活性ガス供給部74が、成膜容器20の内部にパージガス(不活性ガス)112を供給する(ステップS104)。不活性ガス供給部74は、例えば、0.1秒間、成膜容器20の内部にパージガス112を供給する。また、排気部30が、成膜容器20の内部の反応ガス114やパージガス112を排気する。図5(d)に示されるように、ステップS104によって、成膜容器20の内部にパージガス112が供給され、反応ガス114が成膜容器20からパージされる。
【0039】
以上説明したステップS101〜S104により、基板Sの上に一原子層分の薄膜層104が形成される。以下、ステップS101〜104を所定回数繰り返すことにより、所望の膜厚の薄膜層104を形成することができる。
【0040】
本実施形態の原子層堆積装置10では、不活性ガス供給部74から供給された不活性ガスがインジェクタ50の外表面を流れるため、成膜容器20とインジェクタ50との隙間に原料ガスや反応ガスが入り込むのを抑制することができる。そのため、成膜容器20とインジェクタ50との隙間に薄膜が付着するのを抑制することができる。
【0041】
また、原料ガスとしてTMAを用い、反応ガスとしてOを用いて形成されるアルミナ膜は、BClガスによりガスエッチングを行うことができる。BClガスによりアルミナ膜をガスエッチングするためには、例えば、500℃程度の高温に加熱する必要がある。
加熱部24の付近に位置する成膜容器20の内壁は、加熱部24により500℃程度の高温に加熱することが可能となる。そのため、加熱部24の付近に位置する成膜容器20の内壁に付着した薄膜は、ガスエッチングにより除去することが可能となる。
【0042】
また、本実施形態では、基板Sを搬入/搬出する際に開閉するゲートバルブ62が基板Sが載置される場所よりも上流側(図1の左側)に位置し、基板Sはインジェクタ50の内部を通って、成膜容器20に搬入/搬出される。本実施形態では、不活性ガス供給部74から供給された不活性ガスがインジェクタ50の内表面も流れるため、インジェクタ50の内表面に薄膜が付着するのを抑制することができる。そのため、基板Sを成膜容器20に搬入/搬出する際に、基板Sの表面にパーティクルが付着するのを抑制することができる。
【0043】
また、成膜容器20の下流側(図1の右側)の内壁のうち、加熱部24により500℃程度の高温に加熱することが難しい領域には防着板34が設けられているため、成膜容器20の内壁に薄膜が付着するのを抑制することができる。
以上のように、本実施形態によれば、成膜容器20の内壁に薄膜が付着するのを抑制でき、また、内壁に付着した薄膜をガスエッチングにより除去することができるので、ウェットエッチングによるクリーニングの頻度を低減させることができる。
【0044】
以上、本発明の原子層堆積装置について詳細に説明したが、本発明は上記実施形態に限定されるものではない。また、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
【符号の説明】
【0045】
10 原子層堆積装置
20 成膜容器
22 支持部
24 加熱部
26 リフトピン
28 昇降機構
30 排気部
32 排気管
34 防着板
36,38,40 Oリング
50 インジェクタ
52 原料ガス供給口
54 反応ガス供給口
56、58、60 不活性ガス供給口
62 ゲートバルブ
70 原料ガス供給部
72 反応ガス供給部
74 不活性ガス供給部
80 制御部
102 吸着層
104 薄膜層
110 原料ガス
112 パージガス
114 反応ガス
S 基板


【特許請求の範囲】
【請求項1】
基板上に薄膜を形成する原子層堆積装置であって、
内部が真空に維持される成膜容器と、
前記成膜容器の内部に配置される加熱部と、
前記成膜容器の開口に取り付け可能な筒状のインジェクタと、
前記インジェクタを介して前記成膜容器の内部に前記薄膜の原料である原料ガスを供給する原料ガス供給部と、
前記インジェクタを介して前記成膜容器の内部に前記原料ガスと反応して前記薄膜を形成する反応ガスを供給する反応ガス供給部と、
不活性ガスを供給する不活性ガス供給部と、を備え、
前記インジェクタは、
前記原料ガスが流れる原料ガス供給口と、
前記反応ガスが流れる反応ガス供給口と、
前記不活性ガスが流れる不活性ガス供給口と、を備え、
前記不活性ガス供給口は、前記インジェクタと前記成膜容器との隙間に前記不活性ガスが流れるように、前記インジェクタの外表面に設けられていることを特徴とする原子層堆積装置。
【請求項2】
前記不活性ガス供給口は、更に、前記インジェクタの内表面にも前記不活性ガスが流れるように、前記インジェクタの内表面に設けられている、請求項1に記載の原子層堆積装置。
【請求項3】
前記インジェクタは、前記筒状の内部空間に、前記基板を前記成膜容器に搬入/搬出する際に開閉するゲートバルブを備える、請求項1又は2に記載の原子層堆積装置。
【請求項4】
前記成膜容器と前記インジェクタとが接触する場所にOリングが配置されて前記成膜容器はシールドされ、前記インジェクタの前記外表面に設けられる前記不活性ガス供給口は、前記Oリングによりシールドされた前記成膜容器側に位置する、請求項1乃至3のいずれかに記載の原子層堆積装置。
【請求項5】
前記成膜容器の内部において、前記基板が配置される位置より下流側には防着板が配置されている、請求項1乃至4のいずれかに記載の原子層堆積装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−175055(P2012−175055A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−38484(P2011−38484)
【出願日】平成23年2月24日(2011.2.24)
【出願人】(000005902)三井造船株式会社 (1,723)
【Fターム(参考)】