説明

発光装置及び光源装置

【課題】 有機化合物層において生じた光の全てが透明電極である陰極から取り出されるわけではなく、例えば、横方向(基板面と平行な方向)にも発光されるが、結果的にこの横方向に発光する光は取り出されないため、ロスになっていた。そこで、本発明は、発光素子において、ある一方向に取り出す発光量を増加させる構造とした半導体装置およびその作製方法を提供することを課題とする。
【解決手段】 本発明は、半導体基板にlang=EN-US>FETを形成し、絶縁物19の上端部に曲率半径を有する曲面を形成し、該曲面に合わせて第1の電極18c、18dの一部が露呈して斜面が形成され、発光領域となる領域に第1の電極18bが露呈するようにエッチング処理する。有機化合物層20からの発光を第1の電極18c、18dの斜面で反射させて、図1(A)中に示した矢印方向におけるトータルの光の取り出し量を増加させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は電界効果トランジスタ(以下、FETという)で構成された回路を有する半導体装置およびその作製方法に関する。なお、本明細書中においてFETとは、FETの基本原理を素子化した素子全般を指し、MIS・FET、絶縁体膜に酸化物を利用しているMOS・FET、半導体薄膜を利用した薄膜トランジスタ(TFT)を含む。本発明は特に、有機発光ダイオード(OLED:Organic Light Emitting Diode)を有する半導体装置を部品として搭載した電子機器に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、発光装置、半導体回路および電子機器は全て半導体装置である。
【0003】
また、発光装置にコネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)
が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て半導体装置に含むものとする。
【背景技術】
【0004】
近年、自発光型の素子としてEL素子を有した発光装置の研究が活発化しており、特に、EL材料として有機材料を用いた発光装置が注目されている。この発光装置は有機ELディスプレイ(OELD:Organic EL Display)又は有機発光ダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。なお、本明細書中における発光装置とは、画像表示デバイス、発光デバイス、もしくは光源(照明装置含む)を指す。
【0005】
なお、EL素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(以下、EL層と記す)と、陽極と、陰極とを有する。有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明の成膜装置および成膜方法により作製される発光装置は、どちらの発光を用いた場合にも適用可能である。
【0006】
発光装置は、液晶表示装置と異なり自発光型であるため視野角の問題がないという特徴がある。即ち、屋外に用いられるディスプレイとしては、液晶ディスプレイよりも適しており、様々な形での使用が提案されている。
【0007】
EL素子は一対の電極間にEL層が挟まれた構造となっているが、EL層は通常、積層構造となっている。代表的には、「正孔輸送層/発光層/電子輸送層」という積層構造が挙げられる。この構造は非常に発光効率が高く、現在、研究開発が進められている発光装置は殆どこの構造を採用している。
【0008】
また、陰極、EL層及び陽極で形成される発光素子をEL素子といい、これには、互いに直交するように設けられた2種類のストライプ状電極の間にEL層を形成する方式(単純マトリクス方式)、又はTFTに接続されマトリクス状に配列された画素電極と対向電極との間にEL層を形成する方式(アクティブマトリクス方式)の2種類がある。しかし、画素密度が増えた場合には、画素(又は1ドット)毎にスイッチが設けられているアクティブマトリクス方式の方が低電圧駆動できるので有利であると考えられている。
【0009】
また、これまでアクティブマトリクス型の発光装置において、基板上のTFTと電気的に接続された電極が陽極として形成され、陽極上に有機化合物層が形成され、有機化合物層上に陰極が形成される発光素子を有し、有機化合物層において生じた光を透明電極である陽極からTFTの方へ取り出すという構造であった。
【発明の概要】
【発明が解決しようとする課題】
【0010】
そこで、本発明では、第1の電極を陽極として形成し、陽極上に有機化合物を含む層を形成し、有機化合物を含む層上に発光を透過する第2の電極からなる陰極を形成するという構造(以下、上面出射構造とよぶ)の発光素子を有するアクティブマトリクス型の発光装置を作製する。或いは、第1の電極を陰極として形成し、陰極上に有機化合物を含む層を形成し、有機化合物を含む層上に発光を透過する第2の電極からなる陽極を形成するという構造の発光素子を有するアクティブマトリクス型の発光装置を作製する。
【0011】
また、有機化合物を含む層において生じた光の全てが観察者(使用者)の方へ取り出されるわけではなく、例えば、横方向(基板面と平行な方向)にも発光されるが、結果的に、この横方向に発光する光は取り出されないため、ロスになっていた。そこで、本発明は、発光素子において、ある一方向に取り出す発光量を増加させる構造とした発光装置およびその作製方法を提供することを課題とする。
【0012】
また、有機化合物を有する発光素子において、電極から注入された電子と正孔がフォトンに変換され最終的に素子外部に取り出されるまでの経路を考える。外部回路を流れる電流のうち、ある割合のみが電子−正孔対としてキャリア結合に寄与でき、再結合した電子−正孔対の一部が発光性分子励起子の生成に消費される。生成した励起子は蛍光量子効率で規定される割合だけフォトンに転換され、残りは様々な経路で失活し、例えば熱失活や赤外光の発光となる。従って、このような発光素子を駆動させて発光させるとジュール熱が発生し、この熱によって有機化合物の分解や結晶化を招き、発光素子の劣化が生じる。
【0013】
そこで、本発明では、有機化合物を有する発光素子において、効率よく発熱を除去または低減することも課題とする。
【課題を解決するための手段】
【0014】
本発明は、半導体基板を用いてFETを形成し、該FETの電極(ドレイン電極またはソース電極)である金属層の積層からなる第1の電極を形成し、該第1の電極の端部を覆う絶縁物(バンク、隔壁と呼ばれる)を形成した後、該絶縁物をマスクとして自己整合的にエッチングを行い、該絶縁物の一部をエッチングするとともに第1の電極の中央部を薄くエッチングして端部に段差を形成する。このエッチングによって第1の電極の中央部は薄く、且つ、平坦な面とし、絶縁物で覆われた第1の電極の端部は厚い形状、即ち、凹部形状となる。そして、第1の電極上には有機化合物を含む層、および第2の電極を形成して発光素子を完成させる。
【0015】
本発明は、第1の電極の段差部分に形成された斜面で横方向の発光を反射または集光させて、ある一方向(第2の電極を通過する方向)に取り出す発光量を増加させるものである。
【0016】
従って、斜面となる部分は、光を反射する金属、例えばアルミニウム、銀などを主成分とする材料とすることが好ましく、有機化合物を含む層と接する中央部は、仕事関数の大きい陽極材料、或いは、仕事関数の小さい陰極材料とすることが好ましい。
【0017】
また、本発明は、放熱性のすぐれた半導体基板を用いるため、効率よく発熱を除去または低減することができる。また、本発明の半導体基板には、発光素子およぶ該発光素子に接続するFET以外にも様々な回路(インバータ回路、NAND回路、AND回路、NOR回路、OR回路、シフトレジスタ回路、サンプリング回路、D/Aコンバータ回路、A/Dコンバータ回路、ラッチ回路、バッファ回路などのCMOS回路を有する駆動回路、補正回路、CPU、SRAMやDRAMなどのメモリ素子、シリコンのPIN接続からなる光電変換素子、薄膜ダイオード、抵抗素子など)を同時に作りこむことが可能である。加えて、微細なパターンを作りこむことも可能であり、さらに三次元的にこれらの回路を集積することも可能である。従って、様々な回路や素子を有する駆動回路などの占める面積を小さくすることができ、額縁部の面積が小さくなるので全体のサイズがよりコンパクトにすることができる。
【0018】
また、上記構成は、トータルのマスク数および工程を少なくするため、第1の電極とFETのドレイン電極とを一体化した構成であるが、フォトマスクを1枚追加して異なる材料で第1の電極を形成してもよい。また、開口率を上げるため、フォトマスクを2枚追加し、絶縁膜を介してFETのドレイン電極(またはソース電極)と接続する金属層の積層からなる第1の電極を形成してもよい。
【0019】
本明細書で開示する発明の構成1は、 半導体基板に設けられた電界効果トランジスタと接続された第1の電極と、 第1の電極の端部を覆う絶縁物と、 該第1の電極上に接する有機化合物を含む層と、該層上に接する第2の電極とを有する発光素子を備え、前記第1の電極は、前記第1の電極の中央部に向かう傾斜面を前記第1の電極の端部に有し、該傾斜面は、前記有機化合物を含む層からの発光を反射することを特徴とする半導体装置である。
【0020】
また、他の発明の構成2は、 半導体基板に設けられた電界効果トランジスタと接続された第1の電極と、 第1の電極の端部を覆う絶縁物と、 該第1の電極上に接する有機化合物を含む層と、該層上に接する第2の電極とを有する発光素子を備え、前記第1の電極の中央部が端部よりも膜厚の薄い凹部形状となっていることを特徴とする半導体装置である。
【0021】
また、他の発明の構成3は、 半導体基板に設けられた電界効果トランジスタと接続された第1の電極と、 第1の電極の端部を覆う絶縁物と、 該第1の電極上に接する有機化合物を含む層と、該層上に接する第2の電極とを有する発光素子を備え、前記第1の電極は、多層構造であり、前記第1の電極における中央部の積層数よりも端部の積層数が多いことを特徴とする半導体装置である。
【0022】
また、他の発明の構成4は、 電界効果トランジスタと接続された第1の電極と、 第1の電極の端部を覆う絶縁物と、 該第1の電極上に接する有機化合物を含む層と、該層上に接する第2の電極とを有する発光素子を備え、 前記第1の電極は、窪み(凹部とも呼ぶ)を有し、前記窪みの底部(断面における底部)の幅は、窪みの上部(断面における上部)の幅よりも小さく、前記窪みの傾斜面は、前記有機化合物を含む層からの発光を反射することを特徴とする半導体装置である。
【0023】
また、本発明は、塗布法により高分子からなる有機化合物膜を形成する際、カバレッジ不良などを無くすため、各画素間に設けられる絶縁物(バンク、隔壁、障壁、土手などと呼ばれる)の形状に工夫を加える。上記各構成において、前記絶縁物の上端部に曲率半径を有する曲面を持たせ、該曲率半径は、0.2μm〜3μmであることを特徴としている。また、前記絶縁物のテーパー角度は、35°〜55°とすればよい。
【0024】
曲率を持たせることによって段差被覆性を良好とし、後に形成する有機化合物を含む層などが極めて薄くとも成膜を可能とする。
【0025】
また、上記各構成において、前記第1の電極は、前記第1の電極の中央部に向かう傾斜面を有し、傾斜角度(テーパー角度とも呼ぶ)は、30°を超え、70°未満、さらに好ましくは60°未満であることを特徴としている。なお、この前記第1の電極の傾斜面で反射された光が層間で分散したり、迷光とならないように適宜、傾斜角度、有機化合物層の材料および膜厚、または第2の電極の材料および膜厚を設定することが必要である。
【0026】
また、上記各構成において、前記第2の電極は光を透過する導電膜、例えば薄い金属膜、透明導電膜、またはこれらの積層膜であることを特徴としている。
【0027】
また、上記各構成において、前記第1の電極は、凹部形状であり、前記絶縁物をマスクとして自己整合的に形成されることを特徴としている。従って、第1の電極形状を形成する上でマスクの増加はない。なお、前記第1の電極の段差部分(傾斜部の上端部)と絶縁物の側面とはほぼ一致しており、段差被覆性の点から好ましくは、第1の電極の斜面における傾斜角度と絶縁物の側面における傾斜角度とが同一であることが望ましい。
【0028】
また、上記各構成において、前記第1の電極は、前記電界効果トランジスタのドレイン電極またはソース電極の一部であることを特徴とする。ドレイン電極またはソース電極の一部を第1の電極とすることによって同時に形成することができ、マスク数や工程を少なくすることができる。或いは、前記第1の電極と、前記電界効果トランジスタのドレイン電極またはソース電極とを異なる工程で別々に形成してもよく、その場合、前記第1の電極は、前記電界効果トランジスタのドレイン電極またはソース電極と異なる材料とすることができる。
【0029】
また、上記各構成において、前記第1の電極は陽極であり、前記第2の電極は陰極であることを特徴としている。或いは、上記各構成において、前記第1の電極は陰極であり、前記第2の電極は陽極であることを特徴としている。
【0030】
また、上記各構成において、前記有機化合物を含む層は白色発光する材料であり、封止材に設けられたカラーフィルタと組み合わせたことを特徴とする発光装置、或いは、前記有機化合物を含む層は単色発光する材料であり、封止材に設けられた色変換層または着色層と組み合わせたことを特徴としている。
【0031】
さらに本発明は、第1の電極の段差形成後、蒸着マスクを用いた蒸着法によって配線(補助配線、または第3の電極とも呼ぶ)を各画素電極間に配置する絶縁物上に形成し、陰極となる電極(光を透過する電極)の膜抵抗の低抵抗化を図ってもよい。また、上記補助配線を用いて引き出し配線を形成し、下層に存在する他の配線と接続を行うことも本発明の特徴である。
【0032】
また、上記各構成において、前記電界効果トランジスタは、MISFET、MOSFET、またはTFTであることを特徴としている。
【0033】
また、上記各構成において、前記半導体基板には、CPU、メモリ素子、薄膜ダイオード、光電変換素子、または抵抗素子が設けられていることを特徴としている。
【0034】
また、上記各構成1、2、3を実現するための発明の構成は、陽極と、該陽極に接する有機化合物を含む層と、該有機化合物を含む層に接する陰極とを有する発光素子を有する半導体装置の作製方法であって、半導体基板に電界効果トランジスタを形成する工程と、前記電界効果トランジスタのドレイン電極またはソース電極の一部である第1の電極の端部を覆う絶縁物を形成する工程と、前記絶縁物をマスクとして、エッチングを行い、金属層の積層からなる第1の電極の縁に沿って斜面が露呈するように前記第1の電極の中央部を薄くする工程と、前記第1の電極の中央部および斜面に接して有機化合物を含む膜を形成する工程と、該有機化合物を含む膜上に、光を透過する金属薄膜からなる第2の電極を形成する工程とを有することを特徴とする半導体装置の作製方法である。
【0035】
また、上記作製方法に関する構成において、前記第1の電極は、光を反射する金属層と、エッチングストッパーとなる金属層との積層を有し、光を反射する金属層がエッチングされ、前記斜面には、光を反射する金属材料が露呈していることを特徴としている。
【0036】
また、前記第1の電極のエッチングによって、エッチングストッパーとなる金属層の表面が多少エッチングされてもよい。
【0037】
また、上記作製方法に関する構成において、前記第1の電極は陽極であり、前記第2の電極よりも仕事関数が大きい金属層からなることを特徴としている。
【0038】
また、上記作製方法に関する構成において、前記第1の電極は、チタンを含む第1の金属層と、窒化チタンまたは窒化タングステンを含む第2の金属層と、アルミニウムを含む第3の金属層と、窒化チタンを含む第4の金属層との積層であることを特徴としている。
【0039】
なお、第1の金属層は、TFTのソース領域またはドレイン領域と接するため、シリコンとのオーミックコンタクトが良好な金属材料(代表的にはチタン)を選択すればよく、陽極として機能する第2の金属層としては仕事関数の大きい材料が好ましく、発光素子の光を反射させる第3の金属層としては、光反射率の高い金属材料が好ましく、第4の金属層としては、第3の金属層のヒロックやウィスカーなどの発生防止をするとともに第3の金属層の鏡面反射を防止する金属材料(窒化チタン、またはチタン)が好ましい。
【0040】
また、前記第1の電極は、上記4層構造に限定されず、少なくとも陽極として機能する金属層と、発光素子の光を反射させる斜面を有する金属層との2層以上であれば、特に限定されない。
【0041】
また、図12にTiを微量に含むアルミニウム膜の反射率と、TiN膜(100nm)の反射率を示す。窒化チタンは、鏡面反射を防止することができる材料である。また、陽極として窒化チタンを用いた場合、ほとんど反射しないため、発光素子の戻り光による干渉も生じない。従って、円偏光板を設けなくともよいパネル構造とすることができる。
【0042】
例えば、前記第1の電極において、第1の金属層としてチタン、第2の金属層として窒化チタン、第3の金属層としてアルミニウムを含む金属膜、第4の金属層として窒化チタン、第5の金属層としてアルミニウムを含む金属膜、第6の金属層として窒化チタン、という6層構造としてもよい。この6層構造の場合、第4の金属層を陽極とし、第5の金属層の斜面で発光素子の光を反射させる構造となり、且つ、陽極の下層にアルミニウムを含む金属膜が設けられているため、第1の電極全体として低抵抗化を図ることができる。
【0043】
また、上記作製方法に関する構成において、オゾン雰囲気下での紫外線照射処理(UVオゾン処理という)を行うことにより、陽極となる金属層の仕事関数を高めてもよい。図13にはUVオゾン処理時間にともなう仕事関数の変化を測定した結果を示す。図13に示すように、窒化チタンは、仕事関数が4.7eVであるが、UV処理(6分間)により、その仕事関数を5.05eVとすることができる。なお、窒化タンタルに関しても同様に仕事関数が大きくなる傾向が得られている。また、上記作製方法に関する構成において、N2、O2、Ar、BCl、Cl2といったガスを1種または複数種用いてプラズマ処理を行うことによっても陽極となる金属層の仕事関数を高めてもよい。
【0044】
因みに、図13において、仕事関数の測定は大気中で行い、光電子分光法により理研計器株式会社製の「光電子分光装置 AC―2」を用いて測定したものである。
【0045】
また、前記絶縁物をマスクとして、エッチングを行い、第1の電極の縁に沿って斜面が露呈するように前記第1の電極の中央部を薄くする工程でプラズマエッチングを用いる場合、エッチングガスによっては、中央部を薄くすると同時に陽極となる金属層の仕事関数を高めることができる。
【0046】
また、上記作製方法に関する構成において、前記第1の電極の端部を覆う絶縁物は、上端部に曲率半径を有する曲面を有しており、前記曲率半径は、0.2μm〜3μmであることを特徴としている。
【0047】
また、上記作製方法に関する構成において、前記電界効果トランジスタは、MISFET、MOSFET、またはTFTであることを特徴としている。
【0048】
なお、EL素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(以下、EL層と記す)と、陽極と、陰極とを有する。有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明の製造装置および成膜方法により作製される発光装置は、どちらの発光を用いた場合にも適用可能である。
【0049】
EL層を有する発光素子(EL素子)は一対の電極間にEL層が挟まれた構造となっているが、EL層は通常、積層構造となっている。代表的には、コダック・イーストマン・カンパニーのTangらが提案した「正孔輸送層/発光層/電子輸送層」という積層構造が挙げられる。この構造は非常に発光効率が高く、現在、研究開発が進められている発光装置は殆どこの構造を採用している。
【0050】
また、他にも陽極上に正孔注入層/正孔輸送層/発光層/電子輸送層、または正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層の順に積層する構造も良い。発光層に対して蛍光性色素等をドーピングしても良い。また、これらの層は、全て低分子系の材料を用いて形成しても良いし、全て高分子系の材料を用いて形成しても良い。なお、本明細書において、陰極と陽極との間に設けられる全ての層を総称してEL層という。したがって、上記正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層は、全てEL層に含まれる。
【0051】
また、本発明の発光装置において、画面表示の駆動方法は特に限定されず、例えば、点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。
代表的には、線順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、発光装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
【発明の効果】
【0052】
本発明により、有機化合物を含む層からの発光のうち、横方向(基板面と平行な方向)の発光を第1の電極の段差部分に形成された斜面で反射させて、ある一方向(第2の電極を通過する方向)に取り出すトータルの発光量を増加させることができる。即ち、迷光などの発光のロスが少ない発光素子を実現することができる。
【0053】
また、本発明により、発光素子を駆動する際に発生する発熱は、半導体基板を伝わって放熱されるため、信頼性の高い発光素子を実現することができる。
【0054】
また、上記発光素子に加えて、様々な回路を半導体基板に集積することが可能となり、半導体装置の大幅な小型化を図ることができる。
【図面の簡単な説明】
【0055】
【図1】実施の形態1を示す図。
【図2】実施例1を示す図。
【図3】実施例1を示す図。
【図4】実施の形態3を示す図。
【図5】実施の形態2を示す図。
【図6】実施例2を示す図。
【図7】実施例2を示す図。
【図8】発光装置を内蔵する電子装置のシステムブロック図を示す図。
【図9】実施例3を示す図。
【図10】電子機器の一例を示す図。
【図11】電子機器の一例を示す図。
【図12】Tiを微量に含むアルミニウム膜の反射率と、TiN膜(100nm)の反射率を示すグラフ。
【図13】UVオゾン処理時間にともなう仕事関数の変化を示すグラフ。
【発明を実施するための形態】
【0056】
本発明の実施形態について、以下に説明する。
【0057】
(実施の形態1)
アクティブマトリクス型発光装置の断面図(1画素の一部)を図1(A)に示す。ここでは、白色発光する高分子材料からなる有機化合物を含む層を発光層に用いた発光素子を一例として説明する。
【0058】
図1(A)中、半導体基板10上に設けられたFET(PMOSFET)は、白色を発光するEL層20に流れる電流を制御する素子であり、13、14はソース領域またはドレイン領域である。
【0059】
半導体基板10としては、N型またはP型の単結晶シリコン基板((100)
基板、(110)基板、(111)基板など)、または高純度半導体基板を用いることができる。また、例えば、直径200mm〜300mmのウエハ(円形)
を切断して四角形基板に加工した後にFETを形成する。或いは、FETおよび発光素子を形成した後、所望のサイズに分断する多面取りを行ってもよい。また、半導体基板10としてGaAs基板、InP基板、GaN系エピ用のGaN基板、SiC基板、サファイヤ基板、ZnSeなどで代表される化合物半導体基板を用いてもよい。また、ウエハ貼り付け法やSIMOX(separation by implanted oxygen)法によりSOI(Si on Insulator)基板構造を形成してもよい。
【0060】
半導体基板10上にはフィールド酸化膜11が形成されており、ゲート電極15の下方には、ゲート絶縁膜12が設けられている。ゲート電極15の側部にはサイドウォールを形成した例を示したが、特に限定されない。フィールド酸化膜11は、各素子を分離するために選択酸化法(LOCOS法とも呼ばれる)を用い、半導体基板を熱酸化して酸化膜(パッド酸化膜)を形成した後、その上にマスク窒化膜をCVD法により成膜し、パターニングを行い、開口部のみにシリコン表面を露出させ、熱酸化を行えば、開口部にフィールド酸化膜が形成される。
【0061】
また、LOCOS法に代えて、設計ルールが0.25μm以下の微細化に適しているトレンチ分離を用いてもよい。トレンチ分離はシリコン基板に溝(トレンチ)を形成した後、その溝を酸化膜などの絶縁物で埋め戻すことによって素子分離を行う方法である。
【0062】
また、16aは窒化珪素膜、窒化酸化珪素膜からなる層間絶縁膜であり、16bは塗布法で形成される感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)からなる平坦化絶縁膜、または無機材料からなる平坦化絶縁膜(塗布シリコン酸化膜、PSG(リン添加ガラス、BPSG(ボロンとリンを添加したガラス)などを含む)、またはこれらの積層膜を用いる。また、ここでは図示しないが、一つの画素には、他にもFET(NMOSまたはPMOS)を一つ、または複数設けている。同一半導体基板上にNMOSとPMOSを形成する場合には、基板とは異なる導電性を持つ領域(ウェル)を設ける必要があり、その方法としては、N型基板上にPウェルを形成し、Pウェル上にNチャネルトランジスタ、N型基板上にPチャネルトランジスタを形成するPウェル方式、P型基板上にNウェルを形成し、Nウェル上にPチャネルトランジスタ、P型基板上にNチャネルトランジスタを形成するNウェル方式、N型またはP型の基板上にNウェルとPウェルとを形成し、Nウェル上にPチャネルトランジスタ、Pウェル上にNチャネルトランジスタを形成するツインウェル方式とがある。また、ここでは、一つのチャネル形成領域を有するFETを示したが、特に限定されず、複数のチャネルを有するFETとしてもよい。
【0063】
また、18a〜18dは、第1の電極、即ち、OLEDの陽極(或いは陰極)
であり、21は、導電膜からなる第2の電極、即ち、OLEDの陰極(或いは陽極)である。ここでは、18aとしてチタン膜、18bとして窒化チタン膜、18cとしてアルミニウムを主成分とする膜、18dとして窒化チタン膜として順に積層し、有機化合物を含む層20に接する18bを陽極として機能させる。また、同じ積層構造で電源供給線17も形成される。上記積層構造は、アルミニウムを主成分とする膜を含んでおり、低抵抗な配線とすることができ、ソース配線22なども同時に形成される。
【0064】
また、白色発光を得るため、有機化合物を含む層20として、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)
水溶液(PEDOT/PSS)を全面に塗布、焼成した後、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたポリビニルカルバゾール(PVK)溶液を全面に塗布、焼成する。なお、PEDOT/PSSは溶媒に水を用いており、有機溶剤には溶けない。従って、PVKをその上から塗布する場合にも、再溶解する心配はない。また、PEDOT/PSSとPVKは溶媒が異なるため、成膜室は同一のものを使用しないことが好ましい。また、有機化合物を含む層20を単層とすることもでき、ホール輸送性のポリビニルカルバゾール(PVK)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。
【0065】
また、赤色発光する有機化合物を含む膜や緑色発光する有機化合物を含む膜や青色発光する有機化合物を含む膜を適宜選択し、重ねて混色させることによって全体として白色発光を得ることも可能である。
【0066】
また、21としてCaF2を蒸着法で膜厚1nm〜10nm形成した後、最後にAl膜をスパッタ法または蒸着法により約10nmの膜厚で形成し、陰極として機能させる。陰極は、有機化合物を含む層20からの光を通過する膜厚、材料を適宜選択することが必要である。なお、本明細書中、陰極とは、仕事関数の小さい材料膜の単層膜だけでなく、仕事関数の小さい材料薄膜と導電膜との積層膜を含むものとする。
【0067】
第2の電極21としてAl膜を用いる構成とすると、有機化合物を含む層20と接する材料を酸化物以外の材料で形成することが可能となり、発光装置の信頼性を向上させることができる。なお、Al膜に代えて、第2の電極21として透明導電膜(ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)を用いてもよい。また、CaF2に代えて薄い金属層(代表的にはMgAg、MgIn、AlLiなどの合金)としてもよい。
【0068】
また、第1の電極18の両端部およびそれらの間は絶縁物19(障壁またはバンクとも呼ばれる)で覆われている。本発明において、この絶縁物19の断面形状が重要である。この絶縁物19を形成するエッチング処理によって、第1の電極18の凹部形状が形成される。絶縁物19の上端部において曲面を有していない場合、絶縁物19の上端部において凸部が形成されてしまう成膜不良が発生しやすくなる。そこで、本発明は、絶縁物19の上端部に曲率半径を有する曲面を形成し、該曲面に合わせて第1の電極18c、18dの一部が露呈して斜面が形成され、発光領域となる領域に第1の電極18bが露呈するようにエッチング処理する。また、露呈した第1の電極18bの表面を平坦化する処理(CMP処理など)を行ってもよい。また、第1の電極18bの膜厚を厚くして、第1の電極18bの一部も斜面となるようにエッチング処理をしてもよい。なお、曲率半径は、0.2μm〜3μmとすることが好ましい。本発明により、有機化合物膜や金属膜のカバレッジを良好とすることができる。また、絶縁物19の側面におけるテーパー角度と、第1の電極18c、18dの斜面におけるテーパー角度は、ともに45°±10°とすればよい。
【0069】
なお、第1の電極の凹部形状をエッチングする処理は、特に限定されず、ドライエッチングまたはウエットエッチングまたはこれらを組み合わせたエッチング方法を採用すればよい。例えば、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することによって所望のテーパー形状に膜をエッチングすることができる。なお、エッチング用ガスとしては、Cl2、BCl3、SiCl4、CCl4などを代表とする塩素系ガスまたはCF4、SF6、NF3などを代表とするフッ素系ガス、またはO2を適宜用いることができる。ここでは、1.9Paの圧力でコイル型の電極に450WのRF(13.56MHz)電力を投入し、基板側(試料ステージ)にも100WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。なお、基板側の電極面積サイズは、12.5cm×12.5cmであり、コイル型の電極面積サイズ(ここではコイルの設けられた石英円板)は、直径25cmの円板である。エッチング用ガスにBCl3とCl2とを用い、それぞれのガス流量比を60/20(sccm)として上記第1の電極の形状および絶縁物を形成することができる。
【0070】
また、3層構造としてもよく、例えば、18aとしてチタン膜、18bとして窒化チタン膜、18cとしてアルミニウムを主成分とする膜として順に積層してもよい。
【0071】
本発明において、有機化合物層20からの発光を第1の電極18c、18dの斜面で反射させて、図1(A)中に示した矢印方向におけるトータルの光の取り出し量を増加させることを特徴としている。
【0072】
また、図1(B)に示すように、導電膜(陰極)21の低抵抗化を図るため、導電膜21上に補助電極23を設けてもよい。補助電極23は、蒸着マスクを用いた蒸着法によって選択的に形成すればよい。
【0073】
また、図示しないが、発光装置の信頼性を高めるために第2の電極21上に保護膜を形成することが好ましい。この保護膜はスパッタ法(DC方式やRF方式)により得られる窒化珪素または窒化酸化珪素を主成分とする絶縁膜、または炭素を主成分とする薄膜である。シリコンターゲットを用い、窒素とアルゴンを含む雰囲気で形成すれば、窒化珪素膜が得られる。また、窒化シリコンターゲットを用いてもよい。また、保護膜は、リモートプラズマを用いた成膜装置を用いて形成してもよい。また、保護膜に発光を通過させるため、保護膜の膜厚は、可能な限り薄くすることが好ましい。
【0074】
本発明において、前記炭素を主成分とする薄膜は膜厚3〜50nmのDLC膜(Diamond like Carbon)であることを特徴としている。DLC膜は短距離秩序的には炭素間の結合として、SP3結合をもっているが、マクロ的にはアモルファス状の構造となっている。DLC膜の組成は炭素が70〜95原子%、水素が5〜30原子%であり、非常に硬く絶縁性に優れている。また、このようなDLC膜は、水蒸気や酸素などのガス透過率が低いという特徴がある。また、微少硬度計による測定で、15〜25GPaの硬度を有することが知られている。
【0075】
DLC膜はプラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法など)、スパッタ法などで形成することができる。いずれの成膜方法を用いても、密着性良くDLC膜を形成することができる。DLC膜は基板をカソードに設置して成膜する。または、負のバイアスを印加して、イオン衝撃をある程度利用して緻密で硬質な膜を形成できる。
【0076】
成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH4、C22、C66など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。こうすることにより、緻密で平滑なDLC膜を得ることができる。なお、このDLC膜は、可視光に対して透明もしくは半透明な絶縁膜である。
【0077】
本明細書において、可視光に対して透明とは可視光の透過率が80〜100%であることを指し、可視光に対して半透明とは可視光の透過率が50〜80%であることを指す。
【0078】
また、ここではトップゲート型TFTを例として説明したが、TFT構造に関係なく本発明を適用することが可能であり、例えばボトムゲート型(逆スタガ型)TFTや順スタガ型TFTに適用することが可能である。
【0079】
(実施の形態2)
以下に、白色発光素子とカラーフィルターを組み合わせた方法(以下、カラーフィルター法とよぶ)について図5(A)により説明する。
【0080】
カラーフィルター法は、白色発光を示す有機化合物膜を有する発光素子を形成し、得られた白色発光をカラーフィルターに通すことで赤、緑、青の発光を得るという方式である。
【0081】
白色発光を得るためには、様々な方法があるが、ここでは塗布により形成可能な高分子材料からなる発光層を用いる場合について説明する。この場合、発光層となる高分子材料への色素ドーピングは溶液調整で行うことができ、複数の色素をドーピングする共蒸着を行う蒸着法に比べて極めて容易に得ることができる。
【0082】
具体的には、仕事関数の大きい金属(Pt、Cr、W、Ni、Zn、Sn、In)からなる陽極上に、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成した後、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたポリビニルカルバゾール(PVK)溶液を全面に塗布、焼成した後、仕事関数の小さい金属(Li、Mg、Cs)を含む薄膜と、その上に積層した透明導電膜(ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)との積層からなる陰極を形成する。なお、PEDOT/PSSは溶媒に水を用いており、有機溶剤には溶けない。従って、PVKをその上から塗布する場合にも、再溶解する心配はない。また、PEDOT/PSSとPVKは溶媒が異なるため、成膜室は同一のものを使用しないことが好ましい。
【0083】
また、上記例では有機化合物層を積層とした例を示したが、有機化合物層を単層とすることもできる。例えば、ホール輸送性のポリビニルカルバゾール(PVK)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。
【0084】
なお、有機化合物膜は、陽極と陰極の間に形成されており、陽極から注入された正孔と陰極から注入された電子が有機化合物膜において再結合することにより、有機化合物膜において、白色発光が得られる。
【0085】
また、赤色発光する有機化合物膜や緑色発光する有機化合物膜や青色発光する有機化合物膜を適宜選択し、重ねて混色させることによって全体として白色発光を得ることも可能である。
【0086】
以上により形成される有機化合物膜は、全体として白色発光を得ることができる。
【0087】
上記有機化合物膜が白色発光する方向に赤色発光以外を吸収する着色層(R)
、緑色発光以外を吸収する着色層(G)、青色発光以外を吸収する着色層(B)
をそれぞれ設けたカラーフィルタを形成することにより、発光素子からの白色発光をそれぞれ分離して、赤色発光、緑色発光、青色発光として得ることができる。また、アクティブマトリクス型の場合には、基板とカラーフィルターの間にTFTが形成される構造となる。
【0088】
また、着色層(R,G,B)には、最も単純なストライプパターンをはじめとして、斜めモザイク配列、三角モザイク配列、RGBG四画素配列、もしくはRGBW四画素配列などを用いることができる。
【0089】
カラーフィルターを構成する着色層は、顔料を分散した有機感光材料からなるカラーレジストを用いて形成される。なお、白色発光の色度座標は(x,y)=(0.34、0.35)である。白色発光とカラーフィルターを組み合わせれば、フルカラーとしての色再現性は十分確保することができる。
【0090】
なお、この場合には、得られる発光色が異なっていても、すべて白色発光を示す有機化合物膜で形成されていることから、発光色ごとに有機化合物膜を塗り分けて形成する必要がない。また、鏡面反射を防ぐ円偏光板も特に必要ないものとすることができる。
【0091】
次に青色発光性の有機化合物膜を有する青色発光素子と蛍光性の色変換層を組み合わせることにより実現されるCCM法(color changing mediums)について図5(B)により説明する。
【0092】
CCM法は、青色発光素子から出射された青色発光で蛍光性の色変換層を励起し、それぞれの色変換層で色変換を行う。具体的には色変換層で青色から赤色への変換(B→R)、色変換層で青色から緑色への変換(B→G)、色変換層で青色から青色への変換(B→B)(なお、青色から青色への変換は行わなくても良い。)を行い、赤色、緑色及び青色の発光を得るというものである。CCM法の場合にも、アクティブマトリクス型の場合には、基板と色変換層の間にTFTが形成される構造となる。
【0093】
なお、この場合にも有機化合物膜を塗り分けて形成する必要がない。また、鏡面反射を防ぐ円偏光板も特に必要ないものとすることができる。
【0094】
また、CCM法を用いる場合には、色変換層が蛍光性であるため外光により励起され、コントラストを低下させる問題があるので、図5(C)に示したようにカラーフィルターを装着するなどしてコントラストを上げるようにすると良い。
【0095】
また、本実施の形態は、実施の形態1と組み合わせることが可能である。
【0096】
(実施の形態3)
ここでは、半導体基板上に下地絶縁膜を形成し、その上にFETの一種であるTFTを形成した例を図4に示す。
【0097】
半導体基板40としては、N型またはP型の単結晶シリコン基板((100)
基板、(110)基板、(111)基板など)、または高純度半導体基板を用いることができる。また、例えば、直径200mm〜300mmのウエハ(円形)
を切断して四角形基板に加工した後にFETを形成する。或いは、FETおよび発光素子を形成した後、所望のサイズに分断する多面取りを行ってもよい。また、半導体基板40としてGaAs基板、InP基板、GaN系エピ用のGaN基板、SiC基板、サファイヤ基板、ZnSeなどで代表される化合物半導体基板を用いてもよい。また、ウエハ貼り付け法やSIMOX(separation by implanted oxygen)法によりSOI(Si on Insulator)基板構造を形成してもよい。
この半導体基板40は、発光素子の発熱を分散させるためのものである。
【0098】
まず、半導体基板40上に下地絶縁膜41を形成する。
【0099】
下地絶縁膜41は、1層目としてプラズマCVD法を用い、SiH4、NH3、及びN2Oを反応ガスとして成膜される酸化窒化シリコン膜を10〜200nm(好ましくは50〜100nm)形成する。ここでは、膜厚50nmの酸化窒化シリコン膜(組成比Si=32%、O=27%、N=24%、H=17%)を形成する。次いで、下地絶縁膜の2層目としては、プラズマCVD法を用い、SiH4及びN2Oを反応ガスとして成膜される酸化窒化シリコン膜を50〜200nm(好ましくは100〜150nm)の厚さに積層形成する。ここでは、膜厚100nmの酸化窒化シリコン膜(組成比Si=32%、O=59%、N=7%、H=2%)を形成する。本実施例では下地絶縁膜41として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。
【0100】
次いで、下地膜上に半導体層を形成する。TFTの活性層となる半導体層は、非晶質構造を有する半導体膜を公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜した後、公知の結晶化処理(レーザー結晶化法、熱結晶化法、またはニッケルなどの触媒を用いた熱結晶化法等)を行って得られた結晶質半導体膜を所望の形状にパターニングして形成する。この半導体層の厚さは25〜80nm(好ましくは30〜60nm)の厚さで形成する。結晶質半導体膜の材料に限定はないが、好ましくはシリコンまたはシリコンゲルマニウム合金などで形成すると良い。
【0101】
また、レーザー結晶化法で結晶質半導体膜を作製する場合には、パルス発振型または連続発光型のエキシマレーザーやYAGレーザー、YVO4レーザーを用いることができる。これらのレーザーを用いる場合には、レーザー発振器から放射されたレーザー光を光学系で線状に集光し半導体膜に照射する方法を用いると良い。結晶化の条件は実施者が適宣選択するものであるが、エキシマレーザーを用いる場合はパルス発振周波数30Hzとし、レーザーエネルギー密度を100〜400mJ/cm2(代表的には200〜300mJ/cm2)とする。また、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数1〜10kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わせ率(オーバーラップ率)を80〜98%として行えばよい。
【0102】
次いで、半導体層の表面をフッ酸を含むエッチャントで洗浄し、半導体層を覆うゲート絶縁膜を形成する。ゲート絶縁膜はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとしてシリコンを含む絶縁膜で形成する。本実施例では、プラズマCVD法により115nmの厚さで酸化窒化シリコン膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成する。勿論、ゲート絶縁膜は酸化窒化シリコン膜に限定されるものでなく、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。
【0103】
次いで、ゲート絶縁膜の表面を洗浄した後、ゲート電極45を形成する。次いでゲート電極をマスクとしてゲート絶縁膜をエッチングしてゲート絶縁膜42を形成する。
【0104】
次いで、半導体にp型を付与する不純物元素(Bなど)、ここではボロンを適宜添加して、ソース領域43及びドレイン領域44を形成する。添加した後、不純物元素を活性化するために加熱処理、強光の照射、またはレーザー光の照射を行う。また、活性化と同時にゲート絶縁膜42へのプラズマダメージやゲート絶縁膜42と半導体層との界面へのプラズマダメージを回復することができる。
【0105】
以降の工程は、PCVD法により窒化珪素膜、窒化酸化珪素膜からなる層間絶縁膜46aを形成し、塗布法で形成される感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)からなる平坦化絶縁膜、または無機材料からなる平坦化絶縁膜(塗布シリコン酸化膜、PSG(リン添加ガラス、BPSG(ボロンとリンを添加したガラス)などを含む)、またはこれらの積層膜を用いて層間絶縁膜46bを形成する。次いで、水素化を行った後、ソース領域、またはドレイン領域に達するコンタクトホールを形成する。次いで、実施の形態1と同様にソース電極(配線)52、絶縁物49、電源供給線47、第1の電極(ドレイン電極)48a〜48dを形成してTFT(pチャネル型TFT)を完成させる。
【0106】
以降の工程は、実施の形態1と同一であり、実施の形態1に従って、有機化合物を含む層50、導電膜からなる第2の電極51を形成すればよい。
【0107】
また、本実施の形態は、実施の形態1または実施の形態2と自由に組みあわせることができる。
【0108】
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。
【実施例1】
【0109】
本実施例では、本発明の発光素子の形成手順の一例を簡略に図2、および図3を用いて以下に説明する。
【0110】
まず、公知の技術を用いて、半導体基板30にMOSFETを形成する。公知の技術により、フィールド酸化膜31で素子分離を行い、ドーピング処理を行ってドレイン領域32またはソース領域を形成する。また、MOSFETのチャネル形成領域となる部分に適宜、n型またはp型を付与する元素を微量に添加するチャネルドーピングを行う。
【0111】
また、PCVD法により窒化珪素膜、窒化酸化珪素膜からなる層間絶縁膜33を形成し、塗布法で形成される感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)からなる平坦化絶縁膜、または無機材料からなる平坦化絶縁膜(塗布シリコン酸化膜、PSG(リン添加ガラス、BPSG(ボロンとリンを添加したガラス)
などを含む)、またはこれらの積層膜を用いて層間絶縁膜35を形成する。
【0112】
水素化を行った後、ソース領域、またはドレイン領域に達するコンタクトホールを形成する。次いで、ソース電極(配線)、第1の電極(ドレイン電極)を形成してFET(pチャネル型FET)を完成させる。
【0113】
以上の工程で、MOSFET(ここではドレイン領域32しか図示しない)、層間絶縁膜33、35、第1の電極36a〜36dを形成する。(図3(A))
【0114】
本実施例では、第1の電極36a〜36dは、Ti、TiN、TiSiXY、Al、Ag、Ni、W、WSiX、WNX、WSiXY、Ta、TaNX、TaSiXY、NbN、MoN、Cr、Pt、Zn、Sn、In、またはMoから選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚100nm〜1μmの範囲で用いればよい。
【0115】
特に、ドレイン領域32に接する第1の電極36aは、シリコンとのオーミック接触が形成可能な材料、代表的にはチタンが好ましく、膜厚10〜100nmの範囲とすればよい。また、第1の電極36bは、薄膜とした場合に仕事関数の大きい材料(TiN、TaN、MoN、Pt、Cr、W、Ni、Zn、Sn)が好ましく、膜厚10〜500nmの範囲とすればよい。また、第1の電極36cは、光を反射する金属材料、代表的にはAlまたはAgを主成分とする金属材料が好ましく、膜厚100〜600nmの範囲とすればよい。なお、第1の電極36bは、第1の電極36cと第1の電極36aの合金化を防ぐブロッキング層としても機能している。また、第1の電極36dは、第1の電極36cの酸化防止、腐食防止、またはヒロック等の発生を防止する材料、代表的には窒化金属(TiN、WNなど)が好ましく、膜厚20〜100nmの範囲とすればよい。なお、第1の電極36dはなくともよい。
【0116】
また、第1の電極36a〜36dは、他の配線、例えば、ソース配線34、電源供給線などと同時に形成することができる。
【0117】
次いで、第1の電極の端部(およびドレイン領域32とのコンタクト部分)を覆う絶縁物(バンク、隔壁、障壁、土手などと呼ばれる)を形成する。(図3(B))絶縁物としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)、感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)、またはこれらの積層などを用いることができるが、本実施例では感光性の有機樹脂を用いる。
例えば、絶縁物の材料としてポジ型の感光性アクリルを用いた場合、絶縁物の上端部のみに曲率半径を有する曲面を持たせることが好ましい。また、絶縁物として、感光性の光によってエッチャントに不溶解性となるネガ型、或いは光によってエッチャントに溶解性となるポジ型のいずれも使用することができる。
【0118】
次いで、図3(C)に示すように絶縁物をエッチングしながら、第1の電極36c、36dを部分的に除去する。第1の電極36cの露出面に傾斜面が形成され、且つ、第1の電極36bの露出面が平坦になるようにエッチングを行うことが重要である。このエッチングは、ドライエッチングまたはウエットエッチングにより、1回または複数回に分けて行えばよく、第1の電極36bと第1の電極36cとで選択比の高い条件を選択する。そして、最終的な、絶縁物の上端部の曲率半径は、0.2μm〜3μmとすることが好ましい。また、最終的に第1の電極の中央部に向かう傾斜面の角度(傾斜角度、テーパー角度)は、30°を超え、70°未満とし、後に形成する有機化合物を含む層からの発光を反射させる。
【0119】
次いで、有機化合物を含む層38を蒸着法または塗布法を用いて形成する。例えば、蒸着法を用いる場合、真空度が5×10-3Torr(0.665Pa)以下、好ましくは10-4〜10-6Paまで真空排気された成膜室で蒸着を行う。蒸着の際、予め、抵抗加熱により有機化合物は気化されており、蒸着時にシャッターが開くことにより基板の方向へ飛散する。気化された有機化合物は、上方に飛散し、メタルマスクに設けられた開口部を通って基板に蒸着される。蒸着により積層することによって発光素子全体として白色を示す有機化合物を含む層を形成する。
【0120】
例えば、Alq3、部分的に赤色発光色素であるナイルレッドをドープしたAlq3、Alq3、p−EtTAZ、TPD(芳香族ジアミン)を順次積層することで白色を得ることができる。
【0121】
また、スピンコートを用いた塗布法により有機化合物を含む層を形成する場合、塗布した後、真空加熱で焼成することが好ましい。例えば、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたポリビニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。
【0122】
また、上記例では有機化合物層を積層とした例を示したが、有機化合物層を単層とすることもできる。例えば、ホール輸送性のポリビニルカルバゾール(PVK)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。また、有機化合物層として高分子材料からなる層と、低分子材料からなる層とを積層してもよい。また、有機化合物層として無機材料、例えばシリコンなどを含ませてもよい。
【0123】
次いで、仕事関数の小さい金属(MgAg、MgIn、AlLi、CaF2、CaNなどの合金、または周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着法により形成した膜)を含む薄膜と、その上に薄い導電膜(ここではアルミニウム膜)39とを蒸着して積層する。(図2(B))アルミニウム膜は水分や酸素をブロッキングする能力が高い膜であり、発光装置の信頼性を向上させる上で導電膜39に好ましい材料である。なお、図2(B)は図2(A)中の鎖線A−A’の断面を示している。この積層膜は、発光を通過するのに十分な薄さを有しており、本実施例では陰極として機能させる。また、薄い導電膜に代えて、透明導電膜(ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)を用いてもよい。また、陰極の低抵抗化を図るため、導電膜39上に補助電極を設けてもよい。また、陰極形成の際には蒸着による抵抗加熱法を用い、蒸着マスクを用いて選択的に形成すればよい。
【0124】
こうして得られる発光素子は、図2(B)中の矢印方向に白色発光を示し、第1の電極36cの傾斜面で横方向の発光を反射して矢印方向の発光量を増加させることができる。なお、図2(A)の点線は素子分離のためのフィールド酸化膜、またはゲート配線が形成されている領域を示すものである。
【0125】
以上の工程で第2の電極(導電膜39)までを形成した後は、基板30上に形成された発光素子を封止するためにシール剤により封止基板(透明基板)を貼り合わせる。なお、封止基板と発光素子との間隔を確保するために樹脂膜からなるスペーサを設けても良い。そして、シール剤の内側の空間には窒素等の不活性気体が充填されている。なお、シール剤としてはエポキシ系樹脂を用いるのが好ましい。また、シール剤はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、空間の内部に酸素や水を吸収する効果をもつ物質(乾燥剤など)
を含有させても良い。
【0126】
以上のようにして発光素子を空間に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置を得ることができる。
【実施例2】
【0127】
本実施例では、補助電極を形成する例を図6、図7を用いて以下に説明する。
【0128】
図6(A)は画素の上面図であり、鎖線A−A’で切断した断面図が図6(B)である。
【0129】
本実施例は、絶縁物67を形成するまでの工程は、実施例1と同一であるため、ここでは省略する。図2(B)における絶縁物37が図6(B)中の絶縁物67に対応している。
【0130】
実施例1に従って、絶縁表面を有する基板上にフィールド酸化膜、ドレイン領域62、層間絶縁膜63、65、第1の電極66a〜66d、絶縁物67を形成する。
【0131】
次いで、有機化合物を含む層68を選択的に形成する。本実施例では蒸着マスクを用いた蒸着法、またはインクジェット法などによって選択的に有機化合物を含む層68を形成する。
【0132】
次いで、絶縁物67上に補助電極60を蒸着マスクを用いた蒸着法により選択的に形成する。補助電極60の膜厚は、0.2μm〜0.5μmの範囲で設定すればよい。本実施例では、図6(A)示すようにY方向に補助電極60を配置する例を示したが、特に限定されず、図7に示すようにX方向に補助電極70を配置してもよい。なお、図7中に示す鎖線鎖線A−A’で切断した断面図は図2(B)と同一となる。
【0133】
次いで、実施例1と同様に仕事関数の小さい金属(MgAg、MgIn、AlLi、CaF2、CaNなどの合金、または周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着法により形成した膜)を含む薄膜と、その上に薄い導電膜(ここではアルミニウム膜)69とを蒸着して積層する。この積層膜は、発光を通過するのに十分な薄さを有しており、本実施例では陰極として機能させる。また、薄い導電膜に代えて、透明導電膜(ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)を用いてもよい。また、本実施例では、陰極の低抵抗化を図るため、導電膜69と接するように絶縁物67上に補助電極60を設ける。
【0134】
こうして得られる発光素子は、図6(B)中の矢印方向に白色発光を示し、第1の電極66cの傾斜面で横方向の発光を反射して矢印方向の発光量を増加させることができる。
【0135】
また、本実施例は、補助電極60、70を形成することによって、陰極の低抵抗化を図っているため、画素部のサイズが大きいものにも適用することができる。
【0136】
また、本実施例では、有機化合物を含む層68を形成した後、補助電極60を形成した例を示したが、形成順序は特に限定されず、補助電極60を形成した後、有機化合物を含む層を形成してもよい。
【0137】
また、本実施例は、実施の形態1乃至3、実施例1のいずれか一と自由に組み合わせることができる。
【実施例3】
【0138】
本実施例では、アクティブマトリクス型発光装置全体の外観図について図9に説明する。なお、図9(A)は、発光装置を示す上面図、図9(B)は図9(A)
をA−A’で切断した断面図である。点線で示された901はソース信号線駆動回路、902は画素部、903はゲート信号線駆動回路である。また、904は封止基板、905はシール剤であり、シール剤905で囲まれた内側は、空間907になっている。また、930a、930bはICチップであり、半導体基板910にCOG(chip on glass)方法やワイヤボンディング方法、或いはTAB(tape automated bonding)方法により実装されている。
【0139】
図9(A)では、メモリ、CPU、D/Aコンバータ等を備えたICチップを、実装する図を示したが、本発明は基板として半導体基板を用いているため、同一基板上に複雑な集積回路(メモリ、CPU、D/Aコンバータ等)を形成することが可能である。図8は、半導体基板上に様々な回路を作り込んだPDAなどの携帯型情報端末の形態を示す半導体装置のシステムブロック図である。
【0140】
図8の半導体装置に搭載された回路の構成は、安定化電源と高速高精度のオペアンプからなる電源回路、コントローラ、メモリ、補正回路などである。さらにCPUも同一基板上に作製することができ、CPUで処理された情報を、映像信号(データ信号)として映像信号処理回路からコントローラに出力する。コントローラは、映像信号とクロックを、データ信号側駆動回路とゲート信号側駆動回路のそれぞれのタイミング仕様に変換する機能を持っている。
【0141】
具体的には、映像信号を表示装置の各画素に対応したデータに振り分ける機能と、外部から入力される水平同期信号及び垂直同期信号を、駆動回路のスタート信号及び内蔵電源回路の交流化のタイミング制御信号に変換する機能を持っている。
【0142】
PDAなどの携帯型情報端末はACコンセントに接続しなくても、充電型のバッテリーを電源として屋外や電車の中などでも長時間使用できることが望まれている。また、このような電子装置は持ち運び易さを重点において、軽量化と小型化が同時に要求されている。電子装置の重量の大半を占めるバッテリーは容量を大きくすると重量増加してしまう。従って、このような電子装置の消費電力を低減するために、バックライトの点灯時間を制御したり、スタンバイモードを設定したりといった、ソフトウエア面からの対策も施す必要がある。
【0143】
例えば、CPUに対して入力信号が入らない場合、スタンバイモードとなり、一部分の動作を同期させて停止させる。画素部ではEL素子の発光強度を減衰させるか、映像の表示そのものを止める。または、半導体基板において、各画素にメモリ素子を作り込み、静止画像の表示モードに切り替えるなどの処置をとる。
こうして、電子装置の消費電力を低減させることもできる。
【0144】
また、静止画像を表示するにはCPUの映像信号処理回路、VRAMなどの機能を停止させ、消費電力の低減を図ることができる。
【0145】
なお、908はソース信号線駆動回路901及びゲート信号線駆動回路903に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)909からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
【0146】
次に、断面構造について図9(B)を用いて説明する。半導体基板910上には駆動回路及び画素部が形成されているが、ここでは、駆動回路としてソース信号線駆動回路901と画素部902が示されている。
【0147】
なお、ソース信号線駆動回路901はnチャネル型FET923とpチャネル型FET924とを組み合わせたCMOS回路が形成される。また、駆動回路を形成するTFTは、公知のCMOS回路、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施例では、基板上に駆動回路を形成したドライバー一体型を示すが、必ずしもその必要はなく、基板上ではなく外部に形成することもできる。
【0148】
また、画素部902はスイッチング用FET911と、電流制御用FET912とそのドレインに電気的に接続された第1の電極(陽極)913を含む複数の画素により形成される。
【0149】
また、第1の電極(陽極)913の両端には絶縁物914が形成され、絶縁物914の側面に沿って第1の電極の一部が斜面を有している。この第1の電極の斜面は絶縁層914の形成時に同時に形成する。この斜面で有機化合物を含む層915で発光した光を反射させて、図9中に矢印で示す発光方向の発光量を増大させる。
【0150】
また、第1の電極(陽極)913上には有機化合物を含む層915を選択的に形成する。さらに、有機化合物を含む層915上には第2の電極(陰極)916が形成される。これにより、第1の電極(陽極)913、有機化合物を含む層915、及び第2の電極(陰極)916からなる発光素子918が形成される。ここでは発光素子918は白色発光とする例であるので着色層931とBM932からなるカラーフィルター(簡略化のため、ここではオーバーコート層は図示しない)が設けている。
【0151】
また、絶縁層914上には実施例2に示した構成の一部である第3の電極(補助電極)917が形成されており、第2の電極の低抵抗化を実現している。また、第2の電極(陰極)916は全画素に共通の配線としても機能し、第3の電極917および接続配線908を経由してFPC909に電気的に接続されている。
【0152】
また、半導体基板910上に形成された発光素子918を封止するためにシール剤905により封止基板904を貼り合わせる。なお、封止基板904と発光素子918との間隔を確保するために樹脂膜からなるスペーサを設けても良い。
そして、シール剤905の内側の空間907には窒素等の不活性気体が充填されている。なお、シール剤905としてはエポキシ系樹脂を用いるのが好ましい。
また、シール剤905はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、空間907の内部に酸素や水を吸収する効果をもつ物質を含有させても良い。
【0153】
また、本実施例では封止基板904を構成する材料としてガラス基板や石英基板の他、FRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。また、シール剤905を用いて封止基板904を接着した後、さらに側面(露呈面)を覆うようにシール剤で封止することも可能である。
【0154】
以上のようにして発光素子を空間907に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置を得ることができる。
【0155】
また、本実施例は実施の形態1乃至3、実施例1、実施例2と自由に組み合わせることができる。
【実施例4】
【0156】
本発明を実施することによってOLEDを有するモジュール(アクティブマトリクス型ELモジュール)を組み込んだ全ての電子機器が完成される。
【0157】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図10、図11に示す。
【0158】
図10(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。ただし、本発明は半導体基板(例えば、ウエハ直径300mm)を用いるため、画面サイズは小型または中小型のものである。
【0159】
図10(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。
【0160】
図10(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む。
【0161】
図10(D)はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム部2303等を含む。
【0162】
図10(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404、操作スイッチ2405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。
【0163】
図10(F)はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)等を含む。
【0164】
図11(A)は携帯電話であり、本体2901、音声出力部2902、音声入力部2903、表示部2904、操作スイッチ2905、アンテナ2906、画像入力部(CCD、イメージセンサ等)2907等を含む。
【0165】
図11(B)は携帯書籍(電子書籍)であり、本体3001、表示部3002、3003、記憶媒体3004、操作スイッチ3005、アンテナ3006等を含む。
【0166】
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器の作製方法に適用することが可能である。また、本実施例の電子機器は実施の形態1乃至3、実施例1乃至3のどのような組み合わせからなる構成を用いても実現することができる。

【特許請求の範囲】
【請求項1】
第1の電極と、
前記第1の電極上に設けられた有機化合物を含む層と、
前記有機化合物を含む層上に設けられた第2の電極と、を有し、
前記第1の電極は、凹部を有し、
前記凹部が有する傾斜面において、前記有機化合物を含む層からの発光を反射させ、
前記第1の電極は、トランジスタのソース領域又はドレイン領域と接続され、
前記トランジスタは、半導体基板を用いて設けられたことを特徴とする発光装置。
【請求項2】
第1の電極と、
前記第1の電極上に設けられた有機化合物を含む層と、
前記有機化合物を含む層上に設けられた第2の電極と、を有し、
前記第1の電極は、凹部を有し、
前記凹部が有する傾斜面において、前記有機化合物を含む層からの発光を反射させ、
前記第1の電極は、トランジスタのソース領域又はドレイン領域と接続され、
前記トランジスタは、SOI基板を用いて設けられたことを特徴とする発光装置。
【請求項3】
請求項1又は請求項2において、
前記凹部は、前記第1の電極の端部よりも膜厚の小さい部分を有することを特徴とする発光装置。
【請求項4】
第1の電極と、
前記第1の電極上に設けられた有機化合物を含む層と、
前記有機化合物を含む層上に設けられた第2の電極と、を有し、
前記第1の電極は、端部と当該端部よりも層の数が少ない部分との段差を有し、
前記段差が有する傾斜面において、前記有機化合物を含む層からの発光を反射させ、
前記第1の電極は、トランジスタのソース領域又はドレイン領域と接続され、
前記トランジスタは、半導体基板を用いて設けられたことを特徴とする発光装置。
【請求項5】
第1の電極と、
前記第1の電極上に設けられた有機化合物を含む層と、
前記有機化合物を含む層上に設けられた第2の電極と、を有し、
前記第1の電極は、端部と当該端部よりも層の数が少ない部分との段差を有し、
前記段差が有する傾斜面において、前記有機化合物を含む層からの発光を反射させ、
前記第1の電極は、トランジスタのソース領域又はドレイン領域と接続され、
前記トランジスタは、SOI基板を用いて設けられたことを特徴とする発光装置。
【請求項6】
請求項3乃至請求項5のいずれか一項において、
前記傾斜面は、前記第1の電極の前記端部から中央部に向かって傾斜を有することを特徴とする発光装置。
【請求項7】
第1の電極と、前記第1の電極上に設けられた有機化合物を含む層と、前記有機化合物を含む層上に設けられた第2の電極と、を有する発光素子と、
前記発光素子を制御する素子と、を有し、
前記第1の電極は、凹部を有し、
前記凹部が有する傾斜面において、前記有機化合物を含む層からの発光を反射させることを特徴とする発光装置。
【請求項8】
請求項1乃至請求項7のいずれか一項において、
前記有機化合物を含む層は、白色発光することを特徴とする発光装置。
【請求項9】
請求項8において、
前記白色発光をカラーフィルタに通すことにより、赤色発光、緑色発光、又は、青色発光を得ることを特徴とする発光装置。
【請求項10】
請求項1乃至請求項7のいずれか一項において、
前記有機化合物を含む層は、赤色発光、緑色発光、又は、青色発光することを特徴とする発光装置。
【請求項11】
請求項1乃至請求項7のいずれか一項において、
前記有機化合物を含む層は、単色発光し、
前記単色発光を色変換層に照射することにより、前記色変換層で色変換が行われることを特徴とする発光装置。
【請求項12】
請求項1乃至請求項11のいずれか一項において、
前記傾斜面の傾斜角度は、30°を超え、且つ、70°未満であることを特徴とする発光装置。
【請求項13】
請求項1乃至請求項12のいずれか一項において、
前記第1の電極は、チタンを含む金属層、窒化タングステンを含む金属層、アルミニウムを含む金属層、又は、窒化チタンを含む金属層を有することを特徴とする発光装置。
【請求項14】
請求項1乃至請求項13のいずれか一項に記載の発光装置を有することを特徴とする光源装置。
【請求項15】
請求項14に記載の光源装置は照明装置であることを特徴とする光源装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2011−96668(P2011−96668A)
【公開日】平成23年5月12日(2011.5.12)
【国際特許分類】
【出願番号】特願2010−278874(P2010−278874)
【出願日】平成22年12月15日(2010.12.15)
【分割の表示】特願2003−120581(P2003−120581)の分割
【原出願日】平成15年4月24日(2003.4.24)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】