説明

車両制御装置

【課題】データ量を抑えることができ、実現性の向上を図ることができる車両制御装置を提供する。
【解決手段】車両制御装置1では、運転者の通常ブレーキの減速度αnormalに基づいてカーブの入口に到達したときの車速Vcurve及びカーブへの進入時における最大車速Vthreshを求め、車速Vcurveが最大車速Vthreshよりも大きい場合に、運転支援制御を実施させている。このように、運転者の通常ブレーキの減速度αnormalを記憶するだけで、適切な運転支援を行うことができるため、運転者毎にカーブ等のパラメータを記憶する必要がない。したがって、データ記憶容量に記憶されるデータ量を抑えることができ、実現性の向上を図ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両制御装置に関する。
【背景技術】
【0002】
従来から、カーブを走行する際の車両の減速制御を行う技術が知られている。例えば特許文献1に記載の車両制御装置では、カーブに進入する前の地点における車両の速度、スロットル操作パターン及びブレーキ操作パターンを運転者毎にカーブの曲率及びカーブに接続する道路の路面傾斜角と対応付けて記憶し、車両の進路の前方にカーブがあると判断した際に、カーブの曲率及び接続道路の路面傾斜角を検索して、このカーブ曲率及び路面傾斜角によりカーブに車両が安全に進入できる限界速度を求めている。そして、この車両制御装置では、検索されたカーブ曲率に対応するスロットル操作パターン及びブレーキ操作パターンに基づいて検索されたカーブ曲率における車両のカーブ進入時の速度を推定し、この速度が限界速度を超えると判断した場合、変速制御手段に減速制御を実施させている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平9−142175号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1に記載の制御装置にあっては、運転者及びカーブの曲率毎にデータを保持する必要があると共に、減速制御を実施させるための学習方法が複雑であるため、膨大なデータ記憶容量が必要となる。そのため、従来の車両制御装置は実現性に乏しかった。
【0005】
本発明は、上記課題を解決するためになされたものであり、データ量を抑えることができ、実現性の向上を図ることができる車両制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明に係る車両制御装置は、運転者の減速度傾向に基づいて、カーブ走行時における自車両の旋回操作特性を算出する旋回操作特性算出手段と、旋回操作特性算出手段によって算出された旋回操作特性に基づいて、カーブの入口に到達したときの到達車速を推定する到達車速推定手段と、旋回操作特性算出手段によって算出された旋回操作特性に基づいて、カーブへの進入時における最大車速を算出する最大車速算出手段と、到達車速推定手段によって推定された到達車速が最大車速算出手段によって算出された最大車速よりも大きい場合に、運転支援を実施するように制御する運転支援制御手段とを備えることを特徴とする。
【0007】
この車両制御装置では、運転者の減速度傾向に基づいて旋回操作特性を算出し、この旋回操作特性からカーブの入口に到達したときの到達車速を推定すると共に、カーブへの進入時における最大車速を算出している。そして、到達車速が最大車速よりも大きい場合に、運転支援を実施するように制御している。このように、運転者の減速度傾向に基づいて到達車速と最大車速とを算出し、この到達車速と最大車速の大きさを比較して運転支援を実施するため、運転者の減速度傾向に関するデータのみを記憶しておけばよい。したがって、運転者毎にカーブ等の各種パラメータを記憶する必要がないため、データ量を抑えることができる。その結果、膨大なデータ記憶容量を必要としないため、実現性の向上を図ることができる。
【0008】
また、運転者の通常走行時における減速度を取得して減速度に関する学習を行う減速度学習手段を備え、旋回操作特性算出手段は、減速度学習手段によって学習された減速度を予め設定されている回帰式に適用し、旋回操作特性としてカーブ進入時の減速度及びカーブを走行中の前記自車両の横加速度を算出し、到達車速推定手段は、カーブ進入時の減速度に基づいて、カーブの入口に到達したときの到達車速を推定し、最大車速算出手段は、カーブを走行中の車両の横加速度に基づいて、カーブへの進入時における最大車速を算出することが好ましい。このように、旋回操作特性であるカーブ進入時の減速度及びカーブ走行中の横加速度を、予め設定した回帰式に学習した減速度(減速度傾向)を適用することにより算出できるので、複雑な学習をする必要がない。したがって、演算負荷の低減を図ることができる。
【0009】
また、回帰式は、カーブ進入時の減速度を算出するための第1回帰式と、カーブ走行中の横加速度を算出するための第2回帰式とからなり、第1回帰式は、複数の運転者から取得された通常走行時の減速度及びカーブ進入時の減速度の関係分布図に基づいて求められており、第2回帰式は、複数の運転者から取得された通常走行時の減速度及びカーブを走行中の車両の横加速度の関係分布図に基づいて求められていることが好ましい。このように、複数の運転者から取得したデータに基づいて第1及び第2回帰式が設定されているため、運転者を特定しなくとも旋回操作特性を算出することができる。したがって、運転者毎にデータを保持する際に必要となる認証システムやスイッチ等の構成が不要となり、装置の簡易化を図ることができる。
【発明の効果】
【0010】
本発明によれば、カーブ走行における運転支援の制御に必要なパラメータを低減でき、データ記憶容量に記憶されるデータ量を抑えることができる。これにより、実現性の向上を図ることができる。
【図面の簡単な説明】
【0011】
【図1】本発明の一実施形態に係る車両制御装置の構成を示す図である。
【図2】通常ブレーキにおける減速度の設定を説明する図である。
【図3】通常ブレーキの減速度とカーブ進入時の減速度との相関関係を示す関係分布図である。
【図4】第1回帰式を示す図である。
【図5】通常ブレーキの減速度とカーブ中の横Gとの相関関係を示す関係分布図である。
【図6】第2回帰式を示す図である。
【図7】車両制御装置の動作を示すフローチャートである。
【図8】車両制御装置の動作を模式的に示す図である。
【発明を実施するための形態】
【0012】
以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
【0013】
図1は、本発明の一実施形態に係る車両制御装置の構成を示す図である。車両制御装置1は、自車両がカーブに進入する際、走行前方のカーブに対して自車両が速度超過状態のときに警報を実施させ、さらに運転者の操作が不十分な場合に、補助制動を実施させる装置である。
【0014】
図1に示すように、車両制御装置1は、減速度取得部11と、減速度記憶部12と、カーブ判定部13と、距離取得部14と、曲率取得部15と、減速度学習部(減速度学習手段)16と、旋回操作特性算出部(旋回操作特性算出手段)17と、到達車速推定部(到達車速推定手段)18と、最大車速算出部(最大車速算出手段)19と、車速判定部20と、運転支援制御部(運転支援制御手段)21とを備えている。なお、車両制御装置1は、演算を行うCPU(Central Processing Unit)、CPUに各処理を実行させるためのプログラム等を記憶するROM(Read OnlyMemory)、演算結果などの各種データを記憶するRAM(Random Access Memory)等から構成される電子制御ユニット(ECU:ElectricalControl Unit)である。
【0015】
減速度取得部11は、車両の制動の際の減速度を取得する部分である。この減速度取得部11は、運転者の通常走行時のブレーキ(以下、通常ブレーキとも称する)による減速度を取得する。通常走行時のブレーキとは、信号機や先行車両に接近する際のブレーキであり、エンジンブレーキ、シフトダウンを含むブレーキである。減速度取得部11は、取得した減速度を示す減速度情報を減速度記憶部12に出力する。なお、減速度取得部11は、例えば前後Gセンサ(図示しない)から減速度を取得する。
【0016】
減速度記憶部12は、減速度情報を記憶する部分である。この減速度記憶部12は、減速度取得部11から出力された減速度情報を受け取ると、この減速度情報を格納して記憶する。
【0017】
カーブ判定部13は、自車両の進行方向前方にカーブが存在するか否かを判定する部分である。このカーブ判定部13は、GPS(Global Positioning System)を用いたカーナビゲーションシステム、RSE(Road Side Equipment)等のインフラ装置から出力された情報、前方を走行する車両からの情報(操舵や挙動等)、又は自車両に搭載されたセンサ等により、自車両の進行方向前方にカーブが存在しているか否かを判定する。カーブ判定部13は、自車両の進行方向前方にカーブが存在していると判定した場合、その旨を示すカーブ情報を距離取得部14及び曲率取得部15に出力する。
【0018】
距離取得部14は、現在の自車両の位置からカーブ入口までの距離を取得する部分である。距離取得部14は、カーブ判定部13から出力されたカーブ情報を受け取ると、自車両の位置からカーブ情報が示すカーブまでの距離を取得する。具体的には、距離取得部14は、例えばGPSを用いたカーナビゲーションシステムに記憶されている道路情報から、自車両の位置とカーブの位置とを検索して、自車両の位置からカーブ入口までの距離を取得する。距離取得部14は、取得した距離を示す距離情報を到達車速推定部18に出力する。
【0019】
曲率取得部15は、対象となるカーブの曲率を取得する部分である。この曲率取得部15は、カーブ判定部13から出力されたカーブ情報を受け取ると、このカーブ情報が示す対象カーブの曲率を取得する。具体的には、曲率取得部15は、例えばカーブ情報が示すカーブをカーナビゲーションシステムに記憶されている道路情報において検索し、この道路情報から対象となるカーブの曲率を取得する。曲率取得部15は、取得したカーブの曲率を示す曲率情報を到達車速推定部18及び最大車速算出部19に出力する。なお、曲率取得部15は、RSE等のインフラ装置から出力された情報、前方を走行する車両からの情報(操舵や挙動等)、又は自車両に搭載されたセンサ等によりカーブの曲率を取得してもよい。
【0020】
減速度学習部16は、運転者の減速度に関する学習を行う部分である。この減速度学習部16は、図2に示すように、減速度記憶部12に記憶されている運転者の通常走行時の減速度に基づいて、各ブレーキによる減速度をサンプリングし、その平均をとることで通常走行時の減速度αnormalの学習、つまり運転者の減速度傾向の学習を行う。減速度学習部16は、学習した減速度αnormalを示す減速度情報を旋回操作特性算出部17に出力する。なお、減速度学習部16は、1回のブレーキによる減速度がある所定の値(ΔV)以下である場合には先行車両との車間距離を調整する意図で成される場合が多いため、その所定の値に該当する値を省略する。これにより、学習精度の向上が図ることができる。
【0021】
旋回操作特性算出部17は、運転者の減速度傾向からカーブ走行時の自車両の旋回操作特性を算出する部分である。この旋回操作特性算出部17は、旋回操作特性として、カーブ進入時の減速度と、カーブを走行中の横加速度(以下、横G)とを算出する。具体的には、旋回操作特性算出部17は、減速度学習部16から出力された減速度情報を受け取ると、この減速度情報が示す減速度αnormalを予め設定された第1及び第2回帰式に適用し、カーブ進入時の減速度及びカーブを走行中の横Gを算出する。
【0022】
ここで、第1及び第2回帰式について、図3〜図6を参照しながら詳細に説明する。図3は、通常ブレーキの減速度とカーブ進入時の減速度との相関関係を示す関係分布図である。同図において、横軸は通常ブレーキの減速度αnormal、縦軸はカーブ進入時の減速度αToCurveとなっている。また、図4は、第1回帰式を示す図である。図3及び図4に示すように、通常ブレーキとカーブ進入時に減速する際の減速度には相関関係がある。そのため、第1回帰式R1は、一般的な複数の運転者の通常ブレーキの減速度及びカーブ進入時の減速度のサンプルを収集し、このサンプルの分布から設定されている。図4に示すように、旋回操作特性算出部17は、この第1回帰式R1に通常ブレーキの減速度αnormalを適用して、カーブ進入時の減速度αToCurveを算出する。
【0023】
また、図5は、通常ブレーキの減速度とカーブ中の横Gとの相関関係を示す関係分布図である。同図において、横軸は通常ブレーキの減速度αnormal、縦軸はカーブ中の横Gαcurveとなっている。また、図6は、第2回帰式を示す図である。図5及び図6に示すように、通常ブレーキの減速度(前後の加速度に対する運転者の通常領域)とカーブ中の横G(左右の加速度に対する運転者の通常領域)には相関関係がある。そのため、第2回帰式R2は、一般的な運転者の通常ブレーキの減速度及びカーブ中の横Gのサンプルを収集し、このサンプルの分布から設定されている。図6に示すように、旋回操作特性算出部17は、この第2回帰式R2に通常ブレーキの減速度αnormalを適用して、カーブ中の横Gαcurveを算出する。旋回操作特性算出部17は、算出したカーブ進入時の減速度αToCurveを示すカーブ減速度情報を到達車速推定部18に出力すると共に、算出したカーブ中の横Gαcurveを示す横G情報を最大車速算出部19に出力する。
【0024】
到達車速推定部18は、カーブの入口に到達したときの自車両の到達車速を推定する部分である。この到達車速推定部18は、距離取得部14から出力された距離情報、曲率取得部15から出力された曲率情報、及び旋回操作特性算出部17から出力されたカーブ減速度情報を受け取ると、以下の式(1)によりカーブの入口に到達したときの到達車速Vcurveを推定する。具体的には、到達車速推定部18は、現在の自車両の車速Vcurrentを車速センサ(図示しない)から取得すると共に、距離情報が示す距離、曲率情報が示す対象カーブの曲率及び減速度αToCurveに基づいて、自車両の現在位置から、カーブ入口に到達するまでに要する時間を求める。
【0025】
そして、到達車速推定部18は、上記パラメータを以下の式(1)に適用して到達車速Vcurveを推定する。なお、式(1)においては、Vcurrent:自車両の現在の車速、D:自車両の現在の地点からカーブ入口までの距離、tToCurve:減速度αToCurveで走行した時間、RT:警報に対する反応時間である。
【数1】


なお、D及びtToCurveは、以下の式(2)、(3)で表される。
【数2】


【数3】

【0026】
ここで、警報に対する反応時間RTは、一般的な固定値(0.8秒:JARI試験)を用いてもよいし、あるいは可変値として運転者に選択させてもよい。また、警報を鳴らした際の運転者の反応時間を実際に測定し、その時間を反応時間RTとして用いてもよい。到達車速推定部18は、推定した到達車速Vcurveを示す車速情報を車速判定部20に出力する。
【0027】
最大車速算出部19は、カーブへの進入時における最大車速を算出する部分である。この最大車速算出部19は、曲率取得部15から出力された曲率情報を受け取ると共に、旋回操作特性算出部17から出力された横G情報を受け取り、曲率情報が示す曲率Rと横G情報が示すカーブ中の横Gαcurveとに基づいて最大車速Vthreshを算出する。最大車速算出部19は、以下の式(4)により最大車速Vthreshを算出する。なお、式(4)において、αcurve:横G(横加速度)、R:カーブの曲率である。
【数4】


最大車速算出部19は、上記式(4)により算出した最大車速Vthreshを示す最大車速情報を車速判定部20に出力する。
【0028】
車速判定部20は、カーブの入口に到達したときの自車両の到達車速Vcurveとカーブへの進入時における最大車速Vthreshとの大きさを比較して判定する部分である。この車速判定部20は、到達車速推定部18から出力された車速情報を受け取ると共に、最大車速算出部19から出力された最大車速情報を受け取ると、車速情報が示す到達車速Vcurveが最大車速情報が示す最大車速Vthreshよりも大きいか否かを判定する。車速判定部20は、到達車速Vcurveが最大車速Vthreshよりも大きいと判定した場合に、運転支援制御部21に制御情報を出力する。
【0029】
運転支援制御部21は、車速判定部20の判定結果に応じて運転支援の制御を実施させる部分である。運転支援制御部21は、車速判定部20から出力された制御情報を受け取ると、例えばブザーから警報を鳴らすように制御したり、ブレーキ、スロットルアクチュエータ、変速機等を制御して補助制動を実施させる。具体的には、運転支援制御部21は、ブザーに鳴動開始信号を出力したり、スロットルアクチュエータにアクセルスロットを絞る制御を指示する信号を出力する。これにより、自車両では、補助制動などの運転支援が実施される。なお、上述のように、ここで言う運転支援とは、運転者に対して警告音にて警告したり、補助制動を行うことである。
【0030】
続いて、車両制御装置1の動作について図7及び図8を参照しながら説明する。図7は、車両制御装置の動作を示すフローチャートであり、図8は、車両制御装置の動作を模式的に示す図である。
【0031】
図7及び8に示すように、まず減速度学習部16において、減速度の学習が行われ(ステップS01)、通常ブレーキの減速度αnormalが設定される。また、図7に示すように、自車両の進行方向前方にカーブが存在するか否かが、カーブ判定部13にて判定される(ステップS02)。自車両の進行方向前方にカーブがあると判定された場合には、ステップS03に進む。一方、自車両の進行方向前方にカーブがあると判定されなかった場合には、同処理を繰り返す。
【0032】
ステップS03では、カーブの曲率Rが曲率取得部15によって取得される。また、自車両の現在位置からカーブ入口までの距離が距離取得部14によって取得される(ステップS04)。続いて、カーブの入口に到達したときの到達車速Vcurveが到達車速推定部18によって推定される(ステップS05)。このとき、図8に示すように、ステップS01にて学習された通常ブレーキの減速度αnormalを第1回帰式R1に適用してカーブ進入時の減速度αToCurveを求め、この減速度αToCurve、自車両の現在位置からカーブ入口までの距離、対象カーブの曲率R、自車両の車速Vcurrent等に基づき、カーブの入口に到達したときの到達車速Vcurve(進入速度)が推定(設定)される。
【0033】
また、カーブへの進入時における最大車速が最大車速算出部19によって算出される(ステップS06)。このとき、図8に示すように、ステップS01にて学習された通常ブレーキの減速度αnormalを第2回帰式R2に適用してカーブ中横Gαcurveを求め、このカーブ中横Gαcurveと対象カーブの曲率Rに基づき、カーブ進入時における最大車速が算出(設定)される。
【0034】
そして、カーブの入口に到達したときの到達車速Vcurveがカーブへの進入時における最大車速Vthreshよりも大きいか否かが車速判定部20にて判定される(ステップS07)。カーブの入口に到達したときの到達車速Vcurveがカーブへの進入時における最大車速Vthreshよりも大きいと判定された場合には、運転支援制御部21の制御により補助制御(減速制御)等が実施される。一方、カーブの入口に到達したときの到達車速Vcurveがカーブへの進入時における最大車速Vthreshよりも大きいと判定されなかった場合には、処理を終了する。
【0035】
以上説明したように、車両制御装置1では、運転者の通常ブレーキの減速度αnormalに基づいてカーブの入口に到達したときの車速Vcurve及びカーブへの進入時における最大車速Vthreshを求め、車速Vcurveが最大車速Vthreshよりも大きい場合に、運転支援制御を実施させている。このように、運転者の通常ブレーキの減速度αnormalを記憶するだけで、適切な運転支援を行うことができる。そのため、運転者毎にカーブ等のパラメータを記憶する必要がない。したがって、データ記憶容量に記憶されるデータ量を抑えることができ、その結果、実現性の向上を図ることができる。
【0036】
また、カーブの入口に到達したときの車速Vcurveは、第1回帰式R1に減速度αnormalを適用することで求められ、カーブへの進入時における最大車速Vthreshは、第2回帰式R2に減速度αnormalを適用することにより求められている。このように、旋回操作特性であるカーブ進入時の減速度αToCurve及びカーブ走行中の横Gαcurveを、予め設定した第1及び第2回帰式R1,R2に学習した減速度(減速度傾向)αnormalを適用することにより算出できるので、複雑な学習をする必要がない。したがって、演算負荷の低減を図ることができ、実現性の更なる向上を図ることができる。
【0037】
また、第1回帰式R1は、複数の運転者から取得された通常ブレーキの減速度αnormal及びカーブ進入に減速する際の減速度αToCurveの相関関係から設定されており(図3参照)、第2回帰式R2は、複数の運転者の通常ブレーキの減速度αnormal及びカーブ中の横Gαcurveの相関関係から設定されている(図5参照)。このように、複数の運転者から取得したデータに基づいて第1回帰式R1と第2回帰式R2とが設定されているため、運転者を特定しなくとも旋回操作特性を算出することができる。したがって、運転者毎にデータを保持する際に必要となる認証システムやスイッチ等の構成が不要となり、装置の簡易化を図ることができる。
【0038】
本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態に加えて、警報や制御を開始するタイミングをカーブ入口までの距離や時間で表現してもよい。具体的には、カーブ入口までの距離Dが、下記式(5)で示される警報・制御を開始すべきタイミング(カーブ入口までの距離)を下回ったときに、警報・制御を開始してもよい。
【数5】


また、現在速度におけるカーブ入口までの時間は、下記式(6)にて示される。
【数6】


そして、上記式(6)が下記式(7)で示される警報・制御を開始すべきタイミング(カーブ入口までの時間)を下回ったときに、警報・制御を開始してもよい。
【数7】

【0039】
また、上記実施形態では、減速度学習部16において、減速度記憶部12に記憶されている運転者の通常走行時の減速度に基づいて、各ブレーキによる減速度をサンプリングし、その平均をとることで通常走行時の減速度αnormalの学習をしているが、減速度の学習方法はこれに限定されない。例えば、複数の運転者の通常ブレーキによる減速度の分布を近似した回帰式を予め用意し、この回帰式とサンプリングされた減速度との関係から運転者の減速度傾向を求め、この減速度傾向の値から減速度αnormalを設定してもよい。
【符号の説明】
【0040】
1…車両制御装置、16…減速度学習部(減速度学習手段)、17…旋回操作特性算出部(旋回操作特性算出手段)、18…車速推定部(車速推定手段)、19…最大車速算出部(最大車速算出手段、21…運転支援制御部(運転支援制御手段)、R1…第1回帰式、R2…第2回帰式、Vcurve…到達車速、VToCurve…最大車速、αnormal…通常ブレーキの減速度、αToCurve…カーブ進入時の減速度、αcurve…横G(横加速度)。

【特許請求の範囲】
【請求項1】
運転者の減速度傾向に基づいて、カーブ走行時における自車両の旋回操作特性を算出する旋回操作特性算出手段と、
前記旋回操作特性算出手段によって算出された前記旋回操作特性に基づいて、前記カーブの入口に到達したときの到達車速を推定する到達車速推定手段と、
前記旋回操作特性算出手段によって算出された前記旋回操作特性に基づいて、前記カーブへの進入時における最大車速を算出する最大車速算出手段と、
前記到達車速推定手段によって推定された前記到達車速が前記最大車速算出手段によって算出された前記最大車速よりも大きい場合に、運転支援を実施するように制御する運転支援制御手段とを備えることを特徴とする車両制御装置。
【請求項2】
前記運転者の通常走行時における減速度を取得して当該減速度に関する学習を行う減速度学習手段を備え、
前記旋回操作特性算出手段は、前記減速度学習手段によって学習された前記減速度を予め設定されている回帰式に適用し、前記旋回操作特性として前記カーブ進入時の減速度及び前記カーブを走行中の前記自車両の横加速度を算出し、
前記到達車速推定手段は、前記カーブ進入時の減速度に基づいて、前記カーブの入口に到達したときの到達車速を推定し、
前記最大車速算出手段は、前記カーブを走行中の車両の横加速度に基づいて、前記カーブへの進入時における最大車速を算出する請求項1記載の車両制御装置。
【請求項3】
前記回帰式は、前記カーブ進入時の減速度を算出するための第1回帰式と、前記カーブ走行中の横加速度を算出するための第2回帰式とからなり、
前記第1回帰式は、複数の運転者から取得された通常走行時の減速度及びカーブ進入時の減速度の関係分布図に基づいて求められており、
前記第2回帰式は、前記複数の運転者から取得された通常走行時の減速度及びカーブを走行中の車両の横加速度の関係分布図に基づいて求められている請求項1又は2記載の車両制御装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−194980(P2011−194980A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−62852(P2010−62852)
【出願日】平成22年3月18日(2010.3.18)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】