説明

アナログ型光ファイバーセンサ

【課題】 構成が簡単であって、安価なアナログ型光ファイバーセンサを提供する。
【解決手段】 液面のレベルの変化を変換部1で機械変位に変えて、可動光学系の機構部2により上記機械変位を光強度に変換し、その測定光の光強度を測定し、上記測定光による上記機械変位の測定を予め対応付けられた固定光学系の参照部3による参照光を参照するものであり、機構部2では測定用光ファイバー4の測定用入出射部2aの出射光を上下動する測定用反射膜2bで反射させ、この反射光を測定光として測定用入出射部から測定用光ファイバーに戻し、参照部3では参照用光ファイバー5の参照用入出射部3aの出射光を固定されている参照用反射膜3bで反射させ、この反射光を参照光として参照用入出射部から参照用光ファイバーに戻す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光量変化により液面レベル、温度、圧力などの計測(監視)対象の変化を検知するアナログ型光ファイバーセンサに関するものである。
【背景技術】
【0002】
従来、例えば水位などを検出するための電気式センサが提案されているが、この電気式センサは水位などの検出対象を機械変位に変換し、その機械変位を差動トランスや歪ゲージで物理量に変換するシステムである。しかし、この種の電気式センサでは防爆エリアでの計測(検出)をするには防爆処理が必要となり、また長距離検出するには伝送器などを別途追加して使用する必要があるために、設備コストがかかる課題があった。
また他の例として光強度変化により検出する光式センサがあるが、この光式センサでは光源の変動や光伝送路損失などの影響を受け正確な計測ができない課題があった。
これらの課題を解決するための従来技術として特開2001−91334号公報に記載の光式水位センサ(以下「従来例」という。)が提案されている。この従来例は、水底に配置されたケース状のセンサヘッド内に設けられたブルドン管に圧力が加わると、ブルドン管が膨張し、ブルドン管の表面に橋渡しされた圧力/歪み変換部材あるいは光式歪みセンサが水位に比例した圧力により光学的な変化を生じ、この変化を、光ファイバを介して地上に配置されている水位検出器で光学的に検出し、信号処理部によりセンサヘッドが配置された位置の水位を求めることにより、落雷の影響を受けることがなくなるようにしたものである。
【特許文献1】特開2001−91334号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
従来例によれば、落雷の影響を受けにくくすることができ、またブルドン管や圧力/歪み変換部材あるいは光式歪みセンサを用いて水位を検出するので、電源やデータ伝送装置が不要となる利点がある。
上記従来例を含む従来の光ファイバーセンサにおいて、光ファイバーに形成したブラック反射を利用したFBG(Fiber Bragg Grating)を用いる例がある。例えば液面レベルを計測する時は、液中に投げ込まれたセンサは感応部(ブルドン管、ダイヤフラム又はベローズなど)で液面レベルに比例した液圧を受け、機械変位する。FBGはその機械変位により発生する歪量に応じて反射光の波長がシフトする。検出器ではそのシフト量を検知して液面レベルを知ることができる。この時、検出器では複雑な回路構成により位相のシフト量を検出するのでシステム全体が高価になる。
本発明の目的は、構成が簡単であって、安価なアナログ型光ファイバーセンサを提供することにある。
【課題を解決するための手段】
【0004】
本発明では、検出(計測、監視)対象の物理量を変換部で機械変位に変えて、可動光学系を構成している機構部を用いて、上記機械変位を光強度に変換し、測定光とし、上記機械変位に対応する上記測定光の光量の測定は、予め対応付けられた固定光学系の参照部による参照光の光量を参照するものである。
本発明では、ダイヤフラム、ベローズ、ばね、ブルドン管などの変換部が液面レベルなどの検出対象の物理量の変位に追従して変位可能である。機構部では、上記変換部の変位量を光強度の変化として計測するものである。例えば、変位と光強度の変換方法としては、変位する部分に取り付けた反射膜とその反射膜に入射する収束光の反射光量により対応付ける。
本発明の特徴は下記のとおりである。
本発明の第1の特徴は、検出対象の変化に対応して機械変位可能である変換部と、この変換部の機械変位に追従する機構部と、この機構部に接続されている測定用光ファイバーと、上記機構部の設置空間内に配置すると共に、外乱要因の光量変動を補償するための参照部と、この参照部に接続されている参照用光ファイバーとを具備しており、上記機構部は、上記測定用光ファイバーの測定用入出射部と、この測定用入出射部に対向して配置してある測定用反射膜(反射ミラー、反射体などを含む。)と、上記測定用反射膜と測定用入出射部との間に配置している測定用レンズとをそれぞれ備えており、上記参照部は上記機構部と対を形成し、上記測定用光ファイバーの測定用入出射部に対応している参照用光ファイバーの参照用入出射部と、この参照用入出射部に対向して配置してあって上記測定用反射膜に対応している参照用反射膜(反射ミラー、反射体などを含む。)と、上記参照用反射膜と参照用入出射部との間に配置してあって、上記測定用レンズに対応している参照用レンズとをそれぞれ備えており、上記測定用反射膜は上記変換部の機械変位に追従して移動可能であり、上記参照用反射膜は固定手段によって固定されており、上記機構部における上記測定用光ファイバーの測定用入出射部から出射された光は上記測定用反射膜で反射され、測定光となって上記測定用入出射部から上記測定用光ファイバーに導かれるものであり、上記参照部における上記参照用光ファイバーの参照用入出射部から出射された光は上記参照用反射膜で反射され、参照光となって上記参照用入出射部から上記参照用光ファイバーに導かれるものであることにある。
本発明の第2の特徴は、上記第1の特徴を前提とし、機構部と参照部とはケース内に納められており、変換部はダイヤフラムからなり、このダイヤフラムが上記ケースの底部に取り付けられており、上記機構部の測定用反射膜は上記ダイヤフラム上に起立され上記ケース内に露出されたホルダに固定されていることにある。
本発明の第3の特徴は、上記第1の特徴を前提とし、機構部と参照部とはケース内に納められており、変換部はベローズからなり、上記機構部の測定用反射膜は上記ベローズ上に取り付けられていることにある。
本発明の第4の特徴は、上記第1の特徴を前提とし、機構部と参照部とはケース内に納められており、変換部は感応物質を封入しているベローズからなり、このベローズが上記ケース外に延出している感応部を有しており、上記機構部の測定用反射膜は上記ベローズに取り付けられていることにある。
本発明の第5の特徴は、上記第1乃至第4のいずれかの特徴を前提とし、OTDRに接続されている光ファイバーの複数個所から分岐カプラーを介して上記測定用光ファイバー及び参照用光ファイバーが分岐されており、上記により多点同時計測可能であることにある。
本発明の第6の特徴は、上記第1の特徴を前提とし、変換部の機械変位に追従する可動反射光学系である機構部と、この機構部の近傍に上記変換部に追従せず、かつ上記可動反射光学系と同一構造の固定反射光学系である参照部を設置してあり、可動反射光学系からの戻り光量である測定光量Pkと固定反射光学系からの戻り光量である参照光量Psとの比(Pk/Ps)から計測対象の計測量をアナログにより計算可能であることにある。
【発明の効果】
【0005】
本発明によれば、防爆、電磁ノイズ及び雷などに対して簡便な検出方法により安価なシステムを提供することができる。
本発明によれば、測定光と参照光の光強度比を対応させることにより、外乱要因を排除することができるから、精度の良い検知をすることができる。
【発明を実施するための最良の形態】
【0006】
図1〜図3を参照して、本発明の第1の実施の形態に係るアナログ型光ファイバーセンサS1について説明する。
光ファイバーセンサS1は検出対象である計測対象(温度、圧力、液面レベルなど)の変化を検出(計測)するものである。
図1に示す光ファイバーセンサS1は、変換部1、機構部2、参照部3、測定用光ファイバー4及び参照用光ファイバー5を具備している。
変換部1は、図示の例ではダイヤフラムからなり、このダイヤフラムがケース6の底部の取り付け穴6a内に取り付けられている。ダイヤフラム1は、検出対象の変化に対応して機械変位可能であり、検出対象が液体Wの液面レベルである場合には液面レベルの上昇又は降下に対応して山形に変形又は山形から図1に示す元の形状に復帰可能である。
機構部2はダイヤフラム1の機械変位に追従するものである。機構部2は、測定用光ファイバー4の測定用入出射部2aと、この測定用入出射部に対向して配置してある測定用反射膜2bと、この測定用反射膜と上記測定用入出射部との間に配置している測定用レンズ2cとを設けている。測定用光ファイバー4の測定用入出射部2aから出射された光は測定用レンズ2cを経て測定用反射膜2bで反射され、測定光となって上記測定用入出射部に入射される。測定用反射膜2bは棒状のホルダ7の上端面に固定されている。ホルダ7はダイヤフラム1内面上に起立され、上端側はケース内に露出されている。ホルダ7は液体Wの液圧の大きさによりダイヤフラム1が変形するから、この動作に追従して測定用反射膜2bが昇降する。
このために、測定用入出射部2aから出射された光は測定用レンズ2cで集光されて収束光となって測定用反射膜2b至り、そこで反射され、その反射光は測定光として再び測定用入出射部に結合され、その光量は測定用反射膜の位置により焦点(前焦点、後焦点)毎に一義的に決まる。
測定用光ファイバー4の一端は測定用入出射部2aに接続され、他端側はケース6内上部からケース外側へ引き出され、検出器9(図3)に通じている。
参照部3は、機構部2の設置空間内すなわちケース6内に配置されていると共に、外乱要因(伝送損失、機構部2及び参照部3の温度変動など)の光量変動を補償するためのものである。参照部3は、参照用光ファイバー5に接続されている参照用入出射部3aと、この参照用入出射部に対向して配置してある参照用反射膜3bと、この参照用反射膜と参照用入出射部との間にそれぞれ配置している参照用レンズ3cとを備えている。参照用反射膜3bは固定手段であるホルダ8を介してケース6に固定されている。
このために、参照用入出射部3aから出射された光は参照用レンズ3cで集光されて収束光となって参照用反射膜3bに至り、そこで反射され、その反射光は参照光として再び参照用入出射部に結合され、その光量は参照用反射膜の位置が固定されていることにより一義的に決まっている。
参照用光ファイバー5の一端には参照用入出射部3aが接続され、他端側はケース6内上部からケース外側へ引き出され、他端部側は検出器9(図3)に通じている。
【0007】
機構部2と参照部3との関係について説明する。
機構部2と参照部3とは対を形成し、同一構造であって、互いに隣接してケース6内に設けられている。機構部2における測定用入出射部2a、測定用反射膜2b及び測定用レンズ2cは、参照部3における参照用入出射部3a、参照用反射膜3b及び参照用レンズ3cにそれぞれ対応している。ただし、測定用反射膜2bと参照用反射膜3bとは取りつけ状態が相違している。すなわち、測定用反射膜2bはダイヤフラム1の機械変位に応じて上下動するが、参照用反射膜3bは固定されている点で、機構部2と参照部3とが相違している。この相違によって、測定用入出射部2aに戻る反射光は、その光量の変化を検出するものであるから測定光となり、参照用入出射部3aに戻る反射光が一定であるから参照光となる。
換言すれば、測定用反射膜2bの位置の変動毎に、測定用反射膜で反射され測定用光ファイバー4の測定用入出射部2aに戻る反射光はその光量(光強度)が変わり、測定光となる。
ダイヤフラム1が変位し、測定用反射膜2bが図1の位置から上昇することにより、この測定用反射膜が測定用入出射部2aに接近し、反射光(測定用反射膜からの戻り光)の光量が増し、反対に測定用入出射部2aから離れることにより、反射光の光量が減少する。
他方、参照用反射膜3bは固定されているから、参照用反射膜に対する参照用レンズ3cの焦点が不変であるから、参照用反射膜で反射され参照用光ファイバー5の参照用入出射部3aに戻る反射光はその光量(光強度)は一定であり、参照光となる。
測定光量と参照光量との相対比に基づいて測定光の強度を検出して、液体Wの液面レベルの変位を求めることによって、正確な検知をすることができる。
勿論、測定用入出射部2a及び参照用入出射部3aに戻る光(測定光及び参照光)の量は外乱要因(伝送損失、機構部2及び参照部3の温度変動など)の影響を受け簡単に変わるが、測定光及び参照光のいずれも同様に変更されるので、上記相対比は変わらない。
相対比について説明する。
反射光量、ダイヤフラム1の変位、液圧、液体Wの液面レベルは、図2に示す関係があるので、反射光量を測定することにより液面レベルの検出をすることができる。すなわち、
図2に示すように、液体W(図1)の液圧と液面レベルとは比例関係にあり、そして液圧が上がればダイヤフラム1は変位するから液圧とダイヤフラムの変位とは比例関係にあり、さらに反射光量(測定光量)の変化はダイヤフラムの変位に追従するものである。
このことから、反射光量により液面レベルを求めることができる。
戻る光(測定光及び参照光)の量は上記外乱要因の影響を受け変動する。機構部2で測定された測定光の光量により液面レベルを求めても、より正確な検出を可能にするためには上記光量中から外乱要因による変動を排除する必要がある。
このために、ダイヤフラム1の機械変位に追従する反射光学系(可動反射光学系)である機構部2の近傍に可動部(図1の例ではダイヤフラム1)に連動せず、かつ上記可動反射光学系と同様な反射光学系(固定反射光学系)である参照部3を設置し、可動反射光学系からの戻り光量(測定光量)Pkと固定反射光学系からの戻り光量(参照光量)Psとの比(Pk/Ps)を計算することにより、より正確な液面レベルを求めることができる。
この結果、上記双方の反射光学系(可動反射光学系及び固定反射光学系)は外乱要因により影響を受けても(例えば光源が変動しても、長距離伝送しても、ケース6内の温度変動により結合効率が変動しても)、同様な構成であるいずれの反射光学系には反射光量の変動が同様に作用して、相殺されることから、上記変動が相対比に影響を与えることはない。
【0008】
光ファイバーセンサS1は図3に示す検出器9に接続されている。
図示する検出器9では、光源であるレーザーダイオード(LD)9aから発せられたレーザー光は分岐カプラー9d1を介して二つに分けられる。分岐された一方の光は、測定用光ファイバー4に、また他方の光が参照用光ファイバー5に導かれるが、一方が測定光として、検出器内に戻って分岐カプラー9d2を経て第1のフォトダイオード(PD1)9b1に入力され、そしてこのフォトダイオードによって光信号から電気信号に変換されて演算処理部9cに出力され、また他方が参照光として検出器内に戻って分岐カプラー9d3を経て第2のフォトダイオード(PD2)9b2に入力され、そしてこのフォトダイオードによって光信号から電気信号に変換されて演算処理部に出力され、この演算処理部では相対比(測定光量/参照光量)を求め、その比率が予め用意されているアナログ物理量(本例では例えば水深)を求める計算式に入力されて、アナログ表示された計算値がインターフェース(I/F)を介して表示部(図示せず。)に表示される。
【0009】
アナログ型光ファイバーセンサS1の検知作用について説明する。
検出器9から発振されたレーザー光は二つに分けられ、光ファイバーセンサS1の測定用光ファイバー4に導かれた一方の光は測定光として機構部2の測定用入出射部2aから出射された後、測定用レンズ2cで集光されて収束光となって測定用反射膜2bへ入射される。そして測定用反射膜2bで反射された測定光は測定用入出射部2aに結合され、戻り光として測定用光ファイバー4及び分岐カプラー9d2を経て検出器9内の第1のフォトダイオード(PD1)9b1に入射され、電気信号に変換されて演算処理部9cに入力される。参照用光ファイバー5に導かれた他方の光は参照光として参照部3の参照用入出射部3aから出射された後、参照用レンズ3cで集光されて収束光となって参照用反射膜3bへ入射される。そして参照用反射膜3bで反射された参照光は参照用入出射部3aに結合され、戻り光として参照用光ファイバー5及び分岐カプラー9d3を経て検出器9内の第2のフォトダイオード(PD2)9b2に入射され、電気信号に変換されて演算処理部9cに入力される。
機構部2の測定用反射膜2bが図1に示す通常の状態(計測温度が通常の範囲内)である時は、機構部2の測定用反射膜で反射された反射光は測定光となって測定用光ファイバー4に導かれて検出器9に至り、また参照部3の参照用反射膜3bで反射された反射光は参照光となって、参照用光ファイバー5に導かれて検出器9に至り、演算処理部9cで演算された相対比(測定光量/参照光量)から、予め設定されている計測対象の計測量(本例では液面の変位量)をアナログ的に算出し、算出値により液面のレベルが通常の状態であることを確認できる。
測定用反射膜2bは図1に示す通常の状態から、液体Wの液面が上昇し、液圧によってダイヤフラム1が山形に変形されると、この変形に連動して上昇することになり、その位置が測定用レンズ2cに徐々に接近して行き、測定用反射膜2bで反射された測定光は測定用入出射部2aに戻るが、その戻り光の光量が変化した状態で測定用光ファイバー4及び分岐カプラー9d2を介して検知器9の第1のフォトダイオード9b1に受光される。他方、参照光はダイヤフラム1の変位の影響を受けないから、この変位に基づく戻り光の光量は通常時と変わることなく、参照用光ファイバー5及び分岐カプラー9d3を介して検知器9の第2のフォトダイオード9b2に受光される。
第1及び第2のフォトダイオード9b1,9b2では受光された測定光及び参照光を電気信号に変えて演算処理部9cに出力し、演算処理部で相対比(測定光量/参照光量)から、予め設定されている計測対象の計測量(本例では液面の変位量)をアナログ的に算出し、算出値により液面のレベルが異常であることを確認できる。
このように、光ファイバーセンサS1では、ダイヤフラム1の機械変位を機構部2で反射光量(測定光量)の変化に変換し、検出器9でその変化を測定し、液面レベルが通常状態であるか又は異常状態であるかを検知するのである。そして外乱要因に基づく測定の誤差を少なくするために、機構部2からの測定光の量と、機構部と同一構成の参照部3からの参照光の量との比率から、液面レベルの物理量をアナログ的に計算する。
【0010】
図4では、複数の光ファイバーセンサS1に接続する検出器として、OTDR(Optical Time Domain Reflect meter)11を用いて、多点同時計測ができるようにした多点検知システムの構成を示している。
図示する多点検知システムでは、一端にOTDR11を接続している光ファイバー10は、その他端側に複数の光ファイバーセンサS1をバス(Bus)接続してある。
各光ファイバーセンサS1において、OTDR11から出射されるレーザー光は分岐カプラー12,13によって二つに分かれ、一方は分岐カプラー12及び各測定用光ファイバー4を経て機構部2に導かれて測定光とされ、他方は分岐カプラー13及び各参照用光ファイバー5を経て参照部3に導かれて参照光とされる。
この多点検知システムでは、光強度変調された信号光を検知し、光ファイバー10の線路上のレイリー散乱光を計測するOTDR11を検出器としているので、バス接続された各光ファイバーセンサS1における状態を一括して計測することができる。
OTDR11を使用することにより、光ファィバー10の敷設工事に使用する一般的な光測定器を使うことにより長距離、多点計測を安価に実現できる。また検出器にOTDR11を使えば、1ファイバー線上で多点計測できるばかりか、反射型の光スイッチを組み合わせることにより遠距離監視システムを安価に構成できる。
【0011】
図5を参照して、第2の実施の形態に係るアナログ型光ファイバーセンサS2について説明する。
図5に示す光ファイバーセンサS2は温度計測のためのものである。
光ファイバーセンサS2は温度に対して機械変位する変換部21にベローズを使用している点で、液面に対して機械変位する変換部1がダイヤフラムである図1に示す光ファイバーセンサS1とは相違している。
光ファイバーセンサS2の主たる特徴は変換部21がベローズであることにあり、この変換部を除く他の構成部分はいずれも図1に示す光ファイバーセンサS1の構成部分と実質的に同一である。光ファイバーセンサS2における機構部22(測定用入出射部22a、測定用反射膜22b、測定用レンズ22c)、参照部23(参照用入出射部23a、参照用反射膜23b、参照用レンズ23c)、測定用光ファイバー24、参照用光ファイバー25及びケース26はいずれも図1に示す光ファイバーセンサS1の機構部2(測定用入出射部2a、測定用反射膜2b、測定用レンズ2c)、参照部3(参照用入出射部3a、参照用反射膜3b、参照用レンズ3c)、測定用光ファイバー4、参照用光ファイバー5及びケース6にそれぞれ対応している。
以下、主に光ファイバーセンサS2の上記特徴について説明する。
ベローズ21は蛇腹状の変位部21a、導管部21b及び感温部21cからなるもので、内部に感応物質である感温物質(有機液体、蒸気など)が封入されている。導管部21bの一端に変位部21aが、他端に感温部21cがそれぞれ接続されている。変位部21a及び導管部21bはケース26内に納められており、導管部の他端側はケース外に伸びている。変位部21aの上面に機構部22の測定用反射膜22bを取り付けている。変位部21aは図5の上下方向に伸縮可能であり、伸縮動作を通じて測定用反射膜22bを昇降させることができる。
感温部21cはケース26外における検知対象(計測対象)である温度変化を感応することができる。ベローズ21内に充満されている有機液体などの感応物質は感温部21cを通じて温度変化に応じて体積変化をし、この変化に追従して変位部21aが機械変位(伸縮)をする。
【0012】
アナログ型光ファイバーセンサS2の検知作用について説明する。
機構部22の測定用反射膜22bが図5に示す通常の状態(計測温度が通常の範囲内)である時は、測定部22の測定用反射膜で反射された反射光は測定光となって測定用光ファイバー24に導かれて検出器に至り、また参照部23の参照用反射膜3bで反射された反射光は参照光となって、参照用光ファイバー25に導かれて上記検出器に至り、演算処理部で演算された相対比(測定光量/参照光量)から、予め設定されている計測対象の計測量(本例では温度の変位量)をアナログ的に算出し、算出値により温度が通常の状態であることを確認できる。
測定用反射膜22bは図5に示す通常の状態から、計測温度の変化によって上昇する。測定用反射膜22bが上昇する過程について説明すると、計測温度が上昇すると、この温度上昇は感温部21cを通じて感温物質に及び、この感温物質の体積が増加し、体積変化に追従して変位部21a内の感温物質の圧力が上昇し、そのため測定用反射膜22bが上昇し、その位置が測定用レンズ22cに徐々に接近して行き、測定用反射膜22bで反射された測定光は測定用入出射部22aに戻るが、その戻り光の光量が変化した状態で測定用光ファイバー24を介して検知器9に出力され、また他方、参照光はベローズ21の変位の影響を受けないから、この変位に基づく戻り光の光量は通常時と変わることなく、参照用光ファイバー25を介して検知器に入力される。その後、検知器の演算処理部で相対比(測定光量/参照光量)から、予め設定されている計測対象の計測量(本例では温度の変位量)をアナログ的に算出し、算出値により温度が異常であることを確認できる。
【0013】
アナログ型光ファイバーセンサS2によれば、変換部としてベローズ21を用いているので、簡単な構成によりかつ安価に温度変化を検知することができる。
変換部はベローズ21に限られず、例えばピストンなどであっても良い。
【0014】
変換部として、図1に示すアナログ型光ファイバーセンサS1ではダイヤフラム1を使用しているが、この例に限られない。
例えば図6に示すように、変換部としてベローズ31を使用したアナログ型光ファイバーセンサS3であっても良い。光ファイバーセンサS3の構成及び作用はベローズ31を除いて光ファイバーセンサS1の構成及び作用と同様であるので、その説明を省略する。
【0015】
変換部は、上述したダイヤフラムやベローズに限られず、それらと組み合わせてばねやブルドン管などであっても良い。
【図面の簡単な説明】
【0016】
【図1】本発明における第1の実施の形態に係るアナログ型光ファイバーセンサを示す断面図であって、液面レベルが通常状態にある図である。
【図2】反射光量とダイヤフラムの変位との関係、液圧とダイヤフラムの変位との関係、液圧と液面レベルとの関係における相関関係を示す図である。
【図3】フォトダイオードを有する検出器の構成を示す図である。
【図4】本発明に係るアナログ型光ファイバーセンサを複数接続している多点検知システムを示す構成図である。
【図5】本発明における第2の実施の形態に係るアナログ型光ファイバーセンサを示す構成図であって、温度が通常状態にある図である。
【図6】本発明における第3の実施の形態に係るアナログ型光ファイバーセンサを示す構成図であって、液面レベルが通常状態にある図である。
【符号の説明】
【0017】
S1,S2,S3 アナログ型光ファイバーセンサ
1 ダイヤフラム(変換部)
21,31 ベローズ(変換部)
21a 変位部
21b 導管部
21c 感温部
2,22 機構部
2a,22a 測定用入出射部
2b,22b 測定用反射膜
2c,22c 測定用レンズ
3,23 参照部
3a,23a 参照用入出射部
3b,23b 参照用反射膜
3c,23c 参照用レンズ
4,24 測定用光ファイバー
5,25 参照用光ファイバー
6,26 ケース
7 ホルダ
8 ホルダ(固定手段)
9 検出器
10 光ファィバー
11 OTDR(検出器)
12,13 分岐カプラー

【特許請求の範囲】
【請求項1】
検出対象の変化に対応して機械変位可能である変換部と、この変換部の機械変位に追従する機構部と、この機構部に接続されている測定用光ファイバーと、上記機構部の設置空間内に配置すると共に、外乱要因の光量変動を補償するための参照部と、この参照部に接続されている参照用光ファイバーとを具備しており、
上記機構部は、上記測定用光ファイバーの測定用入出射部と、この測定用入出射部に対向して配置してある測定用反射膜と、上記測定用反射膜と測定用入出射部との間に配置している測定用レンズとをそれぞれ備えており、
上記参照部は上記機構部と対を形成し、上記測定用光ファイバーの測定用入出射部に対応している参照用光ファイバーの参照用入出射部と、この参照用入出射部に対向して配置してあって上記測定用反射膜に対応している参照用反射膜と、上記参照用反射膜と参照用入出射部との間に配置してあって、上記測定用レンズに対応している参照用レンズとをそれぞれ備えており、
上記測定用反射膜は上記変換部の機械変位に追従して移動可能であり、
上記参照用反射膜は固定手段によって固定されており、
上記機構部における上記測定用光ファイバーの測定用入出射部から出射された光は上記測定用反射膜で反射され、測定光となって上記測定用入出射部から上記測定用光ファイバーに導かれるものであり、
上記参照部における上記参照用光ファイバーの参照用入出射部から出射された光は上記参照用反射膜で反射され、参照光となって上記参照用入出射部から上記参照用光ファイバーに導かれるものである
ことを特徴とするアナログ型光ファイバーセンサ。
【請求項2】
機構部と参照部とはケース内に納められており、変換部はダイヤフラムからなり、このダイヤフラムが上記ケースの底部に取り付けられており、上記機構部の測定用反射膜はダイヤフラム上に起立され上記ケース内に露出されたホルダに固定されていることを特徴とする請求項1記載のアナログ型光ファイバーセンサ。
【請求項3】
機構部と参照部とはケース内に納められており、変換部はベローズからなり、上記機構部の測定用反射膜は上記ベローズ上に取り付けられていることを特徴とする請求項1記載のアナログ型光ファイバーセンサ。
【請求項4】
機構部と参照部とはケース内に納められており、変換部は感温物質を封入しているベローズからなり、このベローズが上記ケース外に延出している感温部を有しており、上記機構部の測定用反射膜は上記ベローズに取り付けられていることを特徴とする請求項1記載のアナログ型光ファイバーセンサ。
【請求項5】
OTDRに接続されている光ファイバーの複数個所から分岐カプラーを介して上記測定用光ファイバー及び参照用光ファイバーが分岐されており、上記により多点同時計測可能であることを特徴とする請求項1乃至請求項4のいずれかに記載のアナログ型光ファイバーセンサ。
【請求項6】
変換部の機械変位に追従する可動反射光学系である機構部と、この機構部の近傍に上記変換部に追従せず、かつ上記可動反射光学系と同一構造の固定反射光学系である参照部を設置してあり、可動反射光学系からの戻り光量である測定光量Pkと固定反射光学系からの戻り光量である参照光量Psとの比(Pk/Ps)から計測対象の計測量をアナログにより計算可能であることを特徴とする請求項1記載のアナログ型光ファイバーセンサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2006−284287(P2006−284287A)
【公開日】平成18年10月19日(2006.10.19)
【国際特許分類】
【出願番号】特願2005−102543(P2005−102543)
【出願日】平成17年3月31日(2005.3.31)
【出願人】(391049530)株式会社信光社 (14)
【Fターム(参考)】