説明

イオン注入方法およびその装置

【解決手段】イオン源から放出したイオンを所望のイオン注入領域と略相似形の開口を有するマスクに通過させてパターンイオンビームを形成し、このイオンビームをレジストが塗布されてないウェハの所望の領域に投射して、イオンを導入するイオン注入方法。
【効果】本発明によるイオン注入方法により、イオン注入工程前後のレジスト工程が不要となり、半導体装置の製造工程数が削減できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はイオン注入方法およびその装置に関し、特に、半導体装置製造プロセスのイオン注入においてホトレジストを用いないイオン注入方法とそれを実現する装置に関する。
【背景技術】
【0002】
以下、従来のイオン注入方法について、特にCMOS・LSIの製造プロセスにおけるウェル領域形成としきい電圧制御の各工程を例に説明する。
【0003】
現行のウェル領域形成は、以下のような手順で行なう。図19を用いて説明する。(a)p型シリコン基板51を全面酸化させ、シリコン酸化膜52を被着した後にシリコン窒化膜53を全面デポジションする。次に、ホトレジスト54を全面に塗布し、n型ウェル領域に対応するパターンを縮小露光装置で感光させる。現像を行なった後、ドライエッチングを行なうことにより、露光部のレジスト54と直下の窒化膜53を除去し、n型ウェル用のパターンが開けられる。このパターニングした開口領域を用いてリンイオン55をシリコン基板51中に注入し、高濃度n型不純物領域56を形成する。(b)レジストをアッシング除去後、ウェット酸化条件下でシリコン基板51を酸化して、厚膜のシリコン酸化膜58を形成するとともに、n型ウェル領域57を形成する。(c)シリコン窒化膜53を除去し、厚膜のシリコン酸化膜58をマスクとしてフッ化ボロンイオン59を注入し、高濃度p型不純物領域60を形成する。(d)窒素雰囲気中でアニールし、p型ウェル領域61を形成し、シリコン酸化膜52,58を除去する。
このように、従来のウェル形成方法では、レジスト塗布、露光、現像、除去といった一連のホトレジスト工程が必要であった。
【0004】
しきい電圧制御のためのチャネルドープについても、上記例と同様にホト工程が必要であった。図20を用いて説明する。
【0005】
(a)厚膜の酸化膜58部を持つ酸化膜51で被覆されたシリコン基板51にホトレジスト工程(レジスト塗布、露光、現像)を施し、p型ウェル領域61のレジストのみ除去し、レジスト62をマスクにフッ化ボロンイオン59を所定のドーズ量だけ注入する。これにより、チャネル領域となるシリコン基板表面はp型不純物領域63が形成され、トランジスタのしきい電圧が制御される。(b)イオン注入後、レジスト62を除去し、再度ホトレジスト工程により、n型ウェル領域のレジストのみ除去し、レジスト65をマスクにしてヒ素イオン66の注入を行ない、P型トランジシスタのチャネル領域となるn型不純物67が形成され、p型トランジスタのしきい電圧が制御できる。残ったレジスト65を除去することで、チャネルドープは完了する。このように、チャネルドープについては2回のホト工程が必要であった。
【0006】
上述の如き従来のイオン注入には、図21のようなイオン注入装置を用いている。イオン注入装置70は概ねドーパントイオンを発生するイオン源71、放出イオン72を質量分離し、ドーパントイオン76と不要イオン77、77’に選別する質量分離器73、ドーパントイオン76を通過させるアパチャ74、イオンビーム76を平行ビーム化させるレンズ78、ドーパントイオンビーム76を試料上で走査させる偏向器79、ウエハ80を保持するステージ81などから構成される。ウエハ80の表面にホトレジスト82が塗布してある。この時、イオンビームをウエハ面に均一に入射させるためにウエハ自体も面内に揺動させる方式もある。イオン源71にはドーパントを含むガスをプラズマにしてイオンを引出すマイクロ波イオン源などが用いられる。
【0007】
イオン注入装置の従来例は、文献『イオン・インプランテイション・テクニックス』(スプリンガー・シリーズ・イン・エレクトロフィジックス10、ライセル、グラウイッシュニグ編、1982年)の第3頁から21頁にかけてハンス・グラウイッシュニグが記載している『イオン・インプランテイション・システム・コンセプツ』と題する論文で知ることができる。("Ion Implantation System Concepts"(Hans Glawischnig)("Ion Implantation Techniques, (Springer Series in Electrophysics 10)" eds.H.Ryssel andH.Glawischnig, (1982) p.3-p.21.)(公知例1)
【0008】
【非特許文献1】『イオン・インプランテイション・テクニックス』(スプリンガー・シリーズ・イン・エレクトロフィジックス10、ライセル、グラウイッシュニグ編、1982年)
【特許文献1】特開昭58−106822号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
半導体デバイスの高性能化に伴い、デバイスの加工寸法は縮小化、構造は複雑化し、それを実現するためのプロセスも複雑化し、その工程数は増大している。
半導体デバイスのメーカにとっては、デバイス製造の原価低減が直接収益に影響するため、複雑化しているプロセスを簡略し、製造コストを削減することが最大の課題となっている。特に、半導体基板に不純物を導入するイオン注入工程には、イオン注入の前後に上述のようなホトレジスト工程を必要とする。しかも、このイオン注入工程が半導体装置完成までの全工程中に複数回必要であれば、その都度このような付随する工程を行なわなければならない。これは、図21に示すような従来のイオン注入装置で用いられるイオンビームが直径数cmの太いビームであるため、上述のチャネルドーピングやウェル形成、拡散層形成のような所望の箇所に選択的にイオン注入するイオン注入工程では、図22に示したように、シリコン基板85にホトレジスト86を塗布し、開口87を設けて、イオンビーム88を照射しなければならない。この時、各開口に均一にイオンを導入するために、イオンビームと基板を相対的に揺動させたりする。(図22ではイオンビームを走査していることを示すために矢印を記した。)このレジストを設けるに伴ない、開口を開けるための露光や現像、イオン注入後のレジスト除去などの工程が必要となり、上記の如き付随的な多数の複雑な工程が必要となる。また、それらの工程のために、そのそれぞれの専用装置が必要で、装置の費用、設置面積の確保、専用担当者の確保など経済的負担となり、多くの工程を経ることによる完成品歩留りの低下をもたらしていた。
【0010】
また、従来のイオン注入によって作成された半導体装置に注目すると次のような問題点も有している。従来工程によるウェル領域の形成方法においては、図19(d)のように、p型ウェル領域61の表面よりもn型ウェル領域57の表面が低くなってしまう。これは、加工寸法の微細化が進むにつれ、図23に示すトランジスタゲート電極形成工程で問題となる。すなわち、p型ウェル領域90中のn型MOSトランジスタのゲート電極91とn型ウェル領域92中のp型MOSトランジスタのゲート電極93のパターニングを同時に行うため、各ゲート電極上に設けられたパターニング用のレジスト表面に段差が生じる。この段差が約0.4μmになるため、例えば0.25μm以下の微細加工においては、レジスト感光時の被写界深度が0.3μm程度であるので、像の鮮明な解像が困難になるという特有の問題を有していた。
【0011】
もし、レジストを用いずにイオン注入が実現できれば、上記のレジスト塗布、露光、現像、レジスト除去などの工程は必要なくなり、半導体素子製造の工程が大幅に削減できる。その結果、そのそれぞれの専用装置が不要となり、装置設置面積の削減、多くの工程を経ることによる歩留り低下の防止できるとともに、上述のような半導体装置作成時に生じる問題も解決できるものと期待できる。
【0012】
なお、レジストを用いずにイオン注入する例には、集束イオンビーム(FIB)による方法がある。集束イオンビームは、図24に一例を示すように、イオン源94、集束レンズ95や偏向器96、試料ステージ99等から構成されるイオン光学系で、試料97に到達するビーム直径を数10nm程度にまで集束させたイオンビーム98である。集束イオンビーム98が非常に細いため、あたかも一筆書きのように、1μm以下の微小領域にでもレジストを用いずにイオン注入することができる。例えば、エム・タムラらによる論文集ヌークリア・インスツルメント・アンド・メソッズ・イン・フィジクス・リサーチ、第B7/8巻、(1985年)第858頁から第863頁にかけての『フォーカスト・ボロン・イオン・ビーム・インプランテーション・インテゥ・シリコン』と題する論文がある。
(M.Tamura et al., Nuclear Instrument and Methods in Physics Research,
B7/8 (1985) 858-863, "Focused boron ion implantation into silicon")(公知例2)
また、レジストを用いずにイオン注入する別の方法として、特開昭58−106822号に『不純物導入方法』(公知例3)と題して開示されている。この方法は、図25のように、所望の開口100を有する着脱可能なマスク101を、半導体基板102と所望の位置関係になるように僅かな空隙を保持して位置合わせをした後、イオンビームを照射し、上記マスク101の開口100を介して上記半導体基板102にイオン注入を行なうものである。103はイオン注入領域である。この方法により、従来行われていたウェハ表面にレジストを塗布し、露光装置によってイオン注入領域を作成するといったレジスト工程が不要となる。
【0013】
しかしながら、このような他のイオン注入技術にも次のような問題点を有していた。つまり、レジスト工程が不要なイオン注入を実現する公知例2の方法では、ウェハ全体に渡ってイオン注入を行なおうとすると、ビーム断面積が小さ過ぎることと、試料への到達イオン電流が小さいため、膨大な時間を要して現実的ではない。また、公知例3の方法では、イオン注入領域とステンシルマスクの間に縮小光学系がないため、イオン注入領域とステンシルマスクに設ける開口とは大きさが同じにしなければならない。イオン注入領域の微細化に伴い、ステンシルマスクに開口を設けること自体が困難となってくる。さらに、イオン注入領域の位置設定は、ステンシルマスクの設置位置によって決定されるため、ステンシルマスクの開口と試料の所望領域との位置合わせ非常に難しくなってくる。このように、上記公知例3も現実的ではなかった。
【0014】
また、ステンシルマスクを用いたイオンビーム装置の例として、基板表面に塗布したレジストを露光するイオン投影型縮小露光装置がある。イオン投影型縮小露光装置の詳細については、論文集『マイクロエレクトロニック・エンジニアリング』第17巻、(1992年)第229から240頁においてエイ・チャルプカらが『プログレス・イン・イオン・プロジェクション・リソグラフィ』
(A.Chalupka et al., "Progress in ion projection lithography",Microelectronic Engineering, 17 (1992) 229-240.)(公知例4)と題する論文に開示されている。この方法はイオン露光によって、レジスト内での散乱が光や電子よりも小さく、従来の光や電子ビームによる露光に比べてシャープな像が露光できるという利点を持つ。しかしながら、公知例4はウェハに塗布されたレジストへの露光装置であるため、依然としてレジスト工程を経なければならず、レジスト工程の削減は実現されない。
【0015】
従って、レジスト塗布、パターン露光、現像、レジスト除去など一連のホトレジスト工程を経ることなく効率良く、イオン注入が行なえる方法、また、これを実現するイオン注入装置が強く望まれていた。
【0016】
上記の問題点に鑑み、本発明は半導体装置の製造工程の削減によって製造コストの低減を目指すものであり、特に、本発明の第1の目的は、イオン注入前後でホトレジストを必要としないイオン注入方法を提供することであり、第2の目的として第1目的を実現するイオン注入装置、および、このイオン注入装置を用いた製造装置を提供することである。
【課題を解決するための手段】
【0017】
上記第1の目的は、
(1)ドーパントイオンを放出するイオン源から引出したイオンビームを、開口パターンを有するステンシルマスクに照射し、上記開口パターンを通過したイオンビームをイオン投射光学系によって試料に投射することで、上記試料内にイオン注入領域を形成する方法により達成される。また、
(2)半導体装置製造プロセスにおけるイオン注入方法において、ドーパントイオンを放出するイオン源から引出したイオンビームを、開口パターンを有するステンシルマスクに照射し、上記開口パターンを通過したパターンイオンビームをイオン投射光学系によって半導体基板に投射することで、上記半導体基板内にドーパントイオン注入領域を形成する方法によっても達成できる。また、(3)上記(2)の方法において、第1のステンシルマスクによって第1イオン種のイオン注入領域を形成する第1イオン注入工程および、少なくとも第2のステンシルマスクによって第2イオン種のイオン注入領域を形成する第2イオン注入工程とからなる方法によるか、または、
(4)上記(2)または(3)の方法が、その前工程に少なくとも上記半導体基板面上にイオン注入領域を限定するホトレジストマスクのパターン形成工程を伴わない方法により達成される。また、
(5)上記(2)から(4)の方法が、ドーパントイオンを放出するイオン源から引出したイオンビームを、開口パターンを有するステンシルマスクに照射し、上記ステンシルマスクを透過したパターンイオンビームをイオン投射光学系によって半導体基板に投射することで、上記半導体基板内にドーパントイオン注入領域を形成するイオン注入方法において、さらに、半導体基板表面に形成した厚膜酸化膜によってイオン注入領域を制限する方法によるか、特に、
(6)上記(1)から(5)のいずれかで、上記試料または半導体基板がシリコンであり、かつ、該試料に投射されるイオン種がホウ素、リン、ヒ素のうちの少なくともいずれかである方法により達成される。また、
(7)上記(1)から(6)のいずれかで、特に、パターンイオンビームの投射および停止、試料への投射位置の移動を順次繰り返すことで、上記試料または半導体基板上に上記イオン注入領域を少なくとも2箇所以上形成する方法によって、同じイオン注入領域を同一試料に多数形成できる。また、特に、
(8)ドーパントイオンを放出するイオン源から引出したイオンビームを、開口パターンを有するステンシルマスクに照射し、上記開口パターンを通過したイオンビームをイオン投射光学系によって半導体基板に投射することで、レジスト工程を経ることなく上記半導体基板内にウェル領域を形成することができ、特に、(9)第1のステンシルマスクによって上記半導体基板に第1イオン種によるp型ウェル領域を形成する第1イオン注入工程と、第2のステンシルマスクによって上記半導体基板に第2イオン種によるn型ウェル領域を形成する第2イオン注入工程とからなる方法により達成される。また、
(10)半導体装置製造プロセスにおけるイオン注入方法で、ドーパントイオンを放出するイオン源から引出したイオンビームを、開口パターンを有するステンシルマスクに照射し、上記開口パターンを通過したイオンビームをイオン投射光学系によって半導体基板に投射する方法により、上記半導体基板内にチャネルドープ領域を形成できる。特に、
(11)第1イオン種のイオン注入による第1チャネルドープ領域を形成する第1イオン注入工程、および、上記第1チャネルドープ領域のうちの一部に対して、ステンシルマスクの開口パターンを通過した第2イオン種のイオンビームによるイオン注入を行なって第2チャネルドープ領域を形成する第2イオン注入工程とからなる方法であってもよい。また、
(12)上記半導体装置製造プロセスにおけるイオン注入方法であって、半導体基板表面に厚膜酸化膜または多結晶シリコンの少なくとも何れかによるイオン注入制限領域を形成した後、ドーパントイオンを放出するイオン源から引出したイオンビームを、開口パターンを有するステンシルマスクに照射し、上記開口パターンを通過したイオンビームをイオン投射光学系によって半導体基板に投射することで、上記半導体基板内にドーパントイオン注入領域を形成することができる。特に、
(13)上記(7)から(12)のいずれかで、上記試料へのイオン注入量が1×1011個/cm2以上、かつ、1×1014個/cm2未満であるか、上記試料に投射されるイオンビームのエネルギが30keV以下のうちのいずれかである方法により達成される。また、
(14)上記(1)から(3)のいずれかにおいて、上記イオン照射光学系内でイオンビームの質量分離を行ない、ドーパントイオンのみで上記ステンシルマスクを照射する方法によるか、
(15)上記試料または上記半導体基板上のイオン注入領域が、特に、前記ステンシルマスクの開口パターンとほぼ相似的に縮小した領域である方法によるか、(16)上記(1)から(4)のいずれかにおいて、上記試料が化合物半導体であり、かつ、上記試料に投射されるイオン種がシリコン、ベリリウム、マグネシウム、セレン、酸素、イオウのうちの少なくともいずれかである方法によっても達成される。さらに、
(17)ドーパントイオンを放出するイオン源から引出したイオンビームを、所望のイオン注入領域に対応する開口パターンを有するステンシルマスクに照射し、上記開口パターンを通過したイオンビームをイオン投射光学系によって試料に投射することで、上記試料内にドーパントイオンの注入領域を形成するイオン注入方法において、イオン注入に先立ち、上記ステンシルマスクの上記開口パターンの近傍に設置した小開口に限定して上記イオンビームを照射して、上記小開口を通過したイオンビームによって試料面に設置したマークを検出し、試料ステージ位置もしくは上記ドーパントイオンビームの投射位置の少なくとも何れかの補正を行なって、イオン注入領域の位置決めを伴なう方法によるか、または、
(18)イオン注入に先立ち、上記試料表面を観察できる顕微鏡によって試料面に設置したマークを検出し、上記ドーパントイオンビームの投射位置が所望のイオン注入領域に一致するように試料ステージ位置もしくは上記ドーパントイオンビームの投射位置の少なくとも何れかの補正を行なってイオン注入領域の位置決めを伴なう方法によって達成される。
【0018】
また、上記第2の目的は、
(19)ドーパントイオンを放出するイオン源と、該イオン源から放出したイオンを質量分離する質量分離器と、開口パターンを有するステンシルマスクを搭載するマスクステージと、上記ステンシルマスクに上記イオン源から放出したイオンビームを照射するイオン照射光学系と、上記開口パターンを通過したイオンビームを試料に投射するイオン投射光学系と、試料を保持して微動する試料ステージとを少なくとも備えることにより達成される。また、
(20)ドーパントイオンを放出するイオン源と、該イオン源から放出したイオンを質量分離する質量分離器と、開口パターンを備えたステンシルマスクを保持するマスクステージと、上記イオン源よりイオンビームを引き出し上記ステンシルマスクに照射する照射光学系と、試料を保持して微動する試料ステージと、上記開口パターンを通過したイオンビームを上記試料に投射する投射光学系とを少なくとも備えたイオン注入装置において、特に、上記マスクステージは複数種のステンシルマスクを保持し、更に、該マスクステージを移動させる駆動手段と、該駆動手段の制御を行なう信号処理装置とを備えることによって達成される。また特に、
(21)上記(19)または(20)において、上記イオン源がプラズマイオン源または液体金属イオン源、電界電離ガスイオン源のうちのいずれかであるか、(22)上記(19)から(21)のいずれかにおいて、特に、上記イオン源においてイオン化すべき材料がボロン、ヒ素、リン、シリコン、ベリリウム、マグネシウム、セレン、酸素、イオウからなる群のうちの少なくともいずれかを含むガスまたは合金もしくは化合物であることにより達成される。
また、
(23)上記(20)において、特に、上記イオン源は、複数のドーパントイオンを放出するイオン源であるか、または、ドーパントイオンを放出する複数個のイオン源からなり、上記信号処理装置は少なくとも上記イオン源の放出電流の制御、または、上記複数のイオン源から特定のイオン源を選択する信号を発信する装置であることにより達成される。特に、
(24)上記(19)または(20)において、上記イオン源から試料面に至るイオンビーム光学軸が鉛直方向であることにより達成される。あるいはまた、上記上記イオン照射光学系は、少なくとも上記イオン源から放出したイオンビームを質量分離する質量分離器と、所望のイオンビームを選択する質量分離アパチャを含むか、または、(25)上記イオン照射光学系は、上記イオン源から放出したイオンビームの拡がりを狭める照射レンズを含むことによるか、また、(26)上記イオン投射光学系は上記ステンシルマスクを通過したイオンビームを試料に投射させる投射レンズを含み、かつ、上記照射レンズ、上記投射レンズのうち、少なくともいずれかが加速モードのアインツェルンレンズであることによるか、あるいはまた、(27)上記イオン投射光学系はステンシルマスクを通過したイオンビームを試料に投射させる投射レンズを含み、かつ、上記投射レンズの最終電極と試料は同電位で、上記投射レンズの最終電極もしくは試料が0から10Vの出力を有する電源に接続されたことによるか、または、(28)上記ステンシルマスクを照射されるイオンビームのエネルギと、上記試料に投射されるイオンビームのエネルギは同一であることによって達成される。また、
(29)上記(17)において、特に、前記ステンシルマスクを通過したパターンイオンビームを集束させる集束レンズのクロスオーバの直前または直後にビーム遮断手段または真空遮断手段の少なくともいずれかを備えることによるか、
(30)上記(10)から(21)のいずれかにおいて、特に、上記イオン源と上記ステンシルマスクの間に、上記イオン源からの放出イオンの拡がりを制限するビーム制限アパチャを備えることよるか、
(31)上記(30)において、特に上記ビーム制限アパチャは、該ビーム制限アパチャを通過したイオンの拡がりの半開角が最大10°となる孔径または位置関係にあることにより達成される。また、
(32)上記(19)から(31)のいずれかにおいて、特に、上記イオン源からの放出イオンの初期エネルギが1から20keVであり、試料に投射されるパターンイオンビームの加速エネルギが1から40keVであることにより達成される。
(33)上記(19)から(32)のいずれかにおいて、特に、試料へ投射するパターンイオンビームの電流密度が1nA/cm2から10μA/cm2の範囲内であることにより達成される。
(34)イオン源と、イオンの透過する開口を備えたステンシルマスクを保持するマスクステージと、試料を保持し微動する試料ステージと、上記イオン源よりイオンビームを引き出し上記マスクに照射する照射光学系と、上記マスクを透過したイオンビームを上記試料の任意位置へ照射して、上記マスクの像を上記試料上に投射する投射光学系と、上記イオンビームを遮断する手段とを備えたイオン注入装置において、上記投射光学系は投射レンズを一段のみ備え、かつ、上記照射光学系が上記イオンビームを上記投射レンズのほぼ中心に集束させる照射レンズを備えたことにより達成される。また、
(35)上記照射光学系がイオンビームをマスク上で走査する走査偏向系を備えるとともに、上記走査偏向系の偏向中心が上記イオンビームのクロスオーバにあることにより達成され、あるいは、(36)上記(35)において、上記照射光学系は、上記走査偏向系が上記イオンビームを走査するのと連動して、上記イオンビームの集束状態を補正するダイナミック補正手段を備えることにより達成される。また、
(37)上記(36)のダイナミック補正手段は、非点補正器と、集束補正レンズとを備えることにより、また、
(38)上記(36)または(37)のダイナミック補正手段は、2段以上の偏向補正器を備えたことにより、あるいはまた、
(39)上記(34)の投射レンズは、3枚電極の静電レンズであることにより、また、(40)上記(34)から(36)のいずれかのイオンビームは、上記マスクへ照射する上記イオンビームの加速電圧が1〜20kVであり、上記試料上へ照射する上記イオンビームの加速電圧が1〜50kVであることにより達成される。さらに、
(41)複数個のチャンバおよび、これらと相互間のウエハの出し入れを行なうウエハハンドラ、上記複数個のチャンバに連結され上記ウエハハンドラを収納するウエハハンドラハウジングから構成されるマルチチャンバプロセス装置において、上記チャンバのうち少なくとも1個が上記(19)から(40)のいずれかのイオン注入装置であることにより達成される。また、半導体装置は、
(42)上記(1)から(18)のいずれかのイオン注入方法、または、上記(19)から(40)のいずれかのイオン注入装置、または、上記(41)のマルチチャンバプロセス装置の少なくともいずれかを用いて製造することにより、また、
(43)半導体装置において、隣合うp型ウェル領域とn型ウェル領域が、互いのウェル領域の基板表面に段差を有しない構造であることにより達成される。
【発明の効果】
【0019】
本発明によれば、図1に概略を示したイオン注入方法を用いることで、ホトレジストを用いることなく所望の位置にイオン注入を行なうことができる。
【0020】
本発明によるイオン注入方法およびその装置によって、従来、イオン注入工程の前後に行われていたレジスト塗布、露光、現像、従来のイオン注入さらにアッシングによるレジスト除去などレジスト工程が削減され、半導体装置製造に関わる時間的、経済的削減が実現する。
【発明を実施するための最良の形態】
【0021】
所望のイオン注入領域パターンに対応する開口パターン1有するステンシルマスク2にイオンビーム3を照射し、開口パターン2を通過したイオンビーム4をイオン投射光学系5に導く。イオン投射光学系5は、集束レンズなどを含み、イオン投射光学系5の光学作用により、従来のホトレジストが塗布されていない試料7にイオンビーム径を縮小して投射し、ステンシルマスク2の開口パターン1を縮小した形状のイオン注入領域8を形成することができる。縮小倍率はイオン投射光学系内に配置するレンズの焦点距離などに依存し、所望のイオン倍率に合わせてイオン光学系を配置し、動作させれば良い。イオンビームは試料面に到達する時点で所望のイオン注入形状にパターン化されているため、従来法によるレジストは用いる必要はなく、また、レジスト塗布が不要であるため、レジストに係る工程、つまり、レジスト塗布、露光、現像、アッシングの各工程が削減でき、直接イオン注入することができる。
【0022】
更に具体的には、イオン注入の機能を果たすためのイオン注入装置の概略構成例を図2に示し、各部の作用について説明する。
【0023】
図2に示したイオン注入装置10は、イオン源11と、開口パターンを有するステンシルマスク12を保持するマスクステージ13と、上記イオン源11から放出するイオンビーム14を上記ステンシルマスク12に照射するイオン照射光学系15と、上記ステンシルマスク12を通過したイオンビーム16を試料17に投射して上記ステンシルマスク12の開口パターンと略相似形の投射領域を形成するイオン投射光学系18と、上記試料17を保持して移動する試料ステージ19などから構成される。19’は試料17をステップアンドリピート式に移動できるステージである。イオン照射光学系15やイオン投射光学系18は種々の光学部品から成り、例えば、所望のドーパントイオンと不要なイオンを分離する質量分離器、所望のイオンのみを通過させる質量分離アパチャ、拡がりのあるイオンビームを集束させステンシルマスクに照射する照射レンズ、パターンイオンビームを集束し試料に投射させるための投射レンズ、ビーム位置を調整するためのアライナ、イオンビームの試料への到達を遮断させるブランカ、機械的シャッタなどを含む。質量分離器には、ウィーンフィルタと称する電極と磁極が直交して設置されたE×B質量分離器を用いることで、所望のドーパントイオンビームを光学軸上で通過させることができる。
【0024】
イオン源11にはドーパントイオンを放出する液体金属イオン源や電界電離ガスイオン源、微小発生源を持つプラズマイオン源を用いる。
【0025】
ステンシルマスク12は、所望のイオン注入領域に対応する開口を有する。所望のイオン注入領域を図3における(a)とすると、例えば、シリコンを基板とするステンシルマスクは図(b)に示すような開口をドライエッチングよって設けた。開口パターンの寸法はイオン注入領域寸法とイオン光学系の縮小率で決まり、例えば、2μm平方の矩形領域を縮小率1/5の光学系で作成するには、ステンシルマスク上に10μm平方の矩形開口を設ければよい。
【0026】
レンズは静電電極群であり、広がりを持つイオンビームの集束性を良好にするために電極構成や配置、印加電圧は種々改変できる。試料に投射される像の大きさは、ステンシルマスクに形成されたパターンの数分の1に縮小されるようなレンズ配置をとる。
【0027】
試料ステージ19’は試料17を保持するとともに、ステップ・アンド・リピート式に移動できる。図4のように半導体ウェハ26におけるある1箇所のサブフィールド25に対してパターン24のイオン注入が完了すると、一旦、イオンビームをブランキング状態にして、次のサブフィールドに試料ステージを移動してイオンビーム投射を行なう。この繰返しによって、ウェハ26全面にレジストなしにイオン注入することができる。
【実施例】
【0028】
(実施例1)
本発明による第1の実施例を図5から図11を用いて説明する。
【0029】
図5は、DRAMや不揮発性メモリのメモリチップ内の各構成ブロックの概略を示している。メモリマットMATは複数本の行と複数本の列のアレイ状に配置されたメモリセルから構成されている。行デコーダXDECは外部アドレス信号ADを入力とし、複数本の行の中から少なくとも一本の行を選択する。行デコーダXDECの出力信号は電圧印加回路XSDECに接続されている。電圧印加回路XSDECはCMOS回路から構成されたスイッチ群であり、メモリマットMAT内の選択された行に対応するメモリセルに所望の電圧を印加する。一方、センスアンプSACがメモリマットMATの列に接続されている。センスアンプSACは、メモリセルへのデータの書き込みや読出しを行うため、MOSトランジスタの差動対から構成されている。この差動対を用いてデータの保持を行うこともできる。列デコーダYDECがセンスアンプSACと入出力I/Oの間に形成されている。列デコーダYDECはMOSトランジスタから構成され、入出力I/Oから所望のセンスアンプSACにデータを転送することができる。データの書き込み動作や読み出し動作は、例えばチップ選択信号CS等により代表される、チップCHIP外部からの各種のチップ制御信号を、CHIP内に設けられた制御回路CTRLで受け、制御回路CTRLからのチップ内部制御信号が各デコーダに送られることにより実行される。
【0030】
図6は、図5に示されたメモリチップ内のウェル領域の形成レイアウトの一例である。図6(a)はp型ウェル領域、図6(b)はn型ウェル領域のパターンである。レイアウトパターンは本実施例に限定されるものではない。DRAMや不揮発性メモリはn型トランジスタから構成され、図5中のメモリマットMATはp型拡散層からなるp型ウェル領域PW-MAT内に形成される。この領域の大きさは、一般にメモリチップ面積の40から60%であり、約40から60mm2の面積を占めている。すなわち、6mm×6mmや8mm×8mmのように、メモリセルの加工最小寸法である0.3〜0.5μmに比べはるかに大きい領域である。なお、図6ではメモリマットMATを構成するp型ウェル領域PW-MATは1つの領域により構成されているが、これを複数個のp型ウェル領域により構成してもよい。
【0031】
図7は電圧印加回路XSDECが2本の行に対する最も簡単なCMOS回路を用いたインバータから構成されている例を示している。図7(a)では、行デコーダXDECからの出力信号WI1、WI2を各インバータのゲート入力信号とし、各p型MOSトランジスタのソース端子は電源VPPに接続され、ウェル端子は電源VNWに接続されている。同様に、各n型MOSトランジスタのソース端子は電源VNNに接続され、ウェル端子は電源VPWに接続されている。各インバータの出力はメモリマットMATへの出力端子W1、W2となっている。図7(a)の回路図上では、各MOSトランジスタが交互に配置されウェル領域NW1、PW1、NW2、PW2が交互に配置されているが、これを図7(b)に示すようにn型MOSトランジスタ同士またはp型MOSトランジスタ同士をまとめて同じウェル領域NW、PWに形成できる。このように、メモリマットMATに電圧を印加する電圧印加回路XSDECは、CMOS回路すなわちn型MOSトランジスタとp型MOSトランジスタから構成されているが、各行に対する各々のトランジスタを同一ウェル中に形成できる。ここで、面積低減のために、メモリマットMATを構成するp型ウェル領域PW-MATと電圧印加回路XSDEC中のn型MOSトランジスタを含むp型ウェル領域PW-XSDECを隣接して、または、同一ウェル領域として形成することができる。行デコーダXDECについても同様に各行に対するn型MOSトランジスタを一括して含むp型ウェル領域PW-XDECが形成でき、さらに、センスアンプSAC部のp型ウェル領域PW-SACや列デコーダYDECに対するp型ウェル領域PW-YDEC、I/O回路に対するp型ウェル領域PW-I/O、制御回路CTRLに対するp型ウェル領域PW-CTRLを形成できる。一方、図6(b)に示すようにn型ウェル領域に関しても、電圧印加回路XSDEC中のn型ウェル領域NW-XSDEC、行デコーダXDECに対するn型ウェル領域NW-XDEC、センスアンプSAC部のn型ウェル領域NW-SAC、列デコーダYDECに対するn型ウェル領域NW-YDEC、I/O回路に対するn型ウェル領域NW-I/O、制御回路CTRLに対するn型ウェル領域NW-CTRLが形成できる。これらのウェル領域の幅は約30μmから200μmであり、また、イオン注入量もn型領域ではリンイオン(P+)を、p型領域ではボロン(B+)またはフッ化ボロン(BF2+)を用いて1×1013〜2×1014/cm2であり、本発明によるステンシルマスクを用いたイオン注入方法によって十分達成できる面積と不純物量である。
【0032】
図8から図11を用いて、メモリチップ形成工程に少なくとも含まれるCMOS回路の形成方法の概略を示す。ただし、本実施例の図中に含まれるマスクの図示ではイオン注入領域とマスク開口領域が同一に示したが、これは上述のとおり、ステンシルマスクを透過したイオンビームはイオン投射光学系によって縮小されてウェハ上に投射される。ここでは、ステンシルマスクとイオン注入領域の関係を強調するために同一寸法で記載した。また、ステンシルマスクとウエハの間にはイオン投射光学系が、またステンシルマスクの上段にはイオン照射光学系やイオン源が存在するが、図8から図11では半導体装置製造プロセスを詳細に説明することが主眼であるため、イオン源やイオン照射光学系、イオン投射光学系の図示は省略してある。
【0033】
まず、図8(a)において、シリコン基板201に約30nmの厚さのシリコン酸化膜202を形成し、シリコン酸化膜202の周辺領域の一部に後述のステンシルマスクの位置合わせ用のマークとなる凹部250を予め形成する。この凹部250は、予め定めているウェハの基準位置に、例えば集束イオンビーム照射等によって直接形成することができる。また別の方法として、例えばヒ素イオンを1×1015/cm2以上所望の領域に注入し、ダメージを受けたシリコン酸化膜ではフッ酸等によるエッチングが加速されることを用いて、マーク形成用の開口を設けたステンシルマスクを用いて、ヒ素のパターンイオンビームによってシリコン酸化膜202に凹部250を形成することができる。この場合は、続いてドライ工程によりシリコン基板201を0.1μm以上エッチングし、明確なターゲット領域を形成することが望ましい。また、マークとして凸部を形成してもよい。
【0034】
続いて図8(a)に示すように、n型ウェル領域形成用のステンシルマスク203を介して、リンイオン204を例えば60KeVで約5×1012/cm2のドーズ量でシリコン基板201中に注入する。高濃度なn型不純物領域205が形成される。本イオン注入では、先に形成した凹部250に微弱なイオンビーム照射を行い、その2次電子を観測するなどの方法により、ステンシルマスクパターンのシリコンウェハ上での0.1μm以下の正確な位置合わせが可能になる。さらに図8(b)では、p型ウェル形成用のステンシルマスク207を用いて、ボロンイオンないしはフッ化ボロンイオン208をシリコン基板中に注入する。これにより、高濃度なp型不純物領域209が形成される。フッ化ボロンイオン208を注入する場合は、例えば60KeVで約5×1012/cm2のドーズ量とし、ボロンイオンの場合には、約15KeVとする。
【0035】
本ウエハを例えば1100℃の窒素雰囲気中で約20時間アニールすることにより、図8(c)のように各不純物拡散層がシリコン基板201中に引き伸ばされ、各々の表面不純物濃度が5×1016〜2×1017/cm2程度のn型ウェル領域210、p型ウェル領域211が形成される。
【0036】
以上の工程により、CMOS回路形成用の両ウェル構造を得ることができる。これは、図19に示す従来のウェル形成工程に比べて、ホトレジスト形成及びその処理時間が不要なことや拡散時間が短い。さらに、本実施例では、図19(d)のようなp/n型ウェル領域間で段差が生じないため、後のゲート形成工程のような微細加工プロセスにおいても被写界深度による加工の制約を受けることがない。
【0037】
図8以降のCMOS回路の形成工程について説明する。図9(a)に示すように、マーク250領域を除くシリコン酸化膜202上にシリコン窒化膜215を約200 nmの厚さで形成する。なお、このシリコン窒化膜の厚さは本膜厚に限るものではない。続いて、従来のホトレジスト工程を用いて、感光、現像、ベーク処理、レジストエッチング、シリコン窒化膜215エッチング、レジスト処理工程を経て、シリコン窒化膜215をトランジスタの活性領域となるようにパターニングする(図9(b))。さらに、ウェット酸化条件の下、1000℃〜1100℃の温度条件の下で、シリコン基板表面を酸化し、300〜500nmの膜厚を有するシリコン酸化膜216を形成する(図9(c))。シリコン酸化膜216は少なくともp型ウェル領域211とn型ウェル領域210の境界表面を覆うように形成され、各ウェル領域中のトランジスタを互いに電気的に分離する。
【0038】
次に、図10(a)のように、シリコン基板201表面の薄膜シリコン酸化膜202領域にフッ化ボロンイオン217を、例えば2×1012/cm2のドーズ量をイオン注入する(n型MOSトランジスタ用チャネルイオン注入)。n型MOSトランジスタのチャネル領域となるシリコン基板表面にp型不純物領域218が形成され、p型ウェル領域211中のn型MOSトランジスタのしきい値電圧が0.3〜0.5Vに制御される。さらに、図10(b)に示すように、ステンシルマスク220を介して、本発明のイオン注入法により、ヒ素イオン221をn型ウェル領域210のシリコン酸化膜202中にのみ、例えば50KeVのエネルギー、3×1012/cm2のドーズ量で注入する(p型MOSトランジスタ用チャネルイオン注入)。p型MOSトランジスタのチャネル領域となるシリコン基板表面に弱いn型不純物領域222が形成される。図10(a)のボロンイオン濃度と図10(b)のヒ素イオン濃度を調整することにより、p型MOSトランジスタのしきい値電圧が制御できる。本実施例では、イオン注入用のステンシルマスク数を抑えるため、ヒ素イオン注入に用いたステンシルマスク220をn型ウェル領域形成に用いたステンシルマスク203と同一パターンとすることもできる。また、本実施例では、図10(a)のフッ化ボロンイオン注入時には、全面イオン注入の方式を用いたが、ここで、例えば図8(b)のp型ウェル領域形成用のステンシルマスク207を用いて、フッ化ボロンイオンのイオン注入を本発明の方法により行うこともできる。
【0039】
さらに、図11(a)に示すように、多結晶シリコン層231を所望のゲート電極形状に加工し、例えば、図10(b)のステンシルマスク220と同様のパターンを備えたステンシルマスク232を用いて、フッ化ボロンイオン233のイオン注入を本発明の方法により、例えばエネルギー30keV、ドーズ量2×1015/cm2で行い、p型不純物領域234が形成できる。続いて、図11(b)に示すように、ステンシルマスク235を用いて、ヒ素イオン236を本発明のイオン注入法により、例えばエネルギー30KeV、ドーズ量2×1015/cm2で行い、n型不純物領域237が形成できる。上記の各不純物領域は、各々のMOSトランジスタのソース・ドレイン領域として働く。
【0040】
ここで、ゲート電極となる多結晶シリコン層231は、シリコン酸化膜216の膜厚の概略半分の凹凸形状(0.2μm以下)を持つに過ぎず、0.25μmの微細なゲート長のパターンも従来の光学露光装置の被写界深度制約を受けることなく形成できるという効果がある。
【0041】
以上、各ウェル領域に形成されるMOS型トランジスタのしきい値電圧制御用のチャネルイオン注入や拡散層形成工程においても、本発明のイオン注入法を用いることができ、マスク枚数の低減を図るとともに、各々の工程において従来のチャネルイオン注入に必要とされたレジスト塗布工程、感光工程、現像工程、ベーク工程、イオン注入工程、レジスト除去工程を、ステンシルマスクによるイオン注入工程の1工程に削減でき、微細加工CMOS回路形成工程の工程数削減に大きく寄与できる。
(実施例2)
〈実施例2の第1形態〉
本発明に係るイオン注入装置の実施例の詳細を図面をもとに説明する。図12において、301は本発明によるイオン注入装置、302はイオン源であり、本実施例ではイオン源302はシリコンに対するドーパントであるホウ素イオンを放出する液体金属イオン源を用いた。このイオン源302でのイオン化材料は白金/ホウ素合金である。303は質量分離器であり、放出したイオン304を所望のドーパントイオン305(本実施例ではホウ素1価イオン)と不要イオン306(本実施例ではホウ素1価イオン以外のイオン)に選別するものである。307はドーパントイオン305のみを通過させ、不要イオン306を下流へ送らないための質量分離アパチャである。この質量分離アパチャ307がステンシルマスク309の上流側に設置されているため、不要イオン306がマスクを照射することがなく、ステンシルマスク309の損傷が軽減され寿命が延びる。集束レンズ308のクロスオーバが質量分離アパチャ307にあるため、ドーパントイオン305と不要イオン306は容易に分離できる。310は質量分離アパチャ307を通過して広がりを持つイオンをマスク309にほぼ垂直入射するように軌道を曲げる照射レンズである。図では略式に楕円で示したが、実際は複数枚の電極から構成されている。本例の場合、イオン照射光学系311は、質量分離器303、質量分離アパチャ307、集束レンズ308、照射レンズ310より構成されている。
【0042】
導電性のマスクホルダ312に保持されたステンシルマスク309は所望のイオン注入領域に対応する開口パターンを有するマスクで、シリコンが主成分である。開口パターンはドライエッチングによって作成した。ステンシルマスク309を通過して得られるドーパントイオンによるパターン化したイオンビーム313は集束レンズ314によって集束され、アパチャ315を通過して、投影レンズ316によって試料317にほぼ垂直に投射される。本例の場合、イオン投射光学系319は、集束レンズ314、アパチャ315、投射レンズ316によって構成されている。試料317は試料ステージ318上に保持されたシリコンウェハであり、表面には従来のイオン注入で用いるレジストは塗布されていない。
試料ステージ318はレーザ干渉計(図示せず)を用いてXY方向に正確に移動でき、1領域分のイオン注入が完了すると、イオンビームをブランキング状態(ブランカは図示せず)にするか、試料317とイオン源302の間のいずれかの箇所に設けたシャッタ(図12における320、320’)によって遮って、次の領域にステップ・アンド・リピート方式によって位置決め、再びイオン注入が行える。上記の操作の繰返しで試料317全体にイオン注入を施すことができる。これらのイオン光学系部品は真空容器321内にある。
【0043】
本実施例では、上記のイオン光学系によって、イオン源302からのイオンは、ビーム制限アパチャ(図示せず)によってビーム半開角が5°に制限され、ステンシルマスク309上で直径40mmのビームになる。ステンシルマスク309には、24×24mmの領域内にイオン注入すべき領域に対応する開口パターンが設けられている。このパターンは投影レンズ316により、試料317面で10×10mmの領域に縮小され(倍率:約0.42)イオン注入される。この時の到達するドーパントイオン電流は0.1μAであった。
【0044】
このような構成のイオン注入装置301は下記の特徴を持つ。図12が従来のイオン注入装置(図23)と全く異なる点は、イオン注入される領域がステンシルマスクによって形成されたパターンイオンビームによるか、ホトレジストで開口パターンを設けているかにある。つまり、従来、図22に示したように従来型イオン注入法では、レジスト86をウエハ85に密着して塗布し、リソグラフィ技術を駆使して所望のイオン注入領域に開口87、87’を設け、大口径のドーパントイオンビーム88を照射してイオン注入を行なっている。また、イオン注入後はこのレジストを除去しなければならない。このように所望領域にイオン注入を行なうには、従来方法ではレジスト工程が不可欠であった。
【0045】
一方、図12に示す本発明によるイオン注入装置によると、試料(ウェハ)はイオン照射時には、イオン注入領域形状にパターン化されているイオンビームが投射されるため、従来法によるレジストマスクは用いる必要はなく、直接イオン注入することができる。このパターンイオンビームを得るためには、ステンシルマスクに所望のイオン注入領域と略相似形の開口パターンを設け、ステンシルマスクの開口パターンと所望のイオン注入領域の大きさの比率はステンシルマスクとウェハ間に設置するイオン光学系の焦点距離に依存し、所望のイオン倍率に合わせてイオン光学系を設置し、動作させれば良い。このようにホトレジスト塗布が不要であるため、ホトレジストに係る工程、つまり、塗布、露光、現像、アッシングの各工程が削減できる。
【0046】
このようなイオン注入方法における試料は上述のシリコンウェハに限らず、ガリウムヒ素のような化合物半導体でも良いし、半導体装置製造プロセスで扱えないガラスやプラスチック等の材料でも良い。例えば、プラスチックに金イオンをパターンイオン注入することで微小な導領域を作ることが可能で、また、透明ガラスにラインアンドスペース状にパターンイオン注入して微小グレーティングなど微小パターンを作成できる。さらには、イオン注入領域限定のために、従来のリソグラフィ装置であるステッパや電子線リソグラフィ装置を使わないため、対象とする材料は半導体ウエハのような平板である必要はなく、曲面や立体物であっても適用できることが従来の半導体プロセスにおけるイオン注入法とは大きく異なる。
【0047】
公知例4のイオン投影型縮小露光装置は、本発明によるイオン注入装置と以下の点で異なる。イオン投影型縮小露光装置で用いるイオン種は軽元素ガス種である水素、ヘリウムである。また、イオンビーム照射は表面にレジストを被覆した試料に対して行なわれ、レジストへのイオン露光を行なう装置である。従って、従来のようにレジスト工程は必ず伴なう。さらに、放出イオンの実質的質量分離を行なうアパチャがステンシルマスクの下流側にあるため、放出イオンの殆ど全てがステンシルマスクを照射する構造である。
【0048】
本発明のイオン注入装置によればイオン注入完了までに必要な装置は、本発明によるイオン注入装置だけで済み、最低限の作業スペースを含めた床面積は、従来のイオン注入に係わる装置であるレジスト塗布機、光リソグラフィ装置(ステッパー)、現像機、中電流イオン注入装置、アッシャの総面積、および、最低限の作業スペースを含めた総床面積に対して約1/3に削減できる。
【0049】
〈実施例2の第2形態〉
本実施例は別のイオン光学系の例であり、概略構成を図13に示す。本実施例では複数のイオン源302、302’がイオン源ステージ330に設置されており、イオン源コントローラ331により、必要に応じてイオン源を交換し、放出するイオン種を切り替えることができる。また、ステンシルマスクは複数枚、マスクステージ312’に搭載されており、必要に応じてステンシルマスクをマスクコントローラ332によって交換することができる。搭載するステンシルマスクの開口パターンは異種同種に制限はない。これら、イオン源コントローラ331やマスクコントローラ332、更には試料ステージ318は信号処理装置333からの信号によって制御される。
【0050】
〈実施例2の第3形態〉
本実施例は別のイオン光学系の例であり、概略構成を図14に示す。本実施例は、実施例1に比べレンズを1組減らし、3組のアインツェルンレンズ310’、314’、316’によって構成したイオン注入装置の例である。ステンシルマスク、マスクステージ、試料ステージなどは図12と同じである。
【0051】
図14において、イオン源302はシリコンに対するドーパントであるホウ素イオンを放出するプラズマイオン源である。このイオン源から放出されるホウ素1価イオンの放射角電流密度(単位立体角当たりの電流密度)は、全放出イオン電流10μA時、5μA/srであり、放出イオンの拡がりは10°(半開角)である。投射レンズ310’によって平行にされたイオンビームはステンシルマスク309へほぼ垂直入射する。この時の照射領域は、放出イオン電流の角度分布を考慮してビーム制限アパチャ335によって開き角の半分の5°の領域に制限してステンシルマスク309を通過させた。ステンシルマスク309の開口パターン(1辺20mmの矩形)の試料317’上に形成されるパターンの縮小率は0.5である。この時、レジストの塗布されていない試料(ウェハ)317’上には、電流密度0.1μA/cm2で、1辺10mmの矩形パターンイオンビーム337が到達する。イオン注入量(ドーズ)を1×1012(個/cm2)に設定すると、イオン注入時間は約1.6秒で終わる。照射されるイオンの持つエネルギーは10keVで、浅い領域へのイオン注入である。直径8インチのウエハ上にこのパターンイオンビーム337でイオン注入を続けると、1枚のウエハは約460ショットで完了し、1時間に約17枚の生産速度(スループット)を発揮した。このスループットは従来プロセスにおいて、レジスト塗布、ステッパによる露光、現像、従来式イオン注入、アッシングによるレジスト除去、水洗までの一連工程に対して約8枚/時であるので、2倍以上のスループット向上が達成された。
【0052】
本装置において、質量分離器303をイオン源302の直後に設置し、集束レンズ314’のクロスオーバ地点に質量分離絞り315’を設置し、イオン源302から放出される不要イオン306’を除去した。この質量分離絞り315’位置には、更に、ゲートバルブを338を設置し、試料室339と、集束レンズ314’やステンシルマスク309が設置されたイオン光学系室340との真空分離ができるようにした。これにより、試料317’の交換時にイオン源302やイオン光学系を大気に曝すことなく高真空が維持できるという効果を有する。
(実施例3)
本実施例3では、本発明によるイオン注入装置のうち、特に、試料に投射したステンシルマスクの像歪みを口径比の5次まで実質的に消去できる手段を備えたイオン注入装置を説明する。
【0053】
従来例としては、ステンシルマスクのパターンをレジストに露光する装置としてイオン投射リソグラフィ装置が特開平2−65117号(公知例5)がある。
【0054】
さて、上記公知例5や本発明の装置等、ステンシルマスを用いるイオン投射装置においては、イオン投射加工のスループットを向上させるために、できるだけ大きなステンシルマスクを使えることが要求される。これは複数の小さなステンシルマスクを交換する作業が増えるとスループットが低下するためである。また、このような装置においては、試料上でのステンシルマスクの像の歪みをできるだけ小さくすることが求められる。ところが、これらは相反する要求で、ステンシルマスクを投射するためのレンズ(軸対称の電磁レンズまたは静電レンズ)は除去できない大きな幾何収差を持ち、ステンシルマスクを大きくするとそのレンズの軸外部分を使用するので投射したステンシルマスクの像は周辺部に行くほど大きく歪む(像位置がずれる)からである。一方、上記レンズの大きさは現状では直径数10cmくらいが技術的に、また、装置として一般的寸法として限度である。従って、限られたレンズの大きさに対し、できるだけ大きなステンシルマスクを用いて、歪ができるだけ小さい像を形成する光学系が求められる。
【0055】
レンズの口径(またはレンズの厚み)に対するステンシルマスクの大きさ(またはステンシルマスクを透過したビームがレンズを通る部分の大きさ)の比を口径比B(Bは1より十分小さい)とすると、投射した像の歪み(像の端で生じる像ずれの大きさ)は、Bのn乗(nは正の奇数)に比例する量で表される。単純な1段レンズでは3次(n=3)の歪みが最低次数の歪みである。図16にBとBのn乗との関係をグラフに示す。この図から判ることは、もし何らかの方法で実質的に低次の歪みを消去することができれば、一定の像歪みの許容値のもとで、より大きなステンシルマスクが使えることである。
【0056】
上記公知例5では2段の投射レンズを用い、試料上に投射されるステンシルマスクの像の3次歪みを実質的に消去する工夫、つまり、試料の高さを収束面に対して少し上にずらす方法を使っている。この方法によって、単純な1段の投射レンズを使うシステムに比べ、より大きなステンシルマスクを使うことができる。
しかしながら、上記従来の技術では試料に投射したステンシルマスクの像にはまだ5次の歪みが残っているため、あまり大きなステンシルマスクを使うことはできない。
【0057】
上記課題を解決するために、本実施例3では以下の改良を行なっている。(1)照射光学系に照射レンズを設け、この照射レンズでステンシルマスクにイオンビームを照射するとともにステンシルマスクの前方に上記イオンビームの収束点を作るように動作させる。(2)投射光学系には投射レンズを1段のみ設け、照射レンズの収束点がこの投射レンズのほぼ中心になるように配置する。(3)照射光学系内にステンシルマスク上でイオンビームを走査する走査偏向器を設ける。(4)上記走査と連動して、上記照射レンズの収束点の位置ずれを補正する手段を設ける。
【0058】
上記(1)および(2)の手段によって、投射レンズの軸外を使用しないので試料上での像歪みは僅かしか残らない。正確には、投射レンズは照射光学系の3次幾何収差で生じる上記収束点の広がりによって間接的に僅かな像歪みを生じる。ここでは、照射光学系(照射レンズや走査偏向器)の大きさがステンシルマスクの大きさを間接的に制限し、上記像歪みは口径比(照射光学系の口径対ステンシルマスクの大きさ)の9(=3×3)次が最低次となる。すなわち、口径比の9次未満の像歪みは実質的に消去される。また、投射レンズを上記収束点の広がりに対して十分大きくすれば、像歪みの絶対値も小さくなる。さらに、上記(3)および(4)の手段によって、照射光学系の幾何収差が補正し僅かに残った試料上の像歪みが更に小さくなる。正確にはイオンビームの走査と連動して照射光学系の最低次の3次幾何収差を、軸外の部分ごとに部分的に補正することにより(5次幾何収差は残る)、投射レンズが間接的に発生する像歪みは上記口径比の15(=5×3)次が最低次となる。すなわち、口径比の15次未満の像歪みは実質的に消去される。
【0059】
〈実施例3の第1形態〉
以下、本発明によるイオン注入装置の具体的な実施例の詳細を図とともに説明する。図15は本発明によるイオン注入装置を示す構成図であり、図16はステンシルマスク対レンズ口径比と像歪みとの関係を示す模式図である。本装置は、イオン源401(ホウ素イオンを放出する液体金属イオン源)より引き出されたイオンビーム402は、照射光学系403によりステンシルマスク404に照射される(加速電圧は10kV)。ステンシルマスク404にはパターンを持つ貫通孔が設けられ、ステンシルマスク404はマスクステージ405に保持されている。ステンシルマスクを透過したイオンビーム402は投射光学系406により試料407に投射される(加速電圧は10kV)。投射光学系406はステンシルマスク404の像を試料407上に縮小して投射する(縮小率は1/8)。
試料407は試料ステージ408に移動可能に保持されている。
【0060】
照射光学系403は照射レンズ410(3枚電極の静電レンズ)と、レンズ411(2枚電極の静電レンズ)と制限アパチャ412とを含む。レンズ411はイオンビーム402を必要十分な強度で引き出すもので、不要な分は制限アパチャ412で制限している。イオンビーム402の電流は約200nAである。照射レンズ410はイオン源の像を約1倍で結像するようにイオンビーム402を集束しながら、ステンシルマスク404に照射している。照射レンズ410の中心とイオン源401の距離は約700mmである。照射レンズ410は加速モードのアインツエルレンズをなしており、その両端の電極は接地され、中心電極は約−26kVに保たれている。照射レンズ410の厚みは500mm、直径は600mmである。ここで、一度に投射可能なステンシルマスク404のパターンの大きさは25mm角である。
【0061】
投射光学系406は投射レンズ420(3枚電極の静電レンズ)と、ブランキング偏向器421(2極の静電偏向器)と、ブランキングアパチャ422とを含んでいる。イオンビーム402はブランキング偏向器421によってブランキングアパチャ422上で偏向されることにより試料407から遮断される。投射レンズ420はステンシルマスク404の像を試料407上に1/8倍で結像するようにイオンビーム402を収束する。投射レンズ420の中心とステンシルマスク404との距離は約600mmである。投射レンズ420は加速モードのアインツエルレンズであり、その両端の電極は接地され、中心電極は約−39kVに保たれている。ただし、倍率補正のために投射レンズ420の最終段の電極と試料407は同電位に保たれ、接地電位より数V変えられるようにしてある。投射レンズ420の厚みは100mm、直径は150mmである。
【0062】
本実施例の特徴は、投射光学系406に1段のみの投射レンズ420を設けるとともに、照射光学系403に照射レンズ410を設けて、ステンシルマスク404を透過したイオンビーム402を投射レンズ420のほぼ中心に集束させることにある。これにより、試料407上に投射されたステンシルマスク404の像には口径比の9次未満の歪みが実質的に消去される。像歪みの許容値を一定とすると、図16からわかるように、従来の5次の像歪みがある場合と比べて倍程度の大きさのステンシルマスクが使えることになる。実際に試料407上に投射した25mm角のステンシルマスク404の像は、その端で像歪み(ズレ)が約0.5μm、像ぼけが0.3μmと非常に小さいものであった。
【0063】
ここで、投射レンズ420と照射レンズ410との強度調整の一つの方法を示す。格子状にマークパターンを配置したステンシルマスク404を用意し、まず、投射レンズ420の強度をいくつか変えて、レジストを塗った試料407を露光、現像して中心のマークパターンの像ぼけを計測する。このぼけが最小になるように投射レンズ420の強度を設定する。次に、照射レンズ410の強度を幾つか変えて、レジストを塗った試料407を露光、現像してマークパターン全体の像分布を計測する。このマークパターンの像分布が中心近傍で樽型と糸巻き型の中間になるように照射レンズ強度を設定する。
【0064】
本実施例によれば、投射されたステンシルマスクの像の歪みが微小になるのでイオン注入の寸法精度が向上する効果がある。また、イオン注入の寸法精度を従来のままにすると、ステンシルマスクを倍程度の大きさにできるのでイオン注入のスループットを約4倍にできる効果がある。なお、本実施例では投射レンズ420に3枚電極の静電レンズを使っているが、3枚電極は試料407へのイオンビーム402の加速電圧が50kV位までの低い場合に十分なレンズ作用を得るために有効なものである。2枚電極の静電レンズでも4枚以上の電極の静電レンズでも同様な作用は行なえるが、3枚以上の電極を持つ静電レンズでは各電極の電位配分を少し変えることによって、レンズ主面をずらしレンズ倍率を補正できる利点がある。
【0065】
〈実施例3の第2形態〉
実施例3の第2形態の概略構成図を図17に示す。イオン源441(リンイオン放出用液体金属イオン源)より引き出されたイオンビーム442は照射光学系403’により、ステンシルマスク404に照射される(加速電圧は10kV)。ステンシルマスク404を透過したイオンビーム442は投射光学系406’により試料407に照射される(加速電圧は20kV)。投射光学系406’はステンシルマスク404の像を試料407上に縮小して投射する(縮小率は1/8)。ステンシルマスク404やマスクステージ405、照射レンズ410、試料ステージ408は図15と同じである。
【0066】
照射光学系403’は照射レンズ410(3枚電極の静電レンズ)と、レンズ411’(3枚電極の静電レンズ)と、制限アパチャ412’と、E×B質量分離器414と、アライメント偏向器415と、ブランキング偏向器421’(2極の静電偏向器)と、ブランキングアパチャ422’と、走査偏向系430とを含んでいる。レンズ411’(3枚電極静電レンズ)はイオンビーム442を必要十分な強度で引き出し、クロスオーバ413を形成する。イオンビーム442の不要な分は制限アパチャ422’で制限されている。イオンビーム442はブランキング偏向器421’によってブランキングアパチャ422’上で偏向されることにより試料407から遮断される。またイオンビーム442のうち不要なイオン種成分はE×B質量分離器414により質量分離アパチャを兼ねたブランキングアパチャ422’上で偏向されることにより試料407から遮断される。
なお、E×B質量分離器414はイオンビーム442のクロスオーバ413をその中心に配置しており色収差の発生を抑えている。アライメント偏向器415はイオンビーム442を偏向して、イオンビーム442の軸が照射レンズ410と投射レンズ420の中心軸に通るようにする。なお、質量分離器414と、ブランキング偏向器421’、ブランキングアパチャ422’とを照射光学系403’内に設けたのはイオンビーム442の照射によるステンシルマスク404の劣化を抑えるためであって、これらを投射光学系406’内に設けても作用は変わらない。
【0067】
投射光学系406’は、投射レンズ420(3枚電極の静電レンズ)と、位置補正偏向器423(8極の静電偏向器)と、制限アパチャ424と、回転補正器425(電磁コイル)を含んでいる。位置補正偏向器423はステンシルマスク404を透過したイオンビーム442を試料407上で偏向することで試料407上でのステンシルマスク404の像位置を補正する。制限アパチャ424は装置内で散乱したイオンビームなどを除去する。回転補正器425はレンズ強度の無視できる電磁レンズで、ステンシルマスク404を透過したイオンビーム442を回転させて試料407上でのステンシルマスク404の像回転を補正する。
投射レンズ420は上記第1形態と同じであるが、イオンビーム442を10kVから20kVに加速するために両端の電極に印加する電圧を非対称にした。
【0068】
本実施例の第1の特徴は、投射光学系406’に投射レンズ420(3枚電極の静電レンズ)を1段のみ設けるとともに、照射光学系403’に照射レンズ410(3枚電極の静電レンズ)を設けて、イオンビーム442を投射レンズ420のほぼ中心に集束させることにある。これによって、試料上での像歪みがレンズ口径比の9次未満は消去される。第2の特徴は、イオンビーム442のクロスオーバ413に偏向中心を持つ走査偏向系430によりイオンビーム402をステンシルマスク404上で走査することである。これにより、イオンビーム442の強度分布に左右されずにステンシルマスク404上でのイオン照射分布を一様にすることが可能となる。走査偏向系430は非点補正器を兼ねた主走査偏向器431(8極の静電偏向器)と副走査偏向器432(8極の静電偏向器)からなり、その合成偏向中心がクロスオーバ413になるように偏向の強度比を設定してある。E×B質量分離器414がない場合には走査偏向器を一段にして、その中心をクロスオーバ413においてもよい。本実施例の第3の特徴は、イオンビーム2の走査偏向系430によるステンシルマスク4上での走査と連動して照射光学系403’によるイオンビーム442の収束状態を補正(ダイナミック補正)することにある。照射レンズ410の軸外にイオンビーム442を通すと、そこでは3次幾何収差のために軸外方向に少しレンズ作用が強く働くので、イオンビーム2の収束点が投射レンズ420に対して少し手前外側にずれる。そこで、非点補正器431の強度を上げるとともに、照射レンズ410の強度を少し下げることによって、上記収束点のずれを補正する。なお、照射レンズ410の強度を調整する代わりにレンズ411’の強度を変えても同様の作用ができる。これにより、試料407上に投射されたステンシルマスク404の像に口径比の15次未満の歪みが実質的に消去できる。像歪みの許容値を一定とすると図16から判るように、従来の5次の像歪みがある場合と比べて3倍程度の大きさのステンシルマスクが使えることになる。さらには、上記走査に合わせて走査偏向系430の偏向強度比を変えて上記集束点の横方向のずれも補正すると、試料407上でのステンシルマスク404の像ぼけがさらに改善される。実際に全てのダイナミック補正を行なった状態で、試料407上に投射した40mm角のステンシルマスク4の像は、その端で像歪み(ずれ)が約0.4μm、像ぼけが0.5μmと非常に小さいものであった。
【0069】
ここで、投射レンズ420と照射レンズ410との強度調整の一つの方法を示す。基本的な方式は第1形態で説明したものと同じであるが、次に示す点をそれぞれ変更する。すなわち、(1)試料として検出マークを一つ備えたものを用意する。(2)イオンビームをステンシルマスク上の特定のマークのみを照射するように走査偏向系を調整する(この間、走査はしない)。(3)試料407上の検出マークを上記ステンシルマスク404上の特定のマークに対応する位置になるように試料ステージ408を移動する。(4)イオンビーム442を位置補正偏向器でライン状に走査し、図示されていない2次電子検出器でイオン照射によってマークから発生する信号を捕える。(5)上記信号をマークの露光像の代わりとして、そのぼけや位置ずれを判断する。上記のようにすれば、第1形態のようにレジストの露光、現像の作業を伴わずに実時間で投射レンズ420と照射レンズ410との強度調整ができる。
【0070】
本実施例によれば、投射されたステンシルマスクの像の歪みが微小になるので、イオン注入精度が向上させる効果がある。また、イオン注入精度を従来のままにすると、ステンシルマスクを3倍程度の大きさにできるのでイオン注入のスループットを約9倍にできるという効果がある。なお、本第2形態では、走査偏向系を照射レンズの前段に配置したが、これを逆転することもできる。この場合、走査偏向系の口径を大きくする必要があるが、上記実施例と同様の効果がある。
この場合の走査偏向系430の偏向中心となるイオンビーム402のクロオーバは投射レンズ420の中心である。また、照射光学系403’内にクロスオーバ413を作らなくても試料像の歪みの改善には同様の効果がある。この場合の走査偏向系430の偏向中心となるイオンビーム402のクロスオーバーはイオン源441の仮想物点である。
【0071】
上述した本発明による2つの形態のイオン注入装置によって、試料上に投射されるステンシルマスクの像歪みを微小にできるので、試料に高精度でイオン注入ができる効果があるとともに、大きなステンシルマスクを使えるのでイオン注入のスループットを向上させることができる。
【0072】
また、上記実施例3では2形態のイオン注入装置の例を示したが、ここで示したイオン光学系の基本思想は投影型イオン縮小露光装置や、投影型イオン光学系と反応ガス供給系を兼ね備えて微細パターンエッチングや微細パターンデポジションを行なう微細パターン加工装置など投影型イオンビーム装置、更には投影型電子ビーム投射装置にも同様に適用できる。電子投射装置の場合には静電レンズや静電偏向器を、電磁レンズや電磁偏向器に置き換えることが可能である。
(実施例4)
図8、図9で示したように、予め設けたマークを基準にパターンイオンビームの投射位置を定めた。本実施例は、その具体的実施方法を示す。
【0073】
例えば図17においてステンシルマスク404には、イオン注入領域に対応する開口パターンの近傍に小開口を設置し、試料407にはマークを形成しておく。マークは図8、9のような凹部でもよいし、凸型のものでもよい。この形成方法は問わない。次に、イオンビームをステンシルマスク上の上記小開口のみを照射するように走査偏向系を調整する。この時、イオンビームはステンシルマスク上で走査させない。試料407上のマークをステンシルマスク404上の小開口に対応する位置になるように試料ステージ408を移動する。イオンビーム442を位置補正偏向器でライン状に走査し、図示されていない2次電子検出器でイオン照射によってマークから発生する信号を捕える。事前に求めた小開口を通過して試料に投射させる位置と開口パターンを通過して試料に投射される位置の関係と、上の操作よって得たマーク位置を基に、所望のイオン注入領域に開口パターンを通過したイオンビームが投射する位置に試料ステージ位置を補正する。このような操作によって所望の位置にイオン注入することができる。
【0074】
また、別の例として、図12から図15、図17に示されているイオン光学系に走査型電子顕微鏡を設置する例である。イオンビームの投射領域の近傍の試料表面状態を走査型電子顕微鏡による2次電子像によって観察することができる。
電子ビーム軸とイオンビーム軸のズレを事前に計測しておき、電子ビームによって試料上のマークを検出して、その時のマーク座標からイオン注入すべき領域の座標を計算し、事前に計測した電子ビーム軸とイオンビーム軸のズレを考慮して、イオンビーム軸に所望のイオン注入領域の中心が来るように試料ステージを補正した後、所望のパターンのイオン注入を行なってもよい。
(実施例5)
本実施例は、複数個の処理室を持ち、その内の少なくとも1個のチャンバが実施例2または実施例3で示したイオン注入装置であるマルチチャンバプロセス装置の上面図である。このマルチチャンバプロセス装置は、プロセスチャンバ500、501、502、503とロードロックチャンバ504A、504Bが、ウェハハンドラ505、505’を備えてウェハ506、506’を夫々のチャンバに搬送する搬送チャンバ507にゲートバルブ508A、508B、508C、508D、508E、508Fを介して結合された装置で、基本的にはウェハを大気に触れさせることなく連続して複数のプロセスが処理できる。チャンバの数、各チャンバに設置する装置はこの例に限定されることはない。
【0075】
図15におけるチャンバ500、501、502、503は本発明によるイオン注入装置であり、特に、チャンバ500、502はボロンイオンを注入するためのイオン源とステンシルマスクを有するイオン注入装置であり、501、503はそれぞれリンイオン、ヒ素イオンを注入するためのイオン注入装置である。
ロードロックチャンバ504Aに投入したウェハ509は、ゲートバルブ508F開放後、ウェハハンドラ505によって搬送チャンバ507に導入される。ゲートバルブ508E閉鎖後、ゲートバルブ508Aを開放し、ウェハ509(506)を本発明によるイオン注入装置のサンプルステージ(図示せず)に設置する。その後、ゲートバルブ508Aを閉鎖し、所定の真空度まで真空引きするが、各チャンバとも超高真空状態であるため、イオン注入装置におけるステージの排気は短時間で済む。この状態で、ボロンパターンイオンビームによるイオン注入を開始する。所定のイオン注入条件でウェハ全体に渡ってイオン注入することでこの工程は完了する。必要な場合、ウェハ506をチャンバ500からチャンバ501に移動させ、次のイオン注入を開始する。この間のゲートバルブの開閉は上記と同様である。また、チャンバ502には、チャンバ500と別のパターンを有するステンシルマスクを設置して、別工程のイオン注入を並行して行なってもよい。このような工程により、少なくとも1種類のイオン注入を確実に、短時間に、更に、大気に曝すことなく実行できる。このように、本発明によるイオン注入装置はレジストを必要としないため、レジスト塗布、洗浄というウエットな工程がなくなり完全ドライ化され、他のドライプロセス用半導体製造装置、分析装置と連結させることができる。これにより、半導体装置の製造が効率的となるとともに、歩留りが向上した。
【0076】
以上の本実施例で示したイオン注入方法およびイオン注入装置による効果をまとめると以下のようになる。
(1)半導体プロセスにおいて、レジストレスでイオン注入できるため、レジスト塗布、露光、現像、従来のイオン注入、アッシング工程が削減される。それに伴って、これら装置に係る担当者の人件費、装置の運転費用、メンテナンス費が削減され、更に、これら装置と本発明によるレジストレスイオン注入装置の置換により、半導体製造装置の占有床面積が削減される。これらを総合的に評価して、本発明によるレジストレスイオン注入方法を用いることで、半導体装置の製造コストを削減することができた。
(2)本発明によるイオン注入方法は、レジストが不要であるため、レジスト塗布というウエット工程がなくなり、イオン注入前後の工程が完全ドライ化できる。これにより、多数の製造装置を連結したマルチチャンバプロセス装置に取り付けることができる。
(3)上記(1)に記載の如くイオン注入前後の工程が削減されるため、各工程間のウェハの搬送作業が削減される。これに伴い搬送時に生じる異物の付着などの危険性が低減され、デバイス製造の歩留が向上する。
【図面の簡単な説明】
【0077】
【図1】本発明によるイオン注入方法の概念を説明するための概略図である。
【図2】本発明によるイオン注入装置の概略を説明するための図である。
【図3】本発明によるイオン注入装置の概略を説明するための図で、特に(a)は所望のイオン注入領域のパターン、(b)は(a)のパターンに対応するステンシルマスク例を示す図である。
【図4】本発明によるイオン注入方法の概念を説明するための図である。
【図5】メモリチップ内の概略構成を説明するためのブロック図である。
【図6】メモリチップ内のウエル領域の形成レイアウトの一例であり、特に(a)はp型ウェル領域のパターン、(b)はn型ウェル領域のパターンを示すための図である。
【図7】電圧印加回路とウェル領域の関係の一例を説明するため図で、特に(a)はn型とp型の小ウェル領域が混在する場合で、(b)はn型MOSトランジスタ同士、p型MOSトランジスタ同士をまとめて同じウェル領域に形成した例を説明するための図である。
【図8】本発明によるイオン注入方法を用いた半導体装置の形成方法の概略を示す図で、特に、ウェル領域の形成手順を説明するための断面図である。
【図9】本発明によるイオン注入方法を用いた半導体装置の形成方法の概略を示す図で、特に、ウェル領域に厚膜の酸化膜を形成する手順を説明するための断面図である。
【図10】本発明によるイオン注入方法を用いた半導体装置の形成方法の概略を示す図で、特に、チャネルドープ層を形成するための手順を説明するための断面図である。
【図11】本発明によるイオン注入方法を用いた半導体装置の形成方法の概略を示す図で、特に、拡散層を形成する方法を示す断面図である。
【図12】本発明によるイオン注入装置の一実施例の概略構成を示す図である。
【図13】本発明によるイオン注入装置の別の実施例の概略構成を示す図である。
【図14】本発明によるイオン注入装置の更に別の実施例の概略構成を示す図である。
【図15】本発明による別のイオン注入装置の構成を示す図である。
【図16】ステンシルマスク対レンズ口径比と像歪みの関係を示す図である。
【図17】本発明による更に別のイオン注入装置の構成を示す図である。
【図18】本発明によるイオン注入装置の別の実施例で、特にマルチチャンバプロセス装置に適用した例を説明するための概略構成図である。
【図19】ホトレジスト工程を経る従来のイオン注入方法を用いた半導体装置の形成方法の概略を示す図で、特に、ウェル領域の形成手順を説明する図である。
【図20】ホトレジスト工程を経る従来のイオン注入方法を用いた半導体装置の形成方法の概略を示す図で、特に、チャネルドープ領域の形成手順を説明する図である。
【図21】従来用いられているイオン注入装置の概略構成図である。
【図22】ホトレジストを用いる従来のイオン注入方法を説明するための図である。
【図23】従来のイオン注入方法を用いて形成される半導体装置の断面形状である。
【図24】細束ビームでイオン注入を行なう集束イオンビーム装置の概略構成図である。
【図25】試料に近接してステンシルマスクを設置したイオン注入法の従来例を説明するための図である。
【符号の説明】
【0078】
1…開口パターン、2、12…ステンシルマスク、3…イオンビーム、4…パターンイオンビーム、5、18…イオン投射光学系、7…試料、8…イオン注入領域、10…イオン注入装置、11…イオン源、15…イオン照射光学系。
【0079】
40…イオンビーム、41…レジスト、42…ウェハ、43…イオン注入すべき領域(開口)、44…イオン注入領域。
【0080】
50…イオンビーム、51…レジストマスク、52…試料、53…開口パターン、65…レジスト、
102…質量分離器、105…質量分離絞り、108…パターンイオンビーム、109…不要イオン、110…ゲートバルブ。
【0081】
201…シリコン基板、202、216…シリコン酸化膜、203、207、220、232、235…ステンシルマスク、204…リンイオン、205、222、234…n型イオン注入領域、208、217、233…フッ化ボロンイオン、209、118、234…p型イオン注入領域、210、245…n型ウェル領域、211…p型ウェル領域、215、241…シリコン窒化膜、221、236…ヒ素イオン、231…多結晶シリコン層。
【0082】
302…イオン源、311…イオン照射光学系、319…イオン投射光学系、313…パターンイオンビーム、
401、441…イオン源、403、403’…照射光学系、404…ステンシルマスク、405…マスクステージ、406、406’…投射光学系、407…試料、408…試料ステージ、410…照射レンズ、420…投射レンズ、422、422’…アパチャ。
【0083】
MAT…メモリマット、XDEC…行デコーダ、AD…外部アドレス信号、
XSDEC…電圧印加回路、SAC…センスアンプ、YDEC…列デコーダ、I/O…入出力、CS…チップ選択信号、CHIP…チップ、CTRL…制御回路、 PW-MAT、PW-XSDEC、PW-XDEC、PW-SAC、PW-YDEC、PW-I/O、PW-CTRL…p型ウェル領域のパターン
NW-XSDEC、NW-XDEC、NW-SAC、NW-YDEC、NW-I/O、NW-CTRL…n型ウェル領域のパターン。

【特許請求の範囲】
【請求項1】
イオン源と、所定のパターンが形成されたマスクと、当該マスクを保持するマスクステージと、前記イオン源から放射されたイオンビームを前記マスクに照射し、当該マスクを通過した投射イオンビームを試料に照射する光学系と、前記試料の前記投射イオンビームの照射領域に反応ガスを供給するためのガス供給手段とを備えることを特徴とする試料加工装置。
【請求項2】
イオンビームを放出するイオン源と、
第一のレンズと、
第二のレンズと、
前記イオンビームを成形するマスクとを有し、
当該マスクは前記第一のレンズと前記第二のレンズの間に配置され、
前記マスクを通過した成形イオンビームが前記第二のレンズを介して試料に投射される領域に反応ガスを供給するためのガス供給手段とを備えることを特徴とする試料加工装置。
【請求項3】
請求項1または2に記載の試料加工装置において、
前記投射イオンビームの照射領域を含む領域に電子ビームを照射して前記試料の表面状態を観察できる走査電子顕微鏡を備えることを特徴とする試料加工装置。
【請求項4】
投射イオンビームを試料に照射する投射光学系と、
当該投射イオンビームの照射領域を含む領域に電子ビームを照射して前記試料より生じる2次電子を検出する走査電子顕微手段と、
前記試料の前記投射イオンビームの照射領域にガスを供給するガス供給手段とを備えることを特徴とする試料加工装置。
【請求項5】
請求項1に記載の試料加工装置において、
前記光学系は、
前記マスクに前記イオンビームを照射させる照射レンズと、
前記マスクを通過した前記イオンビームを前記試料に投射させる投射レンズとを少なくとも有することを特徴とする試料加工装置。
【請求項6】
請求項5に記載の試料加工装置において、
前記照射レンズ、前記投射レンズの少なくともいずれかがアインツェルンレンズであることを特徴とする試料加工装置。
【請求項7】
請求項5または6に記載の試料加工装置において、
前記投射レンズは一段で構成され、
当該投射レンズの略中心に前記イオンビームが集束されることを特徴とする試料加工装置。
【請求項8】
請求項1または2に記載の試料加工装置において、
前記イオン源から放出された前記イオンビームを質量分離する質量分離器と、所望のイオンビームを選択する質量分離アパチャを備えることを特徴とする試料加工装置。
【請求項9】
請求項1,2,5のいずれかに記載の試料加工装置において、
前記イオン源はプラズマイオン源であることを特徴とする試料加工装置。
【請求項10】
請求項1,2,5のいずれかに記載の試料加工装置において、
前記イオン源は電界電離イオン源であることを特徴とする試料加工装置。
【請求項11】
請求項1または2に記載の試料加工装置において、
前記マスクはステンシルマスクであることを特徴とする試料加工装置。
【請求項12】
所定のパターンが形成されたマスクにイオンビームを照射し、当該マスクを介して成形された投射イオンビームを試料の所望領域に投影するとともに、当該試料の前記投射イオンビームの投射領域に反応ガスを供給することによって加工を行なうことを特徴とする試料加工方法。
【請求項13】
請求項11に記載の試料加工方法において、
前記反応ガスは、前記試料に対してエッチング加工を行なうための反応ガスであることを特徴とする試料加工方法。
【請求項14】
請求項11に記載の試料加工方法において、
前記反応ガスは、前記試料に対してデポジション加工を行なうための反応ガスであることを特徴とする試料加工方法。
【請求項15】
請求項11に記載の試料加工方法において、
前記投射イオンビームの投射領域及びその近傍に電子ビームを照射することを特徴とする試料加工方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2007−42655(P2007−42655A)
【公開日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2006−222881(P2006−222881)
【出願日】平成18年8月18日(2006.8.18)
【分割の表示】特願平7−101924の分割
【原出願日】平成7年4月26日(1995.4.26)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】