説明

内燃機関の触媒劣化診断装置

【課題】誤判定の可能性を低減し診断精度の向上を図ることができる内燃機関の触媒劣化診断装置を提供する。
【解決手段】内燃機関の排気通路に配置された触媒の劣化診断装置であって、触媒の下流において検出される酸素濃度に基づいて、内燃機関に供給される空気と燃料との空燃比を強制的にリッチ側とリーン側との間で変化させるアクティブ空燃比制御手段と、アクティブ空燃比制御手段による空燃比制御時における触媒の酸素吸蔵能を計測し、この計測された酸素吸蔵能に基づき触媒の劣化を診断する診断手段とを備える内燃機関の触媒劣化診断装置において、アクティブ空燃比制御手段による空燃比のリッチ側制御時に、内燃機関から排出される出ガスに含まれる少なくともH2成分を増大させるH2成分増大制御手段を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の排気通路に配置された触媒の劣化を診断する触媒劣化診断装置に関する。
【背景技術】
【0002】
一般に車両用の内燃機関においては、その排気系に排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(O2ストレージ能:OSC)を有するものがあり、これは、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、すなわちリーンになると排気ガス中に存在する過剰酸素を吸着保持し、触媒に流入する排気ガスの空燃比がストイキよりも小さくなると、すなわちリッチになると吸着保持された酸素を放出するという特性を有している。例えばガソリンエンジンでは、触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少振れてしまった場合でも、三元触媒による酸素の吸蔵・放出作用により、そのような空燃比ずれを吸収し浄化効率を維持することができる。
【0003】
ところで、触媒が劣化すると触媒の浄化効率が低下する。一方、触媒の劣化度と酸素吸蔵能の低下度との間にはともに貴金属を介する反応であるため相関関係があり、酸素吸蔵能が低下したことを検出することで触媒が劣化したことを検出することができる。そこで、触媒に流入する排気ガスの空燃比を強制的にリッチ側及びリーン側に切り替えるアクティブ空燃比制御を行い、このアクティブ空燃比制御の実行に伴わせて、リッチ側制御時における触媒の酸素放出能力とリーン側制御時における酸素吸着能力とを平均することにより酸素吸蔵能(容量)を求め、この酸素吸蔵能に基づいて触媒の劣化を診断する方法(所謂Cmax法)が採用されている(例えば、特許文献1参照)。
【0004】
【特許文献1】特開平5−133264号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、このCmax法においては、アクティブ空燃比制御でのリーン側制御時に触媒に酸素を吸着させる酸素吸着能力と、リッチ側制御時に触媒から酸素を放出させる酸素放出能力とに基づき酸素吸蔵能を求めるようにしているが、リーン側制御時の酸素吸着速度とリッチ側制御時における酸素放出速度とには差異が存在することが判明した。より詳しくは、リッチ側制御時における触媒からの酸素放出速度はリーン側制御時の触媒への酸素吸着速度に比べて遅く、リッチ側制御時において酸素が放出しきれない状態であってもリッチガスが未反応で触媒を通り抜け得るので、その下流に設けられた酸素センサがリッチ反転することになる。その結果として、酸素吸着能力と酸素放出能力とに基づき計算により求められる触媒の酸素吸蔵能が実際の酸素吸蔵能に比べ小さくなってしまう。この酸素放出能力は触媒の劣化が進む程低下するので、劣化触媒程、計測された酸素吸蔵能値と実際の酸素吸蔵能との乖離比率が大きくなり、触媒の正常か異常かの判定が困難となって誤判定を招く可能性が増大するという問題があった。
【0006】
そこで本発明は、かかる事情に鑑みて創案されたものであり、その目的は、誤判定の可能性を低減し診断精度の向上を図ることができる内燃機関の触媒劣化診断装置を提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成する本発明に係る内燃機関の触媒劣化診断装置の一形態は、内燃機関の排気通路に配置された触媒の劣化診断装置であって、該触媒の下流において検出される酸素濃度に基づいて、内燃機関に供給される空気と燃料との空燃比を強制的にリッチ側とリーン側との間で変化させるアクティブ空燃比制御手段と、該アクティブ空燃比制御手段による空燃比制御時における前記触媒の酸素吸蔵能を計測し、この計測された酸素吸蔵能に基づき前記触媒の劣化を診断する診断手段と、を備える内燃機関の触媒劣化診断装置において、前記アクティブ空燃比制御手段による空燃比のリッチ側制御時に、内燃機関から排出される出ガスに含まれる少なくともH2成分を増大させるH2成分増大制御手段を備えることを特徴とする。
【0008】
上記形態の内燃機関の触媒劣化診断装置によれば、アクティブ空燃比制御手段による空燃比のリッチ側制御時において、H2成分増大制御手段により内燃機関から排出される出ガスに含まれる少なくともH2成分が増大される。この少なくともH2成分が増大された出ガスが触媒を流通すると、リーン側制御時に触媒に吸着保持されている酸素に対して反応性の良いH2成分の作用により、酸素放出速度が高められる。この結果、触媒に吸着保持されている酸素の全放出量も増大され、触媒の下流に設けられた酸素センサが、酸素が放出しきれない状態でリッチ反転することが抑制される。かくて、酸素吸着能力と酸素放出能力とに基づき計算により求められる触媒の酸素吸蔵能と実際の酸素吸蔵能との乖離が小さくなるので、誤判定の可能性を低減し診断精度の向上を図ることができる。
【0009】
ここで、前記H2成分増大制御手段によるH2成分増大制御は、前記触媒の酸素吸蔵能が所定値を下回ったときに実行されることが好ましい。
【0010】
この形態によれば、無用なH2成分増大制御が回避されるので燃費悪化を最小限に抑えることができる。
【0011】
前記診断手段は、前記H2成分増大制御手段によるH2成分増大制御が実行されたときに計測される酸素吸蔵能と、前記H2成分増大制御手段によるH2成分増大制御が実行されないときに計測される酸素吸蔵能との比較に基づき、前記触媒の劣化を診断するようにしてもよい。
【0012】
この形態によれば、硫黄被毒などに起因する一時的な、すなわち、可逆的な触媒劣化と非可逆的な触媒劣化とを区別することができ、診断精度の向上をより図ることができる。
【0013】
なお、前記H2成分増大制御手段は、インジェクタから噴射される燃料の噴射タイミングを当該運転状態での最適噴射時期から遅らせるものであってもよい。
【0014】
また、内燃機関が筒内に直接に燃料を噴射する筒内インジェクタを備える場合、前記H2成分増大制御手段は、複数回の分割噴射を一回の纏め噴射とするようにしてもよい。
【0015】
さらに、内燃機関が燃料と共に空気をも同時に噴射して燃料の微粒化を図るようにした、いわゆるエアアシストインジェクタを備える場合、前記H2成分増大制御手段は、このエアアシストインジェクタからの空気の噴射を停止するようにしてもよい。
【0016】
また、内燃機関が排気還流(EGR)装置を備える場合、前記H2成分増大制御手段は、EGRを増大するようにしてもよい。なお、EGRを増大するためには、内燃機関が吸気弁及び/又は排気弁の開閉タイミングを変更可能な、いわゆる可変動弁機構を備える場合、吸排気弁のオーバラップを大きくすることによってもよい。いわゆる内部EGRが増大するからである。
【発明の効果】
【0017】
本発明によれば、誤判定の可能性を低減し診断精度の向上を図ることができるという、優れた効果が発揮される。
【発明を実施するための最良の形態】
【0018】
以下、本発明を実施するための最良の形態を添付図面に基づき説明する。
図1は、本発明に係る内燃機関の触媒劣化診断装置の実施形態のシステム構成を示す概略図である。図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料及び空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は車両に搭載された多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。
【0019】
内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Vi及び各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。
【0020】
各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが組み込まれている。なお吸気ポート、サージタンク8及び吸気管13により吸気通路が形成される。
【0021】
本実施形態では、吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設されている。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。
【0022】
一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されており、排気管6には、O2ストレージ機能(酸素吸蔵能)を有する三元触媒からなる触媒11が取り付けられている。なお排気ポート、枝管及び排気管6により排気通路が形成される。触媒11の上流側と下流側とにそれぞれ、排気中の酸素濃度に基づいて排気空燃比を検出する空燃比センサ、すなわち触媒前センサ17及び触媒後センサ18が設置されている。触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、排気空燃比に比例した値の信号を出力する。他方、触媒後センサ18は所謂O2センサからなり、理論空燃比を境に出力値が急変する特性を持つ。
【0023】
上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、及び記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。
【0024】
触媒11は、これに流入する排気ガスの空燃比(A/F)が理論空燃比(ストイキ、例えば(A/F)s=14.6)近傍のときにNOx ,HC及びCOを同時に浄化する、いわゆる三元触媒である。そしてこれに対応して、ECU20は、内燃機関の通常運転時、触媒11に流入する排気ガスの空燃比すなわち触媒前空燃比(A/F)frが理論空燃比に一致するように空燃比を制御する。具体的にはECU20は、理論空燃比に等しい目標空燃比(A/F)tを設定すると共に、触媒前センサ17により検出された触媒前空燃比(A/F)frが目標空燃比(A/F)tに一致するように、インジェクタ12から噴射される燃料噴射量をフィードバック制御する。これにより触媒11に流入する排気ガスの空燃比は理論空燃比近傍に保たれ、触媒11において最大の浄化性能が発揮されるようになる。
【0025】
ここで、触媒11についてより詳細に説明する。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で保持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HC及びCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸着放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば酸化セリウムCeO2やジルコニアからなる。例えば、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリッチであると、触媒成分32の周囲に存在する酸素吸蔵成分に吸蔵されていた酸素が放出され、この結果、放出された酸素によりHC及びCOといった未燃成分が酸化され、浄化される。逆に、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸着し、この結果NOxが還元浄化される。
【0026】
このような酸素の吸放出作用により、通常の空燃比制御の際に触媒前空燃比(A/F)frが理論空燃比に対し多少ばらついたとしても、NOx、HC及びCOといった三つの排気ガス成分を同時に浄化することができる。よって通常の空燃比制御において、触媒前空燃比(A/F)frを敢えて理論空燃比を中心に微小振動させ、酸素の吸放出を繰り返させることにより排ガス浄化を行うことも可能である。
【0027】
ところで、新品状態の触媒11では前述したように細かい粒子状の触媒成分32が多数均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率の低下を引き起こし、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、すなわち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。
【0028】
このように、触媒11の劣化度と触媒11の持つ酸素吸蔵能の低下度とは相関関係にある。そこで本実施形態では、触媒11の酸素吸蔵能を検出することにより触媒11の劣化度を検出することとしている。ここで、触媒11の酸素吸蔵能は、現状の触媒11が吸蔵し得る最大酸素量である酸素吸蔵能値(OSC値又はCmax)の大きさによって表される。
【0029】
以下、本実施形態におけるメインルーチンにおいて実行される触媒劣化診断についてまず説明する。
【0030】
本実施形態の触媒劣化診断は前述のCmax法によるものを基本とする。そして触媒11の劣化診断に際しては、ECU20によりアクティブ空燃比制御が実行される。アクティブ空燃比制御において、触媒前空燃比(A/F)frは、所定の中心空燃比(A/F)cを境にリッチ側及びリーン側に強制的に(アクティブに)交互に切り替えられる。なおリッチ側に変化されたときの空燃比をリッチ空燃比(A/F)r、リーン側に変化されたときの空燃比をリーン空燃比(A/F)lと称す。このアクティブ空燃比制御によって触媒前空燃比(A/F)frがリッチ側又はリーン側に変化されているときに触媒の酸素吸蔵能値OSC(=Cmax)が計測される。
【0031】
なお、触媒11の劣化診断は、内燃機関1の定常運転時で且つ触媒11が活性温度域にあるときに実行される。触媒11の温度(触媒床温)の計測については、温度センサを用いて直接検出してもよいが、本実施形態の場合、内燃機関の運転状態から推定することとしている。例えばECU20は、エアフローメータ5によって検出される吸入空気量Gaと、クランク角センサ14の出力に基づいて検出される機関回転速度Ne(rpm)とで規定される運転状態、及び吸入空気量Gaの累積値などに基づいて、予め実験等を通じて設定されたマップ又は関数を利用し、触媒11の温度を推定する。
【0032】
図3(A),(B)にはそれぞれ、アクティブ空燃比制御実行時における触媒前センサ17及び触媒後センサ18の出力が実線で示されている。また、図3(A)には、ECU20内部で発生される目標空燃比(A/F)tが破線で示されている。触媒前センサ17及び触媒後センサ18の出力値はそれぞれ触媒前空燃比(A/F)fr及び触媒後空燃比(A/F)rrの値に対応する。
【0033】
図3(A)に示されるように、目標空燃比(A/F)tは、中心空燃比としての理論空燃比(A/F)sを中心として、そこからリッチ側に所定の振幅(リッチ振幅Ar、Ar>0)だけ離れた空燃比(リッチ空燃比(A/F)r)と、理論空燃比(A/F)sからリーン側に所定の振幅(リーン振幅Al、Al>0)だけ離れた空燃比(リーン空燃比(A/F)l)とに強制的に、且つ交互に切り替えられる。そしてこの目標空燃比(A/F)tの切り替えに追従して、実際値としての触媒前空燃比(A/F)frも、目標空燃比(A/F)tに対し僅かな時間遅れを伴って切り替わる。このことから目標空燃比(A/F)tと触媒前空燃比(A/F)frとは時間遅れがあること以外等価であることが理解されよう。
【0034】
図示例において、リッチ振幅Arとリーン振幅Alとは等しい。例えば理論空燃比(A/F)s=14.6、リッチ空燃比(A/F)r=14.1、リーン空燃比(A/F)l=15.1、リッチ振幅Ar=リーン振幅Al=0.5である。通常の空燃比制御の場合に比べ、アクティブ空燃比制御の場合は空燃比の振り幅が大きく、すなわちリッチ振幅Arとリーン振幅Alとの値は大きい。
【0035】
ところで、目標空燃比(A/F)tが切り替えられるタイミングは、触媒後センサ18の出力がリッチからリーンに、又はリーンからリッチに切り替わるタイミングである。ここで図示されるように、触媒後センサ18の出力電圧は理論空燃比(A/F)sを境に急変し、触媒後空燃比(A/F)rrが理論空燃比(A/F)sより小さいリッチ側の空燃比であるときその出力電圧がリッチ判定値VR以上となり、触媒後空燃比(A/F)rrが理論空燃比(A/F)sより大きいリーン側の空燃比であるときその出力電圧がリーン判定値VL以下となる。ここでVR>VLであり、例えばVR=0.59(V)、VL=0.21(V)である。
【0036】
図3(A)及び(B)に示されるように、触媒後センサ18の出力電圧がリッチ側の値からリーン側に変化してリーン判定値VLに等しくなった時(時刻t1)、目標空燃比(A/F)tはリーン空燃比(A/F)lからリッチ空燃比(A/F)rに切り替えられる。その後、触媒後センサ18の出力電圧がリーン側の値からリッチ側に変化してリッチ判定値VRに等しくなった時(時刻t2)、目標空燃比(A/F)tはリッチ空燃比(A/F)rからリーン空燃比(A/F)lに切り替えられる。
【0037】
このような空燃比変化を行うアクティブ空燃比制御を実行しつつ、次のようにして触媒11の酸素吸蔵能値OSCが計測され、触媒11の劣化が判定される。
【0038】
図3を参照すると、時刻t1より前では目標空燃比(A/F)tがリーン空燃比(A/F)lとされ、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸着し続けているが、一杯に酸素を吸着した時点でそれ以上酸素を吸着できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比(A/F)rrがリーン側に変化し、触媒後センサ18の出力電圧がリーン判定値VLに達した時点(t1)で、目標空燃比(A/F)tがリッチ空燃比(A/F)rに切り替えられ、或いは反転される。このように目標空燃比(A/F)tは触媒後センサ18の出力をトリガにして反転される。
【0039】
そして今度は触媒11にリッチガスが流入されることとなる。このとき触媒11では、それまで吸蔵されていた酸素が放出され続ける。よって触媒11の下流側にはほぼ理論空燃比(A/F)sの排気ガスが流出し、触媒後空燃比(A/F)rrがリッチにならないことから、触媒後センサ18の出力は反転しない。触媒11から酸素が放出され続けるとやがて触媒11からは吸蔵酸素が放出され尽くし、その時点でそれ以上酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比(A/F)rrがリッチ側に変化し、触媒後センサ18の出力電圧がリッチ判定値VRに達した時点(t2)で、目標空燃比(A/F)tがリーン空燃比(A/F)lに切り替えられる。
【0040】
酸素吸蔵能OSCが大きいほど、酸素を吸着或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は目標空燃比(A/F)tの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほど目標空燃比(A/F)tの反転周期は短くなる。
【0041】
そこで、このことを利用して酸素吸蔵能OSCが以下のようにして計測される。図4に示すように、時刻t1で目標空燃比(A/F)tがリッチ空燃比(A/F)rに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比(A/F)frがリッチ空燃比(A/F)rに切り替わる。そして触媒前空燃比(A/F)frが理論空燃比(A/F)sに達した時点t11から、次に目標空燃比(A/F)tが反転する時点t2まで、次式(1)により、所定の微小時間毎の酸素吸蔵能値dOSC(酸素吸蔵能値の瞬時値)が算出され、且つこの微小時間毎の酸素吸蔵能値dOSCが時刻t11から時刻t2まで積算される。こうしてこの酸素放出期間における酸素吸蔵能値すなわち放出酸素量が計測される。
【0042】
(1) dOSC=Δ(A/F)×Q×K={(A/F)fr−(A/F)s}×Q×K
ここで、Qは燃料噴射量であり、空燃比差Δ(A/F)に燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。Kは空気に含まれる酸素割合(約0.23)を表す定数である。
【0043】
基本的には、この1回で計測された酸素吸蔵能値OSCを用い、これを所定の劣化判定値OSCsと比較し、酸素吸蔵能値OSCが劣化判定値OSCsを超えていれば正常、酸素吸蔵能値OSCが劣化判定値OSCs以下ならば劣化、というように触媒11の劣化を判定できる。
【0044】
しかしながら、精度を向上させるために、目標空燃比(A/F)tがリーン側となっている酸素吸着期間でも同様に酸素吸蔵能値(この場合酸素吸蔵量)を計測し、これら酸素吸蔵能値の平均値を1吸放出サイクルに係る1単位の酸素吸蔵能値として計測する。そしてさらに、吸放出サイクルを複数回繰り返し、複数単位の酸素吸蔵能値を得、その平均値を最終的な酸素吸蔵能値の計測値とし、劣化判定値と比較して、最終的な劣化判定を行ってもよい。なお、触媒が劣化と判定されたときにはその事実をユーザ(ドライバ)に告知するため、図示しない警告装置(チェックランプ等)を作動させるのが好ましい。
【0045】
酸素吸着期間における酸素吸蔵能値(酸素吸蔵量)の計測については、図4に示すように、時刻t2で目標空燃比(A/F)tがリーン空燃比(A/F)lに切り替えられた後、触媒前空燃比(A/F)frが理論空燃比(A/F)sに達した時点t21から、次に目標空燃比(A/F)tがリッチ側に反転する時点t3まで、前式(1)により微小時間毎の酸素吸蔵能値dOSCが算出され、且つこの微小時間毎の酸素吸蔵能値dOSCが積算される。こうしてこの酸素吸着期間における酸素吸蔵能値OSCすなわち吸蔵酸素量(図4のOSC2)が計測される。酸素放出期間での酸素吸蔵能値OSC1と酸素吸着期間での酸素吸蔵能値OSC2とはほぼ等しい値となるはずである。
【0046】
ところが、前述したように、アクティブ空燃比制御の実行の際のリッチ側制御時においては、触媒11からの酸素放出速度がリーン側制御時の触媒11への酸素吸着速度に比べて遅いことから、この酸素放出期間での酸素吸蔵能値OSC1は実際の酸素吸蔵能よりも小さくなりやすい。
【0047】
そこで、本実施の形態では、この酸素放出期間での酸素吸蔵能値OSC1が実際の酸素吸蔵能を精度よく反映すべく酸素放出速度を高めるようにしている。以下に、本実施形態に係る劣化診断処理を実行するルーチンのサブルーチンとして実行されるH2成分増大制御の一形態を、図5のフローチャートを参照して説明する。このH2成分増大制御もECU20により所定の演算周期毎に繰り返し実行される。
【0048】
まずステップS501では、劣化診断処理ルーチンのアクティブ空燃比制御が実行中であるか否かが判断される。なお、劣化診断処理ルーチンは基本条件が成立しているとの判定により開始され、例えば、吸入空気量Ga及び機関回転速度Neの変動幅が所定範囲内であるなど、エンジンが定常運転状態にあり、且つ触媒11及び触媒前後センサ17,18が所定の活性化温度に達していれば、基本条件の成立となる。そこで、この基本条件が成立しアクティブ空燃比制御が実行中である場合にはステップS502に進む。
【0049】
ステップS502においては、このアクティブ空燃比制御において空燃比のリッチ側制御中であるか否かが判断される。ステップS502において、リッチ側制御中であると判定されるとステップS503に進み、内燃機関から排出される出ガスに含まれる少なくともH2成分を増大させるH2成分増大制御が実行される。
【0050】
他方、ステップS501において上述の劣化診断処理ルーチンのアクティブ空燃比制御が実行中でないと判定されたとき、及びステップS502においてリッチ側制御中でないと判定されたときはステップS504に進み、それぞれ上述のH2成分増大制御が実行されないか、又は停止される。
【0051】
ここで、上記H2成分増大制御の実施形態についてさらに詳しく説明する。図1に示すシステムの内燃機関1においては、ECU20は、例えばエアフローメータ5によって検出される吸入空気量Gaと、クランク角センサ14の出力に基づいて検出される機関回転速度Neとにより規定される運転状態に対応させて、予め実験等を通じて設定されたマップ又は関数を利用し、その運転状態において所望の出力が得られるように、インジェクタ12からの燃料噴射量及び燃料噴射時期などを最適値に制御する。したがって、吸入空気量Gaと機関回転速度Neとにより規定される運転状態において、H2成分増大制御が実行されないときは、吸気ポート内に燃料を噴射するインジェクタ12から、最適噴射時期として吸気上死点(TDC)前の所定の角度X(例えば上死点前60)°CA(クランク角)で燃料が噴射される。この場合、燃焼室3内にほぼ均質の混合気が形成され、図6に示すように、H2成分の増大はほとんど見込めない。これに対し、H2成分増大制御が実行されるときは、吸気上死点後の所定の角度Y(例えば上死点後150)°CAで吸気ポートインジェクタ12から燃料が噴射される。このように燃料の噴射タイミングを当該運転状態での最適噴射時期から遅らせると、燃焼室3内の混合気は成層化ないしは不均一化され、図6に示すように、燃焼ガス中のHC、COないしはH2成分が増大されることになる。なお、本実施形態では、吸気ポートインジェクタ12からの燃料の噴射タイミングを当該運転状態での最適噴射時期から遅らせるように機能する部位がH2成分増大制御手段を構成している。
【0052】
このように、ステップS503におけるH2成分増大制御により内燃機関1から排出される出ガスに含まれる少なくともH2成分が増大され、このH2成分が増大された出ガスが触媒11を流通すると、リーン側制御時に触媒11に吸着保持されている酸素に対して反応性の良いH2成分の作用により、酸素放出速度が高められる。この結果、触媒11に吸着保持されている酸素の全放出量も増大され、触媒11の下流に設けられた触媒後センサ18が、酸素が放出しきれない状態でリッチ反転することが抑制される。かくて、酸素吸着能力と酸素放出能力とに基づき計算により求められる触媒11の酸素吸蔵能値と実際の酸素吸蔵能との乖離が小さくなるので、誤判定の可能性を低減し診断精度の向上が図られるのである。
【0053】
次に、上述したH2成分増大制御の他の形態を、図7のフローチャートを参照して説明する。このH2成分増大制御の他の形態もECU20により所定の演算周期毎に繰り返し実行される。このH2成分増大制御の他の形態は、H2成分増大制御に伴う燃費悪化を最小限に抑えるためのものである。すなわち、この他の形態では触媒11の劣化診断がより正確に必要な場合にのみH2成分増大制御を実行し、無用なH2成分増大制御を回避するようにしている。
【0054】
そこで、ステップS701では、前形態と同様に、劣化診断処理ルーチンのアクティブ空燃比制御が実行中であるか否かが判断され、実行中である場合にはステップS702に進む。そして、ステップS702においては、前トリップにおいて求められ、記憶されていた触媒11の酸素吸蔵能値Cmaxが所定値Aより小さいか否かが判定される。詳しくは、前回の走行時に行われた触媒11の劣化診断処理において計測により求められ、ECU20の不揮発性RAMなどの記憶装置に記憶されていた前トリップでの酸素吸蔵能値Cmaxが所定値Aより小さいか否かが判定されるのである。この所定値Aとしては、新品状態の触媒11の酸素吸蔵能に対し所定の割合にある酸素吸蔵能値とすることができる。酸素吸蔵能値Cmaxが所定値Aより小さいときはステップS703に進み、前形態と同様に、アクティブ空燃比制御において空燃比のリッチ側制御中であるか否かが判断される。ステップS703において、リッチ側制御中であると判定されるとステップS704に進み、前形態と同様に、内燃機関から排出される出ガスに含まれる少なくともH2成分を増大させるH2成分増大制御が実行される。
【0055】
他方、ステップS701において上述の劣化診断処理ルーチンのアクティブ空燃比制御が実行中でないと判定されたとき、ステップS702において酸素吸蔵能値Cmaxが所定値Aより小さくはないと判定されたとき、及びステップS703においてリッチ側制御中でないと判定されたときは、それぞれステップS705に進み、前形態と同様に、上述のH2成分増大制御が実行されないか、又は停止される。かくて、本他の形態では、触媒11の劣化診断がより正確に必要な場合にのみH2成分増大制御が実行され、無用なH2成分増大制御が回避されるので、燃費の悪化が最小限に抑えられる。
【0056】
なお、図5又は図7のフローチャートを用いて説明したH2成分増大制御においては、内燃機関1が筒内に直接に燃料を噴射する不図示の筒内インジェクタを備える場合、筒内インジェクタからの燃料の噴射タイミングを所定の運転状態での最適噴射時期としての吸気行程噴射から圧縮行程噴射へと遅らせることにより、このように機能する部位をH2成分増大制御手段として構成して燃焼ガス中のHC、COないしはH2成分を増大させてもよい。さらに、筒内インジェクタを備え、これが通常時に複数回の分割噴射を行うようにされている場合には、一回の纏め噴射とするようにして、このように機能する部位をH2成分増大制御手段として構成してもよい。
【0057】
さらに、内燃機関1が燃料と共に空気をも同時に噴射して燃料の微粒化を図るようにした、いわゆるエアアシストインジェクタ(不図示)を備える場合、このエアアシストインジェクタからの空気の噴射を停止するようにして、このように機能する部位をH2成分増大制御手段として構成してもよい。
【0058】
また、内燃機関1が不図示の排気還流(EGR)装置を備える場合、上述のリッチ側制御時にEGRを増大するようにして、このように機能する部位をH2成分増大制御手段として構成してもよい。なお、EGRを増大するためには、内燃機関1が吸気弁Vi及び/又は排気弁Veの開閉タイミングを変更可能な、いわゆる可変バルブタイミング機構を備える場合、吸排気弁のオーバラップを大きくすることによってもよい。いわゆる内部EGRが増大するからである。上述のH2成分増大制御手段のいずれによっても、燃焼ガス中のHC、COないしはH2成分を増大させることが可能である。
【0059】
さらに、本発明に係る劣化診断処理ルーチンの他の実施形態を、図8のフローチャートを参照して説明する。
【0060】
この劣化診断処理ルーチンの他の実施形態は、上述のH2成分増大制御が実行されたときに得られる触媒11の酸素吸蔵能値Cmax1と、H2成分増大制御が実行されないときに得られる触媒11の酸素吸蔵能値Cmax2との差異を利用して、触媒11の酸素吸蔵能値の一時的な絶対値のみならず、H2成分増大制御の有無に亘る相対値にも依拠することにより、触媒11の正常か異常かの劣化診断を精度よく行い得るようにしたものである。
【0061】
そこで、この劣化診断処理ルーチンの他の実施形態では、ステップS801において上述のH2成分増大制御が実行されたときに得られた触媒11の酸素吸蔵能値Cmax1が取り込まれ、次のステップS802においてH2成分増大制御が実行されないときに得られた触媒11の酸素吸蔵能値Cmax2が取り込まれる。そして、次のステップS803において、両酸素吸蔵能値の差ΔCmax(=Cmax1−Cmax2)が演算により求められる。
【0062】
そしてまず、ステップS804において、上記ステップS802で取り込まれた、H2成分増大制御が実行されないときに得られた酸素吸蔵能値Cmax2が所定値Bより小さいか否かが判定される。この所定値Bは前述の所定値Aと同様に新品状態の触媒11の酸素吸蔵能に対し所定の割合にある酸素吸蔵能値とすることができ、所定値Aと等しくてもよい。このステップS804において、H2成分増大制御が実行されないときに得られた酸素吸蔵能値Cmax2が所定値Bより大きいと判定された(ステップS804:NO)ときは、触媒11は十分な酸素吸蔵能を有するので、H2成分増大制御が実行されたときに得られる酸素吸蔵能値Cmax1を考慮することなくステップS807に進み、触媒正常と判定される。
【0063】
一方、ステップS804において、H2成分増大制御が実行されないときに得られた酸素吸蔵能値Cmax2が所定値Bより小さいと判定された(ステップS804:YES)ときはステップS805に進み、酸素吸蔵能値の差ΔCmax(=Cmax1−Cmax2)が所定値Cより小さいか否かが判定される。この所定値Cは、上述のH2成分増大制御が実行されることにより酸素放出速度が高められる度合に対応して設定される。すなわち、正常触媒の場合には元々酸素吸蔵能を有するので、H2成分増大制御によって酸素吸蔵能値は増大するが、酸素吸蔵能が低い異常触媒の場合にはH2成分増大制御を行っても酸素吸蔵能値の変化がない又は小さいことから、この酸素吸蔵能値の増大量に対応して設定されるのである。かくて、ステップS805における判定で、酸素吸蔵能値の差ΔCmaxが所定値Cよりも小さいとき(ステップS805:YES)はステップS806に進み、触媒異常と判定される一方、酸素吸蔵能値の差ΔCmaxが所定値Cよりも大きいとき(ステップS805:NO)はステップS807に進み、触媒正常と判定される。
【0064】
かくて、本実施形態では、硫黄被毒などに起因する一時的な、すなわち、可逆的な触媒劣化と経年変化などに起因する非可逆的な触媒劣化とを区別することができ、触媒11の正常か異常かの劣化診断を精度よく行うことができる。
【0065】
本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
【図面の簡単な説明】
【0066】
【図1】本発明に係る内燃機関の触媒劣化診断装置のシステム構成を示す概略図である。
【図2】触媒の構成を示す概略断面図である。
【図3】アクティブ空燃比制御を説明するためのタイムチャートである。
【図4】図3と同様のタイムチャートであり、酸素吸蔵能値の計測方法を説明するための図である。
【図5】本発明の実施形態におけるH2成分増大制御の一形態を示すフローチャートである。
【図6】燃料噴射タイミングと出ガス中のH2成分との関係を示すグラフである。
【図7】本発明の実施形態におけるH2成分増大制御の他の形態を示すフローチャートである。
【図8】本発明に係る劣化診断処理ルーチンの他の実施形態を示すフローチャートである。
【符号の説明】
【0067】
1 内燃機関
6 排気管
11 触媒
12 インジェクタ
14 クランク角センサ
17 触媒前センサ(空燃比センサ)
18 触媒後センサ(酸素(O2)センサ)
20 電子制御ユニット(ECU)

【特許請求の範囲】
【請求項1】
内燃機関の排気通路に配置された触媒の劣化診断装置であって、該触媒の下流において検出される酸素濃度に基づいて、内燃機関に供給される空気と燃料との空燃比を強制的にリッチ側とリーン側との間で変化させるアクティブ空燃比制御手段と、該アクティブ空燃比制御手段による空燃比制御時における前記触媒の酸素吸蔵能を計測し、この計測された酸素吸蔵能に基づき前記触媒の劣化を診断する診断手段と、を備える内燃機関の触媒劣化診断装置において、
前記アクティブ空燃比制御手段による空燃比のリッチ側制御時に、内燃機関から排出される出ガスに含まれる少なくともH2成分を増大させるH2成分増大制御手段を備えることを特徴とする内燃機関の触媒劣化診断装置。
【請求項2】
前記H2成分増大制御手段によるH2成分増大制御は、前記触媒の酸素吸蔵能が所定値を下回ったときに実行されることを特徴とする請求項1記載の内燃機関の触媒劣化診断装置。
【請求項3】
前記診断手段は、前記H2成分増大制御手段によるH2成分増大制御が実行されたときに計測される酸素吸蔵能と、前記H2成分増大制御手段によるH2成分増大制御が実行されないときに計測される酸素吸蔵能との比較に基づき、前記触媒の劣化を診断することを特徴とする請求項1又は2記載の内燃機関の触媒劣化診断装置。
【請求項4】
前記H2成分増大制御手段は、インジェクタから噴射される燃料の噴射タイミングを当該運転状態での最適噴射時期から遅らせるものであることを特徴とする請求項1ないし3のいずれかに記載の内燃機関の触媒劣化診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−150366(P2009−150366A)
【公開日】平成21年7月9日(2009.7.9)
【国際特許分類】
【出願番号】特願2007−331129(P2007−331129)
【出願日】平成19年12月21日(2007.12.21)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】