説明

半導体基板、半導体デバイスおよび半導体基板の製造方法

【課題】単一のシリコン基板上に種類の異なる半導体結晶層をエピタキシャル成長させる場合に、表面の平坦性を向上し、半導体デバイスの信頼性を高める。
【解決手段】第1窪みおよび第2窪みが形成されたシリコン結晶を表面に有するベース基板と、第1窪みの内部に形成され、露出されている第1のIVB族半導体結晶と、第2窪みの内部に形成された第2のIVB族半導体結晶と、第2窪みの内部の第2のIVB族半導体結晶上に形成され、露出されているIII−V族化合物半導体結晶とを備える半導体基板を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体基板、半導体デバイスおよび半導体基板の製造方法に関する。
【背景技術】
【0002】
特許文献1には、Si基板に形成したGaAs層上で結晶成長したGaAs/Geを有するCMOS集積回路が開示されている。当該CMOS集積回路において、GaAsウェルはNチャネル装置に、GeウェルはPチャネル装置に利用される。GaAsウェルおよびGeウェルの間には酸化物が形成されて分離され、GaAsウェルおよびGeウェルとSiとの間にはGaAsの半絶縁性(未ドープ)層が形成されてラッチアップの可能性が取り除かれている。
(特許文献1)特開2001−93987号公報
【発明の概要】
【発明が解決しようとする課題】
【0003】
Si基板にGaAs層が形成されると、Siの格子間距離とGaAsの格子間距離との差に起因して、GaAs層内に結晶欠陥が生じる。結晶欠陥を有するGaAs層上でGaAs結晶及びGe結晶を成長させると、当該GaAs結晶及びGe結晶にも結晶欠陥が生じる。GaAs結晶及びGe結晶に結晶欠陥が生じると電子及び正孔の移動度が低下するので、当該GaAs結晶及びGe結晶を用いて高速にスイッチングするCMOS回路を構成することが困難である。
【0004】
選択エピタキシャル成長法を用いて微小な領域に半導体結晶層を形成すれば、結晶欠陥、汚染物およびパーティクルの発生を抑制できることが、本発明者らの検討により明らかになっている。しかしながら、選択エピタキシャル成長により半導体結晶層を形成する場合には、半導体結晶層が形成される領域と形成されない領域との間で表面に段差が生じる。大きな段差が存在すると、段差を跨いで形成される配線等を断線させる要因になり、半導体デバイスの信頼性を低下させる原因になり得るので、段差の大きさを軽減することが望ましい。
【課題を解決するための手段】
【0005】
上記課題を解決するために、本発明の第1の態様においては、第1窪みおよび第2窪みが形成されたシリコン結晶を表面に有するベース基板と、第1窪みの内部に形成され、露出されている第1のIVB族半導体結晶と、第2窪みの内部に形成された第2のIVB族半導体結晶と、第2窪みの内部の第2のIVB族半導体結晶上に形成され、露出されているIII−V族化合物半導体結晶とを備える半導体基板を提供する。当該半導体基板においては、例えば、第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である。第1のIVB族半導体結晶及び第2のIVB族半導体結晶において、a1≦a2であってもよい。
【0006】
当該半導体基板においては、例えば、シリコン結晶、第1のIVB族半導体結晶およびIII−V族化合物半導体結晶のそれぞれの表面が実質的に同一の平面に形成されている。第1窪みの深さは、第2窪みの深さより浅くてもよい。第1窪みと第2窪みとが、実質的に同じ深さに形成されており、第2のIVB族半導体結晶の厚さが第1のIVB族半導体結晶の厚さより薄くてもよい。第2窪みのアスペクト比は、例えば(√3)/3以上である。
【0007】
当該半導体基板は、第1窪みの側壁と第1のIVB族半導体結晶との間に、半導体結晶の成長を阻害する阻害体をさらに備えてもよい。当該半導体基板は、第2窪みの側壁と第2のIVB族半導体結晶およびIII−V族化合物半導体結晶との間に、半導体結晶の成長を阻害する阻害体をさらに備えてもよい。当該半導体基板は、シリコン結晶における第1窪みおよび第2窪みが形成されている領域と異なる領域上に形成された第3のIVB族半導体結晶をさらに備えてもよい。第3のIVB族半導体結晶は、例えばSi1−bGe(0≦b≦1)である。III−V族化合物半導体結晶は、例えばAlInGa1−x−yAs1−z(0≦x≦1、0≦y≦1、0≦x+y≦1、0≦z≦1)である。
【0008】
本発明の第2の態様においては、表面にシリコン結晶を有するベース基板と、ベース基板上に形成され、シリコン結晶に達する第1開口、シリコン結晶に達する第2開口およびシリコン結晶に達する第3開口を有し、かつ、半導体結晶の成長を阻害する阻害体と、第1開口に形成され、露出されている第1のIVB族半導体結晶と、第2開口に形成された第2のIVB族半導体結晶と、第2のIVB族半導体結晶上に形成され、露出されているIII−V族化合物半導体結晶と、第3開口に形成された第3のIVB族半導体結晶とを備える半導体基板を提供する。当該半導体基板においては、例えば、第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である。
【0009】
当該半導体基板において、第3のIVB族半導体結晶、第1のIVB族半導体結晶およびIII−V族化合物半導体結晶のそれぞれの表面は、例えば、実質的に同一の平面に形成されている。当該半導体基板において、第2のIVB族半導体結晶の厚さが第1のIVB族半導体結晶の厚さより薄くてもよい。
【0010】
本発明の第3の態様においては、上記の半導体基板における、シリコン結晶、第1のIVB族半導体結晶、第2のIVB族半導体結晶およびIII−V族化合物半導体結晶の何れかの半導体結晶と、半導体結晶または半導体結晶上に形成された半導体層に形成された電極とを有する電子素子を備える半導体デバイスを提供する。
【0011】
本発明の第4の態様においては、表面にシリコン結晶を有するベース基板のシリコン結晶に第1窪みおよび第2窪みを形成する段階と、第1窪みの内部に第1のIVB族半導体結晶を形成する段階と、第2窪みの内部に第2のIVB族半導体結晶を形成する段階と、第2窪みの内部の第2のIVB族半導体結晶上にIII−V族化合物半導体結晶を形成する段階とを備え、前記第1のIVB族半導体結晶および前記III−V族化合物半導体結晶が露出されている半導体基板の製造方法を提供する。当該製造方法においては、例えば、第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である半導体基板を製造する。
【0012】
当該製造方法においては、第1窪みおよび第2窪みを形成した後、第1のIVB族半導体結晶および第2のIVB族半導体結晶を形成する前に、シリコン結晶の表面ならびに第1窪みおよび第2窪みの側壁に、半導体結晶の成長を阻害する阻害体を形成する段階をさらに備え、第1のIVB族半導体結晶および第2のIVB族半導体結晶を形成する段階において、第1のIVB族半導体結晶および第2のIVB族半導体結晶を選択MOCVD法により形成してもよい。当該製造方法においては、第1窪みに形成された第1のIVB族半導体結晶の表面を覆い、かつ、半導体結晶の成長を阻害する阻害体を形成する段階をさらに備え、III−V族化合物半導体結晶を形成する段階において、III−V族化合物半導体結晶を選択MOCVD法により形成してもよい。
【0013】
本発明の第5の態様においては、表面にシリコン結晶を有するベース基板上に半導体結晶の成長を阻害する阻害体を形成する段階と、阻害体に、シリコン結晶に達する第1開口、シリコン結晶に達する第2開口およびシリコン結晶に達する第3開口をそれぞれ形成する段階と、第1開口の内部に第1のIVB族半導体結晶を形成する段階と、第2開口の内部に第2のIVB族半導体結晶を形成する段階と、第2開口の内部の第2のIVB族半導体結晶上にIII−V族化合物半導体結晶を形成する段階と、第3開口の内部に第3のIVB族半導体結晶を成長させる段階とを備え、前記第1のIVB族半導体結晶、前記III−V族化合物半導体結晶および前記第3のIVB族半導体結晶が露出されている半導体基板の製造方法を提供する。
【0014】
当該製造方法においては、例えば、第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である半導体基板を製造する。第3のIVB族半導体結晶は、例えばSi1−bGe(0≦b≦1)である。
【図面の簡単な説明】
【0015】
【図1A】半導体基板100の断面例を示す。
【図1B】半導体基板100の製造過程における断面例を示す。
【図1C】半導体基板100の製造過程における断面例を示す。
【図1D】半導体基板100の製造過程における断面例を示す。
【図1E】半導体基板100の製造過程における断面例を示す。
【図1F】半導体基板500の断面例を示す。
【図2】半導体基板200の断面例を示す。
【図3】半導体基板300の断面例を示す。
【図4A】半導体基板400の断面例を示す。
【図4B】半導体基板400の製造過程における断面例を示す。
【図4C】半導体基板400の製造過程における断面例を示す。
【図4D】半導体基板400の製造過程における断面例を示す。
【発明を実施するための形態】
【0016】
以下、発明の実施の形態を通じて本発明を説明する。図1Aは、半導体基板100の断面例を示す。図1Bから図1Eは、半導体基板100の製造過程における断面例を示す。半導体基板100は、ベース基板102と、第1のIVB族半導体結晶108と、第2のIVB族半導体結晶110と、III−V族化合物半導体結晶112と、阻害体114とを有する。ベース基板102には、第1窪み104および第2窪み106が形成されている。
【0017】
ベース基板102は、表面にシリコン結晶を有する。表面にシリコン結晶を有するベース基板102として、表面の近傍がシリコン結晶であるSOI(シリコンオンインシュレータ)基板、バルクの全体に渡ってシリコン結晶であるシリコンウェハを例示できる。図1Aは、ベース基板102としてシリコンウェハを用いた例を示す。
【0018】
第1窪み104の内部には第1のIVB族半導体結晶108が形成され、第2窪み106の内部には第2のIVB族半導体結晶110が形成されている。また、第2窪み106の内部の第2のIVB族半導体結晶110上にIII−V族化合物半導体結晶112が形成されている。III−V族化合物半導体結晶112として、AlInGa1−x−yAs1−z(0≦x≦1、0≦y≦1、0≦x+y≦1、0≦z≦1)が挙げられる。第1のIVB族半導体結晶110およびIII−V族化合物半導体結晶112は露出している。
【0019】
第1のIVB族半導体結晶108は、例えばSi1−a1Gea1(0≦a1≦1)である。第2のIVB族半導体結晶110は、例えばSi1−a2Gea2(0<a2≦1)である。第1のIVB族半導体結晶108は、好ましくはSi1−a1Gea1(0.6≦a1≦1)である。第2のIVB族半導体結晶110は、好ましくはSi1−a2Gea2(0.6≦a2≦1)である。第1のIVB族半導体結晶108および第2のIVB族半導体結晶110は、Ge結晶であることがさらに好ましい。
【0020】
第2のIVB族半導体結晶110におけるGeの比率は、第1のIVB族半導体結晶108におけるGeの比率よりも大きくてもよい。具体的には、上記の組成式においてa1≦a2であってもよい。この場合には、第2のIVB族半導体結晶110をIII−V族化合物半導体結晶112に格子整合させるとともに、第1のIVB族半導体結晶108におけるキャリアの移動度を最適化することができる。
【0021】
半導体基板100を用いることにより、高性能の電子素子を備える半導体デバイスを構成することができる。具体的には、当該電子素子は、第1のIVB族半導体結晶108、第2のIVB族半導体結晶110およびIII−V族化合物半導体結晶112の何れかの半導体結晶と、当該半導体結晶または当該半導体結晶上に形成された半導体層に形成された電極とを有する。当該電子素子は、第1のIVB族半導体結晶108、第2のIVB族半導体結晶110およびIII−V族化合物半導体結晶112の何れかの半導体結晶と当該電極との間に、金属配線を有してもよい。
【0022】
第1のIVB族半導体結晶108としてGe結晶を適用した場合には、Ge結晶を活性層に用いる半導体素子はホール移動度が高いので、高速動作するPチャネル型MOSFETを形成することができる。第2のIVB族半導体結晶110としてGe結晶を適用した場合には、GaAsを適用した場合のIII−V族化合物半導体結晶112と格子整合させることができるので、結晶性のよいIII−V族化合物半導体結晶112を成長させることができる。結晶性のよいIII−V族化合物半導体結晶112においては、高い電子移動度を実現できるので、高速動作するNチャネル型MOSFETを形成することができる。高速動作するPチャネル型MOSFETと高速動作するNチャネル型MOSFETとを形成することにより、半導体基板100に高性能CMOSFETを形成することができる。
【0023】
半導体基板100は、第2のIVB族半導体結晶110とIII−V族化合物半導体結晶112との間に、第2のIVB族半導体結晶110およびIII−V族化合物半導体結晶112と異なる組成の結晶をさらに備えてもよい。当該結晶は、例えばII−VI族化合物半導体結晶である。II−VI族化合物半導体結晶は、例えば、MgZnCd1−t−uSeTe1−v−w(0≦t≦1、0≦u≦1、0≦t+u≦1、0≦v≦1、0≦w≦1、0≦v+w≦1)である。
【0024】
本実施形態に係る半導体基板100においては、単一のシリコン基板上に種類の異なる半導体結晶層をエピタキシャル成長させる場合に、表面の平坦性が向上するので、半導体デバイスの信頼性を高めることができる。具体的には、第1のIVB族半導体結晶108は第1窪み104の内部に形成され、第2のIVB族半導体結晶110およびIII−V族化合物半導体結晶112は第2窪み106の内部に形成されているので、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112が半導体基板100の表面から突出する量を低減することができる。その結果、ベース基板102のシリコン結晶、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112の間の段差に起因する、配線の断線を防止できる。
【0025】
ベース基板102のシリコン結晶、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112のそれぞれの表面が、実質的に同一の平面に形成されている場合には、半導体結晶層が半導体基板100の表面から突出しないので、さらに好ましい。ベース基板102のシリコン結晶、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112のそれぞれの表面を実質的に同一の平面に形成するには、第1窪み104の深さが、第2窪み106の深さより浅いことが好ましい。
【0026】
第1窪み104の側壁と第1のIVB族半導体結晶108との間には、阻害体114が形成されていることが好ましい。また、第2窪み106の側壁と第2のIVB族半導体結晶110およびIII−V族化合物半導体結晶112との間には、阻害体114が形成されていることが好ましい。阻害体114は、半導体結晶の成長を阻害する。
【0027】
第2の窪み106に形成された第2のIVB族半導体結晶110を600〜900℃程度にまで加熱しない場合には、例えば、第2の窪み106は(√3)/3以上のアスペクト比を有することが好ましい。より具体的には、第2の窪み106の底面におけるシリコンの面方位が(100)または(110)の場合には、第2の窪み106は1以上のアスペクト比を有してもよい。第2の窪み106の底面におけるシリコン結晶の面方位が(111)の場合には、第2の窪み106は√2(=約1.414)以上のアスペクト比を有してもよい。
【0028】
アスペクト比が(√3)/3以上の第2の窪み106の内部に第2のIVB族半導体結晶110が形成されると、第2のIVB族半導体結晶110に含まれる欠陥が第2の窪み106の壁面でターミネートされる。その結果、第2の窪み106の壁面で覆われずに露出する第2のIVB族半導体結晶110の表面における欠陥が低減する。即ち、第2の窪み106が(√3)/3以上のアスペクト比を有する場合には、第2の窪み106に形成された第2のIVB族半導体結晶110にアニールが施されない状態であっても、第2の窪み106において露出する第2のIVB族半導体結晶110の表面の欠陥密度を所定の許容範囲まで小さくすることができる。その結果、第2のIVB族半導体結晶110上で成長するIII−V族化合物半導体結晶112の結晶性が向上する。
【0029】
ここで、本明細書において、「窪みのアスペクト比」とは、「窪みの深さ」を「窪みの幅」で除した値をいう。例えば、電子情報通信学会編「電子情報通信ハンドブック 第1分冊」751ページ(1988年、オーム社発行)によると、アスペクト比の定義が「エッチング深さ/パターン幅」と記載されている。本明細書においても、同様の意味でアスペクト比の用語を用いる。なお、「窪みの深さ」は基板上に薄膜を積層した場合の、積層方向における窪みの深さである。「窪みの幅」は積層方向に垂直な方向における、窪みの幅である。窪みの幅が一定でない場合には、「窪みの幅」は、窪みの最小の幅を指す。たとえば、積層方向から見た窪みの形状が長方形である場合、「窪みの幅」は、長方形の短辺の長さを指す。
【0030】
次に、半導体基板100の製造方法を説明する。図1Bに示すように、ベース基板102のシリコン結晶に第1窪み104および第2窪み106を形成する。第1窪み104および第2窪み106は、ドライエッチングまたはウェットエッチングにより形成することができる。ドライエッチングの加工精度は、ウェットエッチングの加工精度よりも高い。これに対して、ウェットエッチングの加工がシリコン結晶に与える損傷は、ドライエッチングの加工がシリコン結晶に与える損傷よりも小さい。したがって、第1窪み104および第2窪み106をエッチングにより形成する場合には、まず加工精度が良いドライエッチングを行い、次にシリコン結晶に与える損傷が小さいウェットエッチングを行うことが好ましい。当該手順でエッチングすることにより、第1窪み104および第2窪み106の内部で成長する半導体結晶の品質が、さらに向上する。
【0031】
次に、図1Cに示すように、第1窪み104および第2窪み106の側壁に、阻害体114を形成し、シリコン結晶の表面に阻害体116を形成する。阻害体114および阻害体116は、半導体結晶の成長を阻害する。阻害体114は、例えば窒化シリコンである。阻害体116は、例えば酸化シリコンである。
【0032】
次に、図1Dに示すように、第1窪み104の内部に第1のIVB族半導体結晶108を形成し、第2窪み106の内部に第2のIVB族半導体結晶110を形成する。第1のIVB族半導体結晶108および第2のIVB族半導体結晶110は、選択MOCVD法により形成される。第1のIVB族半導体結晶108の組成と第2のIVB族半導体結晶110の組成を異なる組成にする場合には、第1段階のMOCVD法により、第1窪み104の内部に第1のIVB族半導体結晶108を成長させた後に、第2段階のMOCVD法により、第2窪み106の内部に第2のIVB族半導体結晶110を成長させてよい。
【0033】
次に、図1Eに示すように、第1窪み104に形成された第1のIVB族半導体結晶108の表面を覆う阻害体118を形成する。その後、第2窪み106の内部の第2のIVB族半導体結晶110上にIII−V族化合物半導体結晶112を形成する。III−V族化合物半導体結晶112は、選択MOCVD法により形成される。阻害体116および阻害体118をエッチングにより除去して、半導体基板100を製造することができる。III−V族化合物半導体結晶112がベース基板102の表面から突出している場合には、ベース基板102の表面から突出しているIII−V族化合物半導体結晶112をエッチングにより除去してもよい。
【0034】
CMP法により、阻害体116および阻害体118、ならびに、ベース基板102の表面から突出したIII−V族化合物半導体結晶112を除去してもよい。阻害体116および阻害体118をエッチングにより除去した後に、CMP法により、ベース基板102の表面から突出したIII−V族化合物半導体結晶112を除去してもよい。ベース基板102の表面から突出したIII−V族化合物半導体結晶112を除去することにより、ベース基板102が有するシリコン結晶、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112のそれぞれの表面を同一平面に形成することができる。
【0035】
III−V族化合物半導体結晶112の表面の位置が、ベース基板102の表面の位置よりも第2のIVB族半導体結晶110に近い位置にある場合には、CMP法により、ベース基板102が有するシリコン結晶および第1のIVB族半導体結晶108の一部の領域を除去することにより、当該シリコン結晶、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112のそれぞれの表面を同一平面に形成してもよい。
【0036】
以上のとおり、半導体基板100においては、ベース基板102のシリコン結晶、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112のそれぞれの表面が実質的に同一の平面に形成されており、段差の大きさを低減することができるので、配線等の断線を防止できる。
【0037】
図1Fは、他の実施形態に係る半導体基板500の断面例を示す。半導体基板500は、犠牲成長窪み502を備える点で、図1Aに示した半導体基板100と異なる。半導体基板500は、犠牲成長窪み502の内部に、第1のIVB族半導体結晶108または第2のIVB族半導体結晶110と同時に形成されるIVB族半導体504を有し、IVB族半導体504上に、III−V族化合物半導体結晶112と同時に形成されるIII−V族半導体506を有している。犠牲成長窪み502の側壁には阻害体114が形成されていてもよい。
【0038】
第1のIVB族半導体結晶108、第2のIVB族半導体結晶110およびIII−V族化合物半導体結晶112を選択エピタキシャル成長させる場合、犠牲成長窪み502の底面にも同時に当該半導体結晶の原料が吸着され、半導体膜が形成される。犠牲成長窪み502の内部に形成される半導体膜であるIVB族半導体504あるいはIII−V族半導体506は、第1のIVB族半導体結晶108または第2のIVB族半導体結晶110、あるいはIII−V族化合物半導体結晶112と同等の結晶品質を有する必要はなく、多結晶体あるいは非晶質体であってもよい。
【0039】
ベース基板102に犠牲成長部である犠牲成長窪み502を設けることにより、安定した成長速度で第1のIVB族半導体結晶108、第2のIVB族半導体結晶110またはIII−V族化合物半導体結晶112をエピタキシャル成長させることができる。また、犠牲成長部で成長する半導体膜の体積に応じて、エピタキシャル成長させる半導体結晶の厚さを容易に制御することができる。例えば、例えば、図1Aに示した半導体基板100に犠牲成長窪み502を追加することによって、第1のIVB族半導体結晶108、第2のIVB族半導体結晶110またはIII−V族化合物半導体結晶112の成長速度をより小さくすることができる。その結果、半導体基板500の設計および半導体基板500を用いた半導体デバイスの設計における自由度が高くなる。
【0040】
さらに、半導体基板500が犠牲成長窪み502を備えることにより、エピタキシャル成長速度の制御が容易になるので、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112の表面の高さをシリコン結晶の表面の高さと等しくさせることが容易になる。その結果、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112をエッチングまたはCMP法により除去することなく、半導体基板500の表面平坦性を向上させることができる。犠牲成長窪み502は、電子素子を形成しない領域なので、エッチングにより表面平坦性を向上させてもよい。
【0041】
なお、半導体基板500は、犠牲成長窪み502の側壁に形成されている阻害体114を備えなくてもよい。阻害体114が犠牲成長窪み502の側壁にない場合、犠牲成長窪み502の側壁にも半導体結晶の原料が吸着され、半導体膜が形成される。
【0042】
図2は、他の実施形態に係る半導体基板200の構成を示す。図2に示すように、半導体基板200は、実質的に同じ深さに形成されている第1窪み104および第2窪み106を備える点で、図1Aに示した半導体基板100と異なる。半導体基板200においては、第2のIVB族半導体結晶110の厚さが第1のIVB族半導体結晶108の厚さより薄い。第1のIVB族半導体結晶108の厚さは、第2のIVB族半導体結晶110の厚さとIII−V族化合物半導体結晶112の厚さとを合わせた厚さに等しい。
【0043】
図3は、他の実施形態に係る半導体基板300の構成を示す。図3に示すように、半導体基板300は、ベース基板102の表面のシリコン結晶における、第1窪み104および第2窪み106が形成されている領域と異なる領域上に形成された第3のIVB族半導体結晶302を備える点で、図1Aに示した半導体基板100と異なる。
【0044】
第3のIVB族半導体結晶302を形成する方法として、表面にシリコン結晶を有する基板上に半導体結晶の成長を阻害する阻害体304を形成し、阻害体304に、シリコン結晶に達する開口を形成し、当該開口の内部に第3のIVB族半導体結晶302を選択MOCVD法により形成する方法が挙げられる。第3のIVB族半導体結晶302としてSi1−bGe(0≦b≦1)が挙げられる。第3のIVB族半導体結晶302は、Siであってもよい。Si結晶を活性層とするSiデバイスを形成し、Ge結晶を活性層とする素子およびGaAs系結晶を活性層とする素子と組み合わせることにより、高性能な半導体回路を形成できる。
【0045】
図4Aは、他の実施形態に係る半導体基板400の断面例を示す。図4Bから図4Dは、半導体基板400の製造過程における断面例を示す。半導体基板400は、ベース基板102と、阻害体402と、第1のIVB族半導体結晶108と、第2のIVB族半導体結晶110と、III−V族化合物半導体結晶112と、第3のIVB族半導体結晶302とを有する。半導体基板400において、ベース基板102、第1のIVB族半導体結晶108、第2のIVB族半導体結晶110、III−V族化合物半導体結晶112および第3のIVB族半導体結晶302については、図1Aに関連して説明したとおりであるから説明を省略する。
【0046】
阻害体402は、ベース基板102上に形成されている。阻害体402は半導体結晶の成長を阻害する。阻害体402は、例えば酸化シリコン(SiO)である。阻害体402には、ベース基板102のシリコン結晶に達する第1開口404、ベース基板102のシリコン結晶に達する第2開口406および当該シリコン結晶に達する第3開口408がそれぞれ形成されている。第1のIVB族半導体結晶108が第1開口404の内部に形成され、第2のIVB族半導体結晶110が第2開口406の内部に形成され、III−V族化合物半導体結晶112が第2開口406の内部の第2のIVB族半導体結晶110上に形成され、第3のIVB族半導体結晶302が第3開口408の内部に形成されている。
【0047】
第3のIVB族半導体結晶302、第1のIVB族半導体結晶108およびIII−V族化合物半導体結晶112のそれぞれの表面は、実質的に同一の平面に形成されていることが好ましい。この場合、第2のIVB族半導体結晶110の厚さは、第1のIVB族半導体結晶108の厚さより小さい。第1のIVB族半導体結晶108の厚さおよび第3のIVB族半導体結晶302の厚さは、第2のIVB族半導体結晶110の厚さとIII−V族化合物半導体結晶112の厚さとを合わせた厚さに等しい。
【0048】
図4Bから図4Dを参照しながら、半導体基板400の製造方法を説明する。図4Bに示すように、ベース基板102上に阻害体402を形成する。阻害体402に、シリコン結晶に達する第1開口404、シリコン結晶に達する第2開口406およびシリコン結晶に達する第3開口408を形成する。阻害体402は、例えば酸化シリコン(SiO)である。阻害体402は、例えばCVD法を用いて形成される。第1開口404、第2開口406および第3開口408は、一例として、フォトリソグラフィ法により形成される。
【0049】
次に、図4Cに示すように、第1開口404の内部に第1のIVB族半導体結晶108を形成し、第2開口406の内部に第2のIVB族半導体結晶110を形成する。例えばMOCVD法またはMBE法(分子ビームエピタキシー法)により、第1のIVB族半導体結晶108および第2のIVB族半導体結晶110をエピタキシャル成長させることができる。第1のIVB族半導体結晶108の組成と第2のIVB族半導体結晶110の組成とを異なる組成にする場合には、第1段階のMOCVD法により、第1開口404の内部に第1のIVB族半導体結晶108を成長させた後に、第2段階のMOCVD法により、第2開口406の内部に第2のIVB族半導体結晶110を成長させてよい。
【0050】
続いて、図4Dに示すように、第2開口406の内部の第2のIVB族半導体結晶110上にIII−V族化合物半導体結晶112を形成する。その後、第3開口408の内部に第3のIVB族半導体結晶302を成長させることで、半導体基板400を製造することができる。
【0051】
なお、阻害体402は、図1Fに示した犠牲成長窪み502と同等の機能を有する犠牲成長開口を有してもよい。当該犠牲成長開口の内部には、第1のIVB族半導体結晶108、第2のIVB族半導体結晶110またはIII−V族化合物半導体結晶112と同時に形成される半導体が形成されている。阻害体402が、犠牲成長開口を有することにより、エピタキシャル成長速度の制御が容易になるので、第1のIVB族半導体結晶108、第3のIVB族半導体結晶302およびIII−V族化合物半導体結晶112の表面の高さをシリコン結晶の表面の高さと等しくさせることが容易になる。その結果、第1のIVB族半導体結晶108、第3のIVB族半導体結晶302およびIII−V族化合物半導体結晶112をエッチングまたはCMP法により除去することなく、半導体基板500の表面平坦性を向上させることができる。
【0052】
以下、本発明を実施例に基づき詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
【実施例1】
【0053】
表面がシリコン結晶であるベース基板102として、シリコンウェハを準備する。フォトリソグラフィ法による加工により、ベース基板102のシリコン結晶に第1窪み(第1窪み104)および第2窪み(第2窪み106)を形成する。それぞれの窪みの大きさは、20μm×20μmとする。第2窪みの深さは3μmとする。第1窪みの深さは、第2窪みの深さより浅い1μmとする。
【0054】
第1窪みおよび第2窪みを形成した基板上に全面に渡って、阻害体114および阻害体116として酸化シリコンをCVD法により形成する。これにより、第1窪み、第2窪みの底面、側面に酸化シリコンが形成される。次に、フォトリソグラフィ法による加工により、第1窪みおよび第2窪みの底部にある酸化シリコンに、シリコン結晶を露出する開口を複数形成する。
【0055】
ベース基板102を反応炉の内部に配置し、第1のIVB族半導体結晶108および第2のIVB族半導体結晶110として、第1窪みおよび第2窪みのそれぞれに、Ge結晶を形成する。Ge結晶は、CVD法により、第1窪みおよび第2窪みの開口の内部に選択的に形成する。Ge結晶は、ゲルマンを原料ガスに用いて、反応炉内の圧力を2.6kPa、成長温度を600℃にして、1μmの厚さで形成する。次に、反応炉の中で、Ge結晶をアニールする。温度を800℃、時間を10分間としてアニールを実行した後、温度を680℃、時間を10分間とするアニールを10回繰り返す。
【0056】
次に、CVD法により、ベース基板102の全面に阻害体116としての酸化シリコンを形成する。フォトリソグラフィ法による加工により、第2のIVB族半導体結晶110であるGe結晶を露出する開口を形成する。露出するGe結晶上に、III−V族化合物半導体結晶112としてGaAs結晶をMOCVD法により形成する。GaAs結晶は、トリメチルガリウムおよびアルシンを原料ガスに用いて成長させる。GaAs結晶は、まず550℃の成長温度でGaAs結晶を成長後、成長温度を650℃とし、反応炉内の圧力を8.0kPa、成長温度を650℃にして、2μmの厚さで形成する。GaAs結晶は、第2窪みの開口の内部で、Ge結晶の表面上に成長する。
【0057】
次に、基板表面にある酸化シリコンを除去する。以上のようにして、ベース基板102のシリコン結晶、第1のIVB族半導体結晶108であるGe結晶およびIII−V族化合物半導体結晶112であるGaAs結晶のそれぞれの表面が同一の平面に形成される半導体基板を作製できる。このようにして、いずれの結晶も欠陥の少ない良好な結晶として作製される。透過型電子顕微鏡によりこれらの結晶の断面観察をすることにより、欠陥の少ない良好な結晶であることを確認できる。
【実施例2】
【0058】
表面がシリコン結晶であるベース基板102として、シリコンウェハを準備する。フォトリソグラフィ法による加工により、ベース基板102のシリコン結晶に第1窪み(第1窪み104)および第2窪み(第2窪み106)を形成する。窪みの大きさは、20μm×20μmとする。第1窪みおよび第2窪みの深さは、同じ3μmとする。
【0059】
第1窪みおよび第2窪みを形成したベース基板102上に全面に渡って、阻害体114および阻害体116として酸化シリコンをCVD法により形成する。これにより、第1窪み、第2窪みの底面、側面に酸化シリコンが形成される。次に、フォトリソグラフィ法による加工により、第1窪みおよび第2窪みの底部にある阻害体にシリコン結晶を露出する開口を複数形成する。
【0060】
基板を反応炉の内部に配置し、第1のIVB族半導体結晶108および第2のIVB族半導体結晶110として、第1窪みおよび第2窪みのそれぞれに、Ge結晶を形成する。Ge結晶は、CVD法により、第1窪みおよび第2窪みの開口の内部に選択的に形成する。Ge結晶は、ゲルマンを原料ガスに用いて、反応炉内の圧力を2.6kPa、成長温度を600℃にして、3μmの厚さで形成する。次に、反応炉の中で、Ge結晶をアニール処理する。温度を800℃、時間を10分間としてアニールを実行した後、温度を680℃、時間を10分間とするアニールを10回繰り返す。
【0061】
第1窪みに選択的に形成するGe結晶は、第1のIVB族半導体結晶108とする。第2窪みに選択的に形成するGe結晶は、フォトリソグラフィ法により、第1のIVB族半導体結晶108の厚さより薄い1μmの厚さに加工する。1μmの厚さのGe結晶は、第2のIVB族半導体結晶110とする。
【0062】
次に、阻害体116として、CVD法により、基板全面に酸化シリコンを形成する。フォトリソグラフィ法による加工により、第2のIVB族半導体結晶110であるGe結晶を露出する開口を形成する。露出するGe結晶上に、III−V族化合物半導体結晶112としてGaAs結晶層をMOCVD法により形成する。GaAs結晶は、トリメチルガリウムおよびアルシンを原料ガスに用いて成長させる。GaAs結晶は、まず550℃の成長温度でGaAs結晶を成長後、成長温度を650℃とし、反応炉内の圧力を8.0kPa、成長温度を650℃にして、2μmの厚さで形成する。GaAs結晶は、開口の内部で、Ge結晶の表面上に成長する。
【0063】
次に、基板表面にある酸化シリコンを除去する。以上のようにして、ベース基板102のシリコン結晶、第1のIVB族半導体結晶108であるGe結晶およびIII−V族化合物半導体結晶112であるGaAs結晶のそれぞれの表面が同一の平面に形成される半導体基板が作製できる。このようにして、いずれの結晶も欠陥の少ない良好な結晶として作製される。透過型電子顕微鏡によりこれらの結晶の断面観察をすることにより、欠陥の少ない良好な結晶であることを確認できる。
【実施例3】
【0064】
表面がシリコン結晶であるベース基板102として、シリコンウェハを準備する。フォトリソグラフィ法による加工により、ベース基板102のシリコン結晶に第1窪み(第1窪み104)および第2窪み(第2窪み106)を形成する。窪みの大きさは、20μm×20μmとする。第2窪みの深さは3μmとする。第1窪みの深さは、第2窪みの深さより浅い1μmとする。
【0065】
第1窪みおよび第2窪みを形成したベース基板102上に全面に渡って0.1μmの厚さで、阻害体114および阻害体116として酸化シリコンをCVD法により形成する。これにより、第1窪み、第2窪みの底面、側面に酸化シリコンが形成される。次に、フォトリソグラフィ法による加工により、第1窪みおよび第2窪みの底部にある阻害体にシリコン結晶を露出した開口を複数形成する。
【0066】
ベース基板102を反応炉の内部に配置し、第1のIVB族半導体結晶108および第2のIVB族半導体結晶110として、第1窪みおよび第2窪みのそれぞれに、Ge結晶を形成する。Ge結晶は、CVD法により、第1窪みおよび第2窪みの開口の内部に選択的に形成する。Ge結晶は、ゲルマンを原料ガスに用いて、反応炉内の圧力を2.6kPa、成長温度を600℃にして、1.1μmの厚さで成膜する。次に、反応炉の中で、Ge結晶をアニール処理する。温度を800℃、時間を10分間としてアニールを実行後、温度を680℃、時間を10分間とするアニールを10回繰り返す。
【0067】
次に、阻害体116として、CVD法により、ベース基板102の全面に酸化シリコンを0.1μmの厚さで形成する。フォトリソグラフィ法による加工により、第2のIVB族半導体結晶110であるGe結晶層を露出する開口を形成する。露出する第2のIVB族半導体結晶110であるGe結晶上に、III−V族化合物半導体結晶112としてGaAs結晶をMOCVD法により形成する。GaAs結晶は、トリメチルガリウムおよびアルシンを原料ガスに用いて成長させる。GaAs結晶は、まず550℃の成長温度でGaAs結晶を成長後、成長温度を650℃とし、反応炉内の圧力を8.0kPa、成長温度を650℃にして、2μmの厚さで形成する。GaAs結晶は、開口の内部で、Ge結晶の表面上に成長する。
【0068】
次に、阻害体304として酸化シリコンをCVD法により形成し、フォトリソグラフィ法による加工により、基板全面が平坦な表面になるようにする。第1のIVB族半導体結晶108であるGe結晶とIII−V族化合物半導体結晶112であるGaAs結晶上にある酸化シリコンは、厚さが0.1μmになるようにし、シリコン結晶上にある酸化シリコンは0.2μmの厚さになるようにする。
【0069】
次に、第3のIVB族半導体結晶302としてのシリコン結晶を形成するため、阻害体304である酸化シリコンの一部にベース基板102のシリコン結晶に達する開口を形成する。ベース基板102のシリコン結晶が露出する開口の内部に、第3のIVB族半導体結晶302としてのシリコン結晶を、CVD法により形成する。このシリコン結晶は、モノシランを原料ガスに用いて、反応炉内の圧力を1.3kPa、成長温度を750℃にして、0.1μmの厚さで形成する。第3のIVB族半導体結晶302であるシリコン結晶は、阻害体304である酸化シリコンに形成した開口の内部で、ベース基板102のシリコン結晶の表面上に成長する。
【0070】
次に、フォトリソグラフィ法による加工により、第1のIVB族半導体結晶108であるGe結晶およびIII−V族化合物半導体結晶112であるGaAs結晶が露出するように、基板表面にある酸化シリコンを0.1μmの厚さだけ除去する。以上のようにして、第1のIVB族半導体結晶108であるGe結晶、第3のIVB族半導体結晶302であるシリコン結晶およびIII−V族化合物半導体結晶112であるGaAs結晶のそれぞれの表面が同一の平面に形成される半導体基板を作製できる。このようにして、いずれの結晶も欠陥の少ない良好な結晶として得られる。透過型電子顕微鏡によりこれらの結晶の断面観察をすることにより、欠陥の少ない良好な結晶であることを確認できる。
【実施例4】
【0071】
表面がシリコン結晶であるベース基板102として、シリコンウェハを準備する。基板上に全面に渡って2μmの厚さで、阻害体402として酸化シリコンを熱酸化法により形成する。フォトリソグラフィ法による加工により、阻害体402である酸化シリコンの一部にシリコン結晶に達する第1開口および第2開口を複数形成する。各開口を形成するための酸化シリコンのエッチング方法として、酸化シリコンを0.1μmの厚さを残すようにドライエッチングした後、残余の0.1μm厚さの酸化シリコンをウェットエッチングにより除去する方法が挙げられる。このようにして、シリコン結晶が露出した開口を形成する。開口の大きさは、20μm×20μmとする。
【0072】
ベース基板102を反応炉の内部に配置し、第1の開口および第2の開口のそれぞれに、Ge結晶を形成する。Ge結晶は、CVD法により、第1開口および第2開口の内部に選択的に形成する。Ge結晶は、ゲルマンを原料ガスに用いて、反応炉内の圧力を2.6kPa、成長温度を600℃にして、2μmの厚さで形成する。次に、反応炉の中で、Ge結晶をアニール処理する。温度を800℃、時間を10分間としてアニールした後、温度を680℃、時間を10分間とするアニールを10回繰り返す。
【0073】
第1の開口に選択的に形成するGe結晶は、第1のIVB族半導体結晶108とする。第2の開口に選択的に形成するGe結晶は、フォトリソグラフィ法により1μmの厚さに加工する。1μmの厚さに加工したGe結晶は、第2のIVB族半導体結晶110とする。
【0074】
次に、ベース基板102の全面に渡って0.1μmの厚さで、阻害体として酸化シリコンをCVD法により形成する。フォトリソグラフィ法による加工により、第2のIVB族半導体結晶110であるGe結晶を露出する開口を形成する。露出したGe結晶上に、III−V族化合物半導体結晶112としてGaAs結晶をMOCVD法により形成する。GaAs結晶は、トリメチルガリウムおよびアルシンを原料ガスに用いて成長させる。GaAs結晶は、まず550℃の成長温度でGaAs結晶を成長後、成長温度を650℃とし、反応炉内の圧力を8.0kPa、成長温度を650℃にして、1μmの厚さで形成する。GaAs結晶は、開口の内部で、Ge結晶の表面上に成長する。
【0075】
次に、阻害体として酸化シリコンをCVD法により形成し、フォトリソグラフィ法により加工することにより、ベース基板102全面が平坦な表面になるようにする。第1のIVB族半導体結晶108であるGe結晶とIII−V族化合物半導体結晶112であるGaAs結晶上にある酸化シリコンは、厚さが0.1μmになるようにし、シリコン結晶上にある酸化シリコンは2.1μmの厚さになるようにする。
【0076】
次に、第3のIVB族半導体結晶302としてのシリコン結晶を形成するため、阻害体の一部にシリコンウェハのシリコン結晶に達する第3の開口を形成する。開口を形成するための酸化シリコンのエッチング方法としては、酸化シリコンを0.1μmの厚さを残すようにドライエッチングした後、残余の0.1μm厚さの酸化シリコンをウェットエッチングし、ベース基板102のシリコン結晶が露出された開口を形成する。
【0077】
このシリコン結晶が露出された第3の開口の内部に、第3のIVB族半導体結晶302としてのシリコン結晶を、CVD法により形成する。このシリコン結晶は、モノシランを原料ガスに用いて、反応炉内の圧力を1.3kPa、成長温度を750℃にして、2μmの厚さで形成する。第3のIVB族半導体結晶302であるシリコン結晶は、阻害体402である酸化シリコンに形成した開口の内部で、シリコン結晶の表面上に成長する。
【0078】
次に、フォトリソグラフィ法による加工により、第1のIVB族半導体結晶108であるGe結晶およびIII−V族化合物半導体結晶112であるGaAs結晶が露出するように、基板表面にある酸化シリコンを0.1μmの厚さだけ除去する。以上のようにして、第1のIVB族半導体結晶108であるGe結晶、第3のIVB族半導体結晶302であるシリコン結晶およびIII−V族化合物半導体結晶112であるGaAs結晶のそれぞれの表面が同一の平面に形成される半導体基板が作製できる。このようにして、いずれの結晶も欠陥の少ない良好な結晶として得られる。透過型電子顕微鏡によりこれらの結晶の断面観察をすることにより、欠陥の少ない良好な結晶であることを確認できる。
【0079】
以上説明した半導体基板100、半導体基板200、半導体基板300、半導体基板400および半導体基板500における、シリコン結晶、IVB族半導体結晶およびIII−V族化合物半導体結晶112の何れかの半導体結晶、または当該半導体結晶上に形成された半導体層を用いて電子素子を形成できる。電子素子として、FETまたはHBTを含むアナログ増幅デバイス、FETまたはHBTを含むスイッチングデバイスおよびデジタルIC、pn接合を有する発光デバイス、pn接合またはショットキー接合を含む受光デバイスが例示できる。そして、これら電子素子は、単一のシリコン基板に、モノリシックに集積化することができる。
【0080】
請求の範囲、明細書、および図面中において示した基板、方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0081】
100 半導体基板、102 ベース基板、104 第1窪み、106 第2窪み、108 第1のIVB族半導体結晶、110 第2のIVB族半導体結晶、112 III−V族化合物半導体結晶、114 阻害体、116 阻害体、118 阻害体、200 半導体基板、300 半導体基板、302 第3のIVB族半導体結晶、304 阻害体、400 半導体基板、402 阻害体、404 第1開口、406 第2開口、408 第3開口、500 半導体基板、502 犠牲成長窪み、504 IVB族半導体、506 III−V族半導体

【特許請求の範囲】
【請求項1】
第1窪みおよび第2窪みが形成されたシリコン結晶を表面に有するベース基板と、
前記第1窪みの内部に形成され、露出されている第1のIVB族半導体結晶と、
前記第2窪みの内部に形成された第2のIVB族半導体結晶と、
前記第2窪みの内部の前記第2のIVB族半導体結晶上に形成され、露出されているIII−V族化合物半導体結晶と
を備える半導体基板。
【請求項2】
前記第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、前記第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である
請求項1に記載の半導体基板。
【請求項3】
前記第1のIVB族半導体結晶及び前記第2のIVB族半導体結晶において、a1≦a2である
請求項2に記載の半導体基板。
【請求項4】
前記シリコン結晶、前記第1のIVB族半導体結晶および前記III−V族化合物半導体結晶のそれぞれの表面が実質的に同一の平面に形成されている
請求項1から請求項3の何れか一項に記載の半導体基板。
【請求項5】
前記第1窪みの深さが前記第2窪みの深さより浅い
請求項1から請求項4の何れか一項に記載の半導体基板。
【請求項6】
前記第1窪みと前記第2窪みとが、実質的に同じ深さに形成され、
前記第2のIVB族半導体結晶の厚さが前記第1のIVB族半導体結晶の厚さより薄い
請求項1から請求項4の何れか一項に記載の半導体基板。
【請求項7】
前記第2窪みのアスペクト比が(√3)/3以上である
請求項1から請求項6の何れか一項に記載の半導体基板。
【請求項8】
前記第1窪みの側壁と前記第1のIVB族半導体結晶との間に、半導体結晶の成長を阻害する阻害体をさらに備える
請求項1から請求項7の何れか一項に記載の半導体基板。
【請求項9】
前記第2窪みの側壁と前記第2のIVB族半導体結晶および前記III−V族化合物半導体結晶との間に、半導体結晶の成長を阻害する阻害体をさらに備える
請求項1から請求項8の何れか一項に記載の半導体基板。
【請求項10】
前記シリコン結晶における前記第1窪みおよび前記第2窪みが形成されている領域と異なる領域上に形成された第3のIVB族半導体結晶をさらに備える
請求項1から請求項9の何れか一項に記載の半導体基板。
【請求項11】
前記第3のIVB族半導体結晶がSi1−bGe(0≦b≦1)である
請求項10に記載の半導体基板。
【請求項12】
前記III−V族化合物半導体結晶がAlInGa1−x−yAs1−z(0≦x≦1、0≦y≦1、0≦x+y≦1、0≦z≦1)である
請求項1から請求項11の何れか一項に記載の半導体基板。
【請求項13】
表面にシリコン結晶を有するベース基板と、
前記ベース基板上に形成され、前記シリコン結晶に達する第1開口、前記シリコン結晶に達する第2開口および前記シリコン結晶に達する第3開口を有し、かつ、半導体結晶の成長を阻害する阻害体と、
前記第1開口に形成され、露出されている第1のIVB族半導体結晶と、
前記第2開口に形成された第2のIVB族半導体結晶と、
前記第2のIVB族半導体結晶上に形成され、露出されているIII−V族化合物半導体結晶と、
前記第3開口に形成された第3のIVB族半導体結晶と
を備える半導体基板。
【請求項14】
前記第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、前記第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である
請求項13に記載の半導体基板。
【請求項15】
前記第3のIVB族半導体結晶、前記第1のIVB族半導体結晶および前記III−V族化合物半導体結晶のそれぞれの表面が実質的に同一の平面に形成されている
請求項13または請求項14に記載の半導体基板。
【請求項16】
前記第2のIVB族半導体結晶の厚さが前記第1のIVB族半導体結晶の厚さより薄い
請求項13から請求項15の何れか一項に記載の半導体基板。
【請求項17】
請求項1から請求項16の何れか一項に記載の前記半導体基板における、前記シリコン結晶、前記第1のIVB族半導体結晶、前記第2のIVB族半導体結晶および前記III−V族化合物半導体結晶の何れかの半導体結晶と、
前記半導体結晶または前記半導体結晶上に形成された半導体層に形成された電極と
を有する電子素子を備える半導体デバイス。
【請求項18】
表面にシリコン結晶を有するベース基板の前記シリコン結晶に第1窪みおよび第2窪みを形成する段階と、
前記第1窪みの内部に第1のIVB族半導体結晶を形成する段階と、
前記第2窪みの内部に第2のIVB族半導体結晶を形成する段階と、
前記第2窪みの内部の前記第2のIVB族半導体結晶上にIII−V族化合物半導体結晶を形成する段階と
を備え、
前記第1のIVB族半導体結晶および前記III−V族化合物半導体結晶は、露出されている半導体基板の製造方法。
【請求項19】
前記第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、前記第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である
請求項18に記載の半導体基板の製造方法。
【請求項20】
前記第1窪みおよび前記第2窪みを形成した後、前記第1のIVB族半導体結晶および前記第2のIVB族半導体結晶を形成する前に、前記シリコン結晶の表面ならびに前記第1窪みおよび前記第2窪みの側壁に、半導体結晶の成長を阻害する阻害体を形成する段階をさらに備え、
前記第1のIVB族半導体結晶および前記第2のIVB族半導体結晶を形成する段階において、前記第1のIVB族半導体結晶および前記第2のIVB族半導体結晶を選択MOCVD法により形成する
請求項18または請求項19に記載の半導体基板の製造方法。
【請求項21】
前記第1窪みに形成された前記第1のIVB族半導体結晶の表面を覆い、かつ、半導体結晶の成長を阻害する阻害体を形成する段階をさらに備え、
前記III−V族化合物半導体結晶を形成する段階において、前記III−V族化合物半導体結晶を選択MOCVD法により形成する
請求項18から請求項20の何れか一項に記載の半導体基板の製造方法。
【請求項22】
表面にシリコン結晶を有するベース基板上に半導体結晶の成長を阻害する阻害体を形成する段階と、
前記阻害体に、前記シリコン結晶に達する第1開口、前記シリコン結晶に達する第2開口および前記シリコン結晶に達する第3開口をそれぞれ形成する段階と、
前記第1開口の内部に第1のIVB族半導体結晶を形成する段階と、
前記第2開口の内部に第2のIVB族半導体結晶を形成する段階と、
前記第2開口の内部の前記第2のIVB族半導体結晶上にIII−V族化合物半導体結晶を形成する段階と、
前記第3開口の内部に第3のIVB族半導体結晶を成長させる段階と
を備え、
前記第1のIVB族半導体結晶、前記III−V族化合物半導体結晶および前記第3のIVB族半導体結晶は、露出されている半導体基板の製造方法。
【請求項23】
前記第1のIVB族半導体結晶がSi1−a1Gea1(0≦a1≦1)であり、かつ、前記第2のIVB族半導体結晶がSi1−a2Gea2(0.6≦a2≦1)である
請求項22に記載の半導体基板の製造方法。
【請求項24】
前記第3のIVB族半導体結晶がSi1−bGe(0≦b≦1)である
請求項22または請求項23に記載の半導体基板の製造方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図1E】
image rotate

【図1F】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate


【公開番号】特開2011−146691(P2011−146691A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−267091(P2010−267091)
【出願日】平成22年11月30日(2010.11.30)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】