説明

半導体集積回路

【課題】雑なクロック選択回路に対応できる半導体集積回路を、簡単な配置クラスタリング工程で作製できるようにする。
【解決手段】クロック信号を種々の遅延量で遅延調整するクロックツリー回路と、遅延調整されたクロック信号が供給されるクロック同期回路とを備える。クロックツリー回路は、クロック信号導入端の後段に設けられた第一のクロックツリーセルと、クロック同期回路の前段でかつ第1のクロックツリーセルより後段に設けられた第二のクロックツリーセルと、第二のクロックツリーセルの前段に設けられたクロック分岐点とを備える。クロック同期回路は第二のクロックツリーセルで遅延調整されたクロック信号が供給される第一のクロック同期回路とクロック分岐点でクロックツリー回路から出力されるクロック信号が供給される第二のクロック同期回路とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体集積回路において、クロック同期回路のチップ内クロック遅延ばらつき低減のためのクロック構成に関する。
【背景技術】
【0002】
近年、プロセスシュリンクにともなう微細プロセスにおいて、OCV(On-Chip-Variation)の影響によるチップ内クロック遅延バラツキのために、タイミング収束性悪化,工数増加,面積増加が顕著化している。
【0003】
OCVとは、クロック遅延調整が必要なクロック同期回路において互に異なるクロック経路におけるチップ内クロック遅延ばらつきのことである。OCVは、
・製造ばらつき、
・OPC(光学近接効果補正:Optical-Proximity-Correction)の不完全さ、
・チップ内温度ばらつき、
・各セル毎のIR−DROP値ばらつき、
・セル段数ばらつき、
・配線ばらつき、
・実動作に依存する設計要因ばらつき、
・その他設計マージン、
などに起因して生じる。
【0004】
微細プロセスにおいては、OCVの影響によるチップ内クロック遅延ばらつきを設計マージンに付与したタイミング検証が必要であり、例えば遅延変動量が20%であれば、動作周波数100MHzを保証するためには、動作周波数120MHzを保証する必要がある。
【0005】
また、カスタム設計されたSRAM,ROM,eDRAMなど(以降マクロと呼ぶ)は、一般的にフリップフロップよりも大きなホールドタイムが必要であり、かつ多入出力端子であることから、OCVの影響による面積増加が顕著である。
【0006】
さらに、チップコスト削減や性能向上のため、多数のマクロを実装することが一般的であり、フリップフロップとマクロとの間のタイミング収束性が悪化することに起因する工数増加および面積増加などの設計生産性低下が問題となる。
【0007】
図2は従来のクロック構成図である。このクロック構成は、クロックツリー構造を有する半導体集積回路において、
・クロック信号を供給するクロックツリーソースセル1001と、
・クロックツリーソースセル1001からクロック遅延調整が必要な回路であるフリップフロップ1004およびマクロ1005と、
・クロック信号を選択してマクロ1005に出力するクロック選択回路1006と、
・クロックツリーソースセル1001の後段でクロック遅延調整を行う第一のクロックツリーセル(複数段に分岐されている)1002と、
・フリップフロップ1004およびマクロ1005の前段でクロック遅延調整を行う第二のクロックツリーセル1003と、
・クロックツリー回路からクロック選択回路1006へ分岐するクロック最終分岐点1007と、
を備える。
【0008】
クロックツリーソースセル1001から出力されたクロック信号は、クロック最終分岐点1007から複数段に分岐した第一のクロックツリーセル1002と第二のクロックツリーセル1003とによって信号増幅されたうえで、フリップフロップ1004に伝達される。また、このクロック信号は、クロック最終分岐点1007からクロック選択回路1006を介して複数段に分岐した第一のクロックツリーセル1002と第二のクロックツリーセル1003とによって信号増幅されたうえで、マクロ1005に伝達される。そのため、クロックツリーソース1001からフリップフロップ1004に至るクロック経路と、クロックツリーソース1001からマクロ1005に至るクロック経路とは、第一のクロックツリーセル1002と第二のクロックツリーセル1003とによってクロック遅延調整される。
【0009】
これによりクロック最終分岐点1007とクロック選択回路1006とは、複数段に分岐した第一のクロックツリーセル1002よりクロック経路の前段側に位置することになり、かつクロック選択回路1006はクロックツリーソースセル1001に近接配置されるようになる。そのため、クロック最終分岐点1007以降においてクロック経路に差異が生じるようになり、その結果、OCVの影響によるチップ内クロック遅延ばらつきが大きくなって、タイミング収束性悪化に起因する工数増加と面積増加とが生じる。
【0010】
この不具合を解決するために、クロックラインの消費電力を抑えることができるゲーティングクロック回路からクロック信号が供給されるフリップフロップ群に着目して、このフリップフロップ群の中で生じる遅延時間差(スキュー)を少なくした回路および設計方法が提案されている(特許文献1参照)。この提案では、
・ルートバッファとそのルートバッファから順に分岐した複数段のバッファと、最終段多入力ゲート(NORゲート)との組合せからなるクロックツリー構造を有するゲーテッドクロック回路において、その接続関係を全セルの配置後に生成する、
・クロックラインに接続されるフリップフロップを機能毎にクラスタリングした後、さらに配置が近傍のフリップフロップ間でクラスタリングする、
という処理を行っている。
【0011】
これによりこの提案では、各バッファと、多入力ゲートが駆動する負荷とを一定にすることができて、スキューを少なくすることができる。
【特許文献1】特許第3178371号(第5頁、第1図)
【発明の開示】
【発明が解決しようとする課題】
【0012】
しかしながら、従来の方法は、フリップフロップの消費電力低減のためのゲーティング回路において、スキューを小さくするため、最終段多入力ゲートを、各バッファによって駆動されるフリップフロップの重心座標に配置している。そのため、複雑な配置クラスタリング工程が必要となる。
【0013】
また、フリップフロップとは異なる配置制約であるマクロと、ゲーティング回路とは異なる複雑なクロック選択回路とには対応できない。
【課題を解決するための手段】
【0014】
前記課題を解決するために、本発明は、
クロック経路を伝送するクロック信号を種々の遅延量で遅延調整するクロックツリー回路と、
前記クロックツリー回路により遅延調整された前記クロック信号が供給されるクロック同期回路と、
を備え、
前記クロックツリー回路は、
前記クロック経路におけるクロック信号導入端の後段に設けられた第一のクロックツリーセルと、
前記クロック経路における前記クロック同期回路の前段で、かつ前記第1のクロックツリーセルより後段に設けられた第二のクロックツリーセルと、
前記クロック経路における前記第二のクロックツリーセルの前段で、かつ前記第1のクロックツリーセルより後段に設けられたクロック分岐点と、
を備え、
前記クロック同期回路は、
前記第二のクロックツリーセルで遅延調整されたのち前記クロックツリー回路から出力される前記クロック信号が供給される第一のクロック同期回路と、
前記第一のクロックツリーセルで遅延調整されたのち前記第二のクロックツリーセルで遅延調整されることなく前記クロック分岐点で前記クロックツリー回路から出力される前記クロック信号が供給される第二のクロック同期回路と、
を備える。
【0015】
本発明は、前記クロック分岐点と前記第二のクロック同期回路とを、クロックツリー回路を介することなく接続する、
という態様がある。
【0016】
また、本発明は、前記クロック分岐点と前記第二のクロック同期回路との間に、クロック選択回路を設け、
前記クロック選択回路は、前記クロック分岐点で前記クロックツリー回路から引き出される前記クロック信号と、当該クロック信号とは異なる他のクロック信号との中から一つを選択して、前記第二のクロック同期回路に供給する、
という態様がある。
【0017】
また、前記第一のクロック同期回路の出力信号を前記第二のクロック同期回路に供給する、
という態様がある。
【0018】
また、前記第一のクロック同期回路は、メモリセルである、
という態様がある。
【0019】
また、前記第二のクロック同期回路は、フリップフロップである、
という態様がある。
【発明の効果】
【0020】
本発明によれば、クロック分岐点が第1,第2のクロック同期回路に近接配置されることになり、OCVの影響が低減される。さらに、クロック分岐点により分岐された各クロック経路において、互いに共通となるクロック経路の部分が占める割合が高くなることから、設計マージンとして考慮すべきOCVの影響によるチップ内クロック遅延ばらつきの変動量を低減することができる。
【0021】
なお、本発明において、前記クロック分岐点と前記第二のクロック同期回路とを、クロックツリー回路を介することなく接続する、という構成をさらに設ければ、クロック経路における遅延量の差異をより一層抑えることができる。これにより、OCVの影響によるチップ内クロック遅延ばらつきをさらに低減することができる。
【0022】
また、本発明において、前記クロック分岐点と前記第二のクロック同期回路との間に、クロック選択回路を設け、前記クロック選択回路は、前記第一のクロックツリーセルにより遅延調整されたのち前記クロック分岐点で前記クロックツリーセルから引き出される前記クロック信号と、当該クロック信号とは異なる他のクロック信号との中から一つを選択して、前記第二のクロック同期回路に供給する、という構成をさらに備えれば、クロックツリーソースセル等から供給されるクロック信号に多様なクロック遅延調整が必要となる場合であってもクロック経路における遅延量の差異(ばらつき)を最小限に抑えることができる。
【0023】
また、本発明において、前記第一のクロック同期回路の出力信号を前記第二のクロック同期回路に供給する、という構成をさらに備えれば、第一のクロック同期回路と第二のクロック同期回路とは同一のクロックツリー構造を有したうえでデータの受け渡しを行うことになる。このような構成においてタイミング収束性が考慮して本発明を実施すれば、クロック経路における遅延量の差異を最小限に抑えることができる。
【0024】
また、本発明において、前記第一のクロック同期回路はメモリセルである、という構成をさらに備えれば、通常モード,スキャンモード,BISTモード,バーンインモードなど複雑なクロック選択をクロック選択回路により切り替えることができる。
【0025】
また、本発明において、前記第二のクロック同期回路は、フリップフロップである、という構成をさらに備えれば、多数のフリップフロップとメモリセルとの間で信号の受け渡しがある状態において、OCVの影響によるチップ内クロック遅延ばらつきに起因する面積増加を抑制する効果が顕著になる。
【発明を実施するための最良の形態】
【0026】
図1を参照して本発明の実施形態であるチップ内クロック遅延ばらつき低減のための回路構成について説明する。
【0027】
本実施の形態の半導体集積回路は、以下に示すクロックツリー構造を有する。すなわち、この半導体集積回路は、クロックツリーソースセル101と、クロックツリーソースセル101からクロック信号が供給される第一,第二のクロック経路A,Bと、第一,第二のクロック経路A,Bにそれぞれ設けられた第一,第二のクロックツリー回路100A,100Bと、第一,第二のクロックツリー回路100A,100Bにより遅延調整されたクロック信号が供給される第一,第二のクロック同期回路群110A,110Bと、第一,第二のクロック選択回路106,206とを有する。
【0028】
第一のクロック経路Aに設けられた第一のクロックツリー回路100Aは、第一のクロックツリーセル102と第二のクロックツリーセル103と第一のクロック分岐点107とを備える。同様に、第二のクロック経路Bに設けられた第二のクロックツリー回路100Bは、第一のクロックツリーセル102と第二のクロックツリーセル203と第二のクロック分岐点207とを備える。第一のクロックツリー回路102と第二のクロックツリー回路202とは、第一のクロックツリーセル102を共用する。
【0029】
第一のクロックツリー回路100Aにおいて、第一のクロックツリーセル102と第二のクロックツリーセル103と第一のクロック分岐点107とは次のように配置される。すなわち、第一のクロックツリーセル102は、第一のクロック経路Aにおけるクロック信号導入端Cの後段に設けられる。第二のクロックツリーセル103は、第一のクロック同期回路群110Aの前段で、かつ第1のクロックツリーセル102より後段に設けられる。第一のクロック分岐点107は第二のクロックツリーセル103の前段で、かつ第1のクロックツリーセル102より後段に設けられる。
【0030】
第一のクロックツリーセル102は複数段に分岐されており、クロックツリーソースセル101で生成されてクロック信号導入端Cに供給されるクロック信号を種々の遅延量で遅延調整することで複数のクロック信号を生成する。
【0031】
第一のクロック分岐点107は、第一のクロック経路Aにおいて、第一のクロックツリーセル102と第二のクロックツリーセル103との間に位置しており、第一のクロックツリーセル102によって遅延調整されたクロック信号の分岐点である。第一のクロック分岐点107で分岐された分岐クロック信号それぞれは、第二のクロックツリーセル103と第一のクロック選択回路106とに出力される。
【0032】
第二のクロックツリーセル103は分岐されており、第一のクロックツリーセル102で遅延調整されたうえで、第一のクロック分岐点107で分岐された分岐クロック信号をさらに種々の遅延量で遅延調整することで複数のクロック信号を生成する。
【0033】
第一のクロック選択回路106は、第一のクロックツリーセル102で遅延調整されたうえで第一のクロック分岐点107で分岐されたもう一つの分岐クロック信号と、クロックツリーソースセル101によって生成されるクロック信号との中から一つを選択して出力する。
【0034】
第二のクロックツリー回路100Bにおいて、第一のクロックツリーセル102と第二のクロックツリーセル203と第二のクロック分岐点207とは次のように配置される。すなわち、第一のクロックツリーセル102は、第二のクロック経路Bにおけるクロック信号導入端Cの後段に設けられる。第二のクロックツリーセル203は、第二のクロック同期回路群110Bの前段で、かつ第1のクロックツリーセル102より後段に設けられる。第二のクロック分岐点207は第二のクロックツリーセル203の前段で、かつ第1のクロックツリーセル102より後段に設けられる。
【0035】
第二のクロックツリー回路100Bにおける第一のクロックツリーセル102は、第一のクロックツリー回路100Aにおける第一のクロックツリーセル102を共用してり、その構成は上述した通りである。
【0036】
第二のクロック分岐点207は、第二のクロック経路Bにおいて、第一のクロックツリーセル102と第二のクロックツリーセル203との間に位置しており、第一のクロックツリーセル102によって遅延調整されたクロック信号の分岐点である。第二のクロック分岐点207で分岐された分岐クロック信号それぞれは、第二のクロックツリーセル203と第二のクロック選択回路206とに出力される。
【0037】
第二のクロックツリーセル203は分岐されており、第一のクロックツリーセル102で遅延調整されたうえで、第二のクロック分岐点207で分岐された分岐クロック信号をさらに種々の遅延量で遅延調整することで複数のクロック信号を生成する。
【0038】
第二のクロック選択回路206は、第一のクロックツリーセル102で遅延調整されたうえで第二のクロック分岐点207で分岐されたもう一つの分岐クロック信号と、クロックツリーソースセル101によって生成されるクロック信号との中から一つを選択して出力する。
【0039】
なお、図1および以下の説明では、第一のクロックツリーセル102によって複数形成されるクロック信号の中から二系列のクロック信号群に着目したうえで、着目した各クロック信号群の伝送経路を、それぞれ第一のクロック経路Aならびに第二のクロック経路Bと名付け、これらクロック経路A,B上に位置する第一,第二のクロックツリー回路100A100Bについて説明を行うが、着目していない他の系列のクロック信号群におけるクロック経路も同様であるのはいうまでもない。
【0040】
第一のクロック同期回路群110Aは、第一のクロック経路Aに設けられており、第一のフリップフロップ(第一のクロック同期回路)104と第一のマクロ(第二のクロック同期回路)105とを有する。第一のフリップフロップ104は、第一のクロックツリー回路100Aの第二のクロックツリー回路100Bにより遅延調整されたクロック信号が供給されるクロック同期回路である。第一のマクロ105は、第一のフリップフロップ104が処理した信号にさらに各種の処理を施すマクロ回路である。第一のマクロ105に供給されるクロック信号は、第一のフリップフロップ104に供給されるクロック信号とは異なる遅延調整を実施する必要がある。そこで、第一のマクロ105には、第一のフリップフロップ104とは異なり、第一のクロック選択回路106によって選択されたクロック信号が供給される。
【0041】
第二のクロック同期回路群110Bは、第二のクロック経路Bに設けられており、第二のフリップフロップ(第一のクロック同期回路)204と第二のマクロ(第二のクロック同期回路)205とを有する。第二のフリップフロップ204は、第二のクロックツリー回路100Bの第二のクロックツリー回路200Bにより遅延調整されたクロック信号が供給されるクロック同期回路である。第二のマクロ205は、第二のフリップフロップ204が処理した信号にさらに各種の処理を施すマクロ回路である。第二のマクロ205に供給されるクロック信号は、第二のフリップフロップ204に供給されるクロック信号とは異なる遅延調整を実施する必要がある。そこで、第二のマクロ205には、第二のフリップフロップ204とは異なり、第二のクロック選択回路206によって選択されたクロック信号が供給される。
【0042】
第二のクロックツリーセル103,203によってクロック信号が複数生成されるが、図1および以下の説明では、それらのクロック信号の一つを取り出して説明を行うが、他のクロック信号も同様であるのはいうまでもない。
【0043】
まず、第一,第二のクロック分岐点107,207について説明する。第一,第二のマクロ105,205は、第一,第二のフリップフロップ104,204と異なるクロック制御の下で駆動する。そこで、第一,第二のクロック経路A,Bにおける第一,第二のマクロ105,205の前段側にそれらに近接して第一,第二のクロック選択回路106,206がそれぞれ配置される。これにより、第一,第二のクロック分岐点107,207が、第一,第二のクロック経路A,Bにおける最終的なクロック分岐点となる。
【0044】
このようにして、第一,第二のクロック選択回路106,206を有する第一,第二のマクロ105,205ごとに第一,第二のクロック最終分岐点107,207が設けられる。そして、データ信号の受け渡しが行われる第一,第二のフリップフロップ104,204と第一,第二のマクロ105,205とにおいて、クロックツリーソースセル101から各第一,第二のクロック分岐点107,207に至る部分クロック経路が共通クロック経路となる。全クロック経路における共通クロック経路の比率が大きくなるほどOCVの影響によるチップ内クロック遅延ばらつきは小さくなる。
【0045】
なお、第一のフリップフロップ104と第二のマクロ205との間ではデータ信号の受け渡しがない。同様に、第二のフリップフロップ204と第一のマクロ105との間ではデータ信号の受け渡しがない。そのため、本実施の形態の構成では、タイミングを保証する必要が無く、OCVの影響によるチップ内クロック遅延ばらつきを考慮する必要はない。
【0046】
本発明の実施形態を実現するためのレイアウトフローについて説明する。
まず、第一,第二のフリップフロップ104,204を含むセルの配置処理前に、予め機能ブロックのデータ信号の流れ,IO端子位置,配線収束性,タイミング収束性などを考慮したフロアプラン検討を行って、第一,第二のマクロ105,205の配置位置を決定する。
【0047】
次に、第一のクロック選択回路106を第一のマクロ105に、第二のクロック選択回路206を第二のマクロ205に近接配置する。次に、第一,第二のフリップフロップ104,204を含むセルの配置処理を行う。具体的には、第一のフリップフロップ104と第一のマクロ105との間ではデータ信号の受け渡しがあって、タイミング収束性を考慮する必要がある。そこで、第一のフリップフロップ104を第一のマクロ105に近接配置する。これにより、第一のフリップフロップ104は第一のクロック分岐点107以降における同一のクロックツリークラスタリングとなる。同様に、第二のフリップフロップ204と第二のマクロ205とはデータ信号の受け渡しがあって、タイミング収束性を考慮する必要がある。そこで、第二のフリップフロップ204を第二のマクロ205に近接配置する。これにより、第二のフリップフロップ204は第二のクロック分岐点207以降における同一のクロックツリークラスタリングとなる。
【0048】
次に、クロックツリーソースセル101から第一のフリップフロップ104に至る第一のクロック経路Aと、クロックツリーソースセル101から第二のフリップフロップ204に至る第二のクロック経路Bとにおいて、クロック遅延調整のためのCTS処理(Clock-Tree-Synthesis)を行う。これにより、図1に示す本発明の実施形態の回路構成を実現できる。
【0049】
なお、第一のクロック選択回路106は第一のマクロ105に近接配置されるため、第一のクロック選択回路106と第一のマクロ105との間に第一のクロックツリーセル103がなくても、第一のクロック選択回路106が出力するクロック信号は正しく第一のマクロ105に伝達される。同様に、第二のマクロ選択回路206は第二のマクロ205に近接配置されているため、第二のマクロ選択回路206と第二のマクロ205との間に第二のクロックツリーセル203がなくても、第二のマクロ選択回路206が出力するクロック信号は正しく第二のマクロ205に伝達される。
【0050】
図1において、クロックツリーソースセル101から出力されるクロック信号は、複数段に分岐した第一のクロックツリーセル102により信号増幅されたうえで、第一のクロック分岐点107を介して、第一のフリップフロップ104と第一のクロック選択回路106とに伝達され、第一のクロック選択回路106から出力されるクロック信号は第一のマクロ105に伝達される。
【0051】
クロックツリーソース101から第一のフリップフロップ104と第一のマクロ105とに供給されるクロック信号は、複数段に分岐した第一のクロックツリーセル102と第二のクロックツリーセル103とによりクロック遅延調整されたうえで第一のフリップフロップ104と第一のマクロ105とに供給される。これにより、複数段に分岐した第一のクロックツリーセル102より第一のクロック分岐点107が後段となり、かつ第一のクロック選択回路106が第一のマクロ105に近接配置される。
【0052】
同様に、図1において、クロックツリーソースセル101から出力されるクロック信号は、複数段に分岐した第一のクロックツリーセル102により信号増幅されたうえで、第二のクロック分岐点207を介して、第二のフリップフロップ204と第二のマクロ選択回路206とに伝達される。第二のマクロ選択回路206から出力されるクロック信号は第二のマクロ205に伝達される。
【0053】
クロックツリーソース101から第二のフリップフロップ204と第二のマクロ205とに供給されるクロック信号は、複数段に分岐した第一のクロックツリーセル102と第二のクロックツリーセル203とによりクロック遅延調整されたうえで第二のフリップフロップ204と第二のマクロ205とに供給される。これにより、複数段に分岐した第一のクロックツリーセル102より第二のクロック分岐点207が後段となり、かつ第二のマクロ選択回路206が第二のマクロ205に近接配置される。
【0054】
ここで、第一,第二のクロック選択回路106,206と第一,第二のマクロ105,205との配置間隔について説明する。微細プロセスとして65nmプロセスにおいて、
・クロックツリーソースセル101と第一,第二のマクロ106,206との間に第一のクロックツリーセル102が挿入配置される、
・総配線長が2000umである、
・クロック到達時間が2.0nsである、
場合を例にして、以下の説明を行う。
【0055】
従来の回路構成においては、第一のクロック選択回路1006がクロックツリーソースセル1001の近傍に配置される。そのため、
・クロック選択回路1001とマクロ1005との離間間隔が2000umである、
・OCVの影響によるチップ内クロック遅延ばらつきの変動量が20%である、
とすると、
クロック到達時間(2.0ns)に対して20%のOCV影響が生じることを考慮すれば、共通のクロック経路以外のクロック経路(2000um)において生じるチップ内クロック遅延のばらつき(変動量)は0.4nsとなる。
【0056】
一方、本発明の回路構成においては、第一,第二のクロック選択回路106,206と第一,第二のマクロ105,205との間の離間間隔を200um以内に設定すれば、OCVの影響によるチップ内クロック遅延ばらつき(変動量)は10%となる。その結果、共通のクロック経路以外のクロック経路(200um)において、クロック到達時間(0.2ns)に対して10%のOCVの影響が生じることを考慮すれば、チップ内クロック遅延ばらつき(変動量)は0.02nsとなる。
【0057】
このように、本実施の形態の構成では、第一,第二のマクロ105,205と第一,第二のクロック分岐点107,207(さらに具体的にいえば、第一,第二のクロック選択回路106,206)との間の離間間隔を従来の回路構成に比べて短くすることにより、
・OCVの影響が低くなる、
・共通のクロック経路の比率が高くなる、
ことから、
設計マージンとして考慮すべきOCVの影響によるチップ内クロック遅延ばらつきの変動量を低減する、
ことが可能になる。
【0058】
さらに、本実施の形態では、第一,第二のクロック選択回路106,206を設けるに際して、第一,第二のマクロ105,205と第一,第二のクロック選択回路106,206との間に位置するクロック経路において、もう一つの第二のクロックツリーセル103,203を取り除いている。そのため、第一,第二のクロック選択回路106,206をより第一のクロックツリーセル102に近接配置させることが可能になる。
【0059】
これにより、各クロック経路の間で生じる遅延差異を最小限に抑えることができて、OCVの影響によるチップ内クロック遅延ばらつきをさらに低減する、
ことが可能になる。
【0060】
このように、本実施の形態の構成では、従来の回路構成に比べて、第一,第二のクロック分岐点107,207(さらに具体的にいえば、第一,第二のクロック選択回路106,206)を第一,第二のマクロ105,205により近接配置させることにより、
・OCVの影響が低くなる、
・共通のクロック経路の比率が高くなる、
ことから、
設計マージンとして考慮すべきOCVの影響によるチップ内クロック遅延ばらつきの変動量を低減する、
ことが可能になる。
【0061】
さらに、本実施の形態では、第一,第二のクロック選択回路106,206を設けるに際して、第一,第二のマクロ105,205と第一,第二のクロック選択回路106,206との間から、第二のクロックツリーセル103,203を取り除いた。これにより、第一,第二のクロック選択回路106,206をより第一のクロックツリーセル102に近接配置させることが可能になる。これにより、各クロック経路の間で生じる遅延差異を最小限に抑えることができて、OCVの影響によるチップ内クロック遅延ばらつきをさらに低減することが可能になる。
【0062】
なお、本実施例ではOCVの影響によるクロック遅延ばらつきの低減に主眼をおいて説明しているが、一般的なバッファあるいはインバータで構成されるクロック遅延調整や、ホールドタイムの大きいマクロに対して他のクロック同期回路よりも早いクロックを供給するなどのクロック遅延調整は、既存技術にて容易に実現できるものである。
【0063】
また、本実施例におけるマクロとは、SRAM,ROM,eDRAMなどのメモリセルのことであり、フリップフロップの数倍のホールドタイムが必要である。さらには、マクロは、アドレス端子,データ端子,制御端子など多数のフリップフロップとデータ信号の受け渡しがあることから、本発明による面積増加に対する抑制効果が顕著である。
【0064】
また、クロック選択回路とマクロとの接続は1対1に限定するものではなく、クロック信号を増幅する第二のクロックツリーセル103,203が不要であれば、第一,第二のクロック選択回路106,206が出力するクロック信号を複数のマクロに接続しても同様の効果を得ることができ、その場合、クロック選択回路の削減も可能である。
【0065】
また、第一,第二のクロック選択回路106,206は単純なゲーティングセルを含むものであり、当該技術者にとっては容易に想像できるものである。
【産業上の利用可能性】
【0066】
本発明にかかるチップ内クロック遅延ばらつき低減のための回路構成は、OCVの影響を抑えるためにクロック経路の共通度を高くすることを特徴とし、OCVの影響によるタイミング収束性悪化,面積増加などによる設計生産性低下を回避するものであり、微細プロセス,多数のマクロを実装する場合、およびセル敷詰率が高い場合にはより効果的である。
【図面の簡単な説明】
【0067】
【図1】本発明の実施形態の回路構成である。
【図2】従来例の回路構成である。
【符号の説明】
【0068】
A 第一のクロック経路
B 第二のクロック経路
100A 第一のクロックツリー回路
100B 第二のクロックツリー回路
101 クロックツリーソースセル
102 第一のクロックツリーセル
103 第二のクロックツリーセル
104 第一のフリップフロップ
105 第一のマクロ
106 第一のクロック選択回路
107 第一のクロック分岐点
110A 第一のクロック同期回路群
110B 第二のクロック同期回路群
202 第二のクロックツリーセル
203 第二のクロックツリーセル
204 第二のフリップフロップ
205 第二のマクロ
206 第二のクロック選択回路
207 第二のクロック分岐点

【特許請求の範囲】
【請求項1】
クロック経路を伝送するクロック信号を種々の遅延量で遅延調整するクロックツリー回路と、
前記クロックツリー回路により遅延調整された前記クロック信号が供給されるクロック同期回路と、
を備え、
前記クロックツリー回路は、
前記クロック経路におけるクロック信号導入端の後段に設けられた第一のクロックツリーセルと、
前記クロック経路における前記クロック同期回路の前段で、かつ前記第1のクロックツリーセルより後段に設けられた第二のクロックツリーセルと、
前記クロック経路における前記第二のクロックツリーセルの前段で、かつ前記第1のクロックツリーセルより後段に設けられたクロック分岐点と、
を備え、
前記クロック同期回路は、
前記第二のクロックツリーセルで遅延調整されたのち前記クロックツリー回路から出力される前記クロック信号が供給される第一のクロック同期回路と、
前記第一のクロックツリーセルで遅延調整されたのち前記第二のクロックツリーセルで遅延調整されることなく前記クロック分岐点で前記クロックツリー回路から出力される前記クロック信号が供給される第二のクロック同期回路と、
を備える、
ことを特徴とする半導体集積回路。
【請求項2】
前記クロック分岐点と前記第二のクロック同期回路とを、クロックツリー回路を介することなく接続する、
ことを特徴とする請求項1に記載の半導体集積回路。
【請求項3】
前記クロック分岐点と前記第二のクロック同期回路との間に、クロック選択回路を設け、
前記クロック選択回路は、前記クロック分岐点で前記クロックツリー回路から引き出される前記クロック信号と、当該クロック信号とは異なる他のクロック信号との中から一つを選択して、前記第二のクロック同期回路に供給する、
ことを特徴とする請求項1に記載の半導体集積回路。
【請求項4】
前記第一のクロック同期回路の出力信号を前記第二のクロック同期回路に供給する、
ことを特徴とする請求項1に記載の半導体集積回路。
【請求項5】
前記第一のクロック同期回路は、メモリセルである、
ことを特徴とする請求項1に記載の半導体集積回路。
【請求項6】
前記第二のクロック同期回路は、フリップフロップである、
ことを特徴とする請求項1に記載の半導体集積回路。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−187104(P2009−187104A)
【公開日】平成21年8月20日(2009.8.20)
【国際特許分類】
【出願番号】特願2008−24024(P2008−24024)
【出願日】平成20年2月4日(2008.2.4)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】