説明

斜流タービン

【課題】ハブ側とシュラウド側とで作動流体の供給を工夫し、翼の入口側端縁における形状を効果的に機能させ、インシデンス損失を低減させ得る斜流タービンを提供することを目的とする。
【解決手段】前縁47が上流側に向かって凸とされている翼7と、翼7の外径側端縁25を覆うシュラウド部27を有するケーシング3によって翼7の上流側に形成され、翼7の前縁47に向けて作動流体を供給する空間であるスクロール23と、を備えている斜流タービン1であって、スクロール23は、スクロール分割壁29によってシュラウド側空間31とハブ側空間33とに分割され、スクロール分割壁29の後縁側におけるシュラウド側分割壁面37およびハブ側分割壁面35は、それぞれそれらと対向する部分との間に作動流体が略半径方向に流れるシュラウド側流入路45および翼入口のハブ側の傾斜方向と略同等の方向に流れるハブ側流入路41を形成している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、小型ガスタービン、過給機、エキスパンダ等に用いられる斜流タービンに関するものである。
【背景技術】
【0002】
この種斜流タービンは、効率の向上が常に求められている。
タービンの効率は、翼入口の周速Uと、タービン入り口温度および圧力比でその作動流体(ガス)が加速される最大流速、すなわち、理論速度C0との比である理論速度比(=U/C0)に対して示される。
この効率を悪化させるものにインシデンス損失というものがある。これは、翼の前縁に流入するガスの流れ角βと、前縁における翼角βkと、の差であるインシデンスにより生じるものである。すなわち、インシデンスが大きくなると流入するガスが前縁で剥離するので、衝突ロスが大きくなりインシデンス損失が発生する。
【0003】
斜流タービンの翼は、一定半径線で切り取った場合の断面形状が前縁近傍を含む全体で曲線(放物線状)に形成されているので、斜流タービンでは、流れ角βと翼角βkとが接近するように設計することが可能である。これにより、たとえば、ハブ面のインシデンスを零に近づけることができるが、ハブとシュラウドとの間ではインシデンスが発生する。
すなわち、斜流タービンの翼は、半径線に沿った断面形状が曲線(放物線状)に形成されているので、図20に示すように、ハブとシュラウドとの間で流れ角β109が直線的に変化する一方で翼角βk110は放物線的に変化するため、翼高さの中央領域のインシデンスが最大限に増大している。
このように流れ角βの分布と翼角βkの分布が異なるために生じるインシデンスの増大によるインシデンス損失は、かえって斜流タービンの損失の増大を招き、その効率が低下する。
【0004】
この効率の低下を抑制するものとして、たとえば、特許文献1に示されるものが提案されている。
これは、図18あるいは図19に示されるように、動翼101の前縁103が作動流体の流れ方向における上流側に向かって凸に形成されている。これによって、流れ角分布115は、図20に示されるように、下に凸の曲線状になる。
その結果特にハブとシュラウドの中央部で翼角βk110分布と流れ角β115分布は接近し、インシデンスInaとなる。すなわち、インシデンスが△Inだけ低減するので、その分インシデンス損失が軽減される。
【0005】
また、ラジアルタービンでは、たとえば、特許文献2に示されるように、スクロールを2つに分割し、一方から供給したり、両方から同時に供給したりして作動流体の供給量を可変としたものが用いられている。
これは、図21に示されるように、スクロール120が仕切壁121によって、動翼124の前縁125のハブ側にガスを供給する第一導入路122と、シュラウド側にガスを供給する第二導入路123と、に分割されている。ガス量が少ない場合は、たとえば、第一導入路122からのみ供給し、多くなると、第一導入路122および第二導入路123から供給するものである。
【0006】
【特許文献1】特開2004−92498号公報
【特許文献2】実開昭62−364302号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところで、特許文献1に示されるものは、動翼101の前縁103に対してガスが理想的な状態で供給された場合には、図20に示される流れ角β115分布となるが、実際の製品ではこの理想的な状態でガスが供給されることを期待できない。
すなわち、図18に示されるようにスクロール105から動翼101に向けた流路が半径方向に延在している場合、あるいは、図19に示されるように、この流路がシュラウド面およびハブ面の傾斜を延長するように傾斜されている場合、が通常である。
また、動翼101の直上流側に、翼型をなす翼を供えたノズル107が設置される場合がある。
【0008】
図18のように動翼101に対してガスが半径方向に供給される場合、ハブ側の流れの傾斜角δが小さくなるため、前縁103が上流側に向かって凸に形成された効果が半減し、ハブ側の流れ角βが図20の流れ角β分布102に示されるように大きくなる。
このため、翼角βkと流れ角βとの差であるインシデンスが大きくなりハブ側の損失が大きくなる課題を持っている。
図19のように動翼101に対してガスが傾斜して供給される場合、シュラウド側の傾斜角が大きいので、スクロール105からシュラウドに流れ込む流れの子午面における転向角が大きくなる。このように子午面における転向角が大きくなると、動翼101前縁にてシュラウド面の境界層が拡大するので、シュラウド側の流れ角βが小さくなる。すなわち、図20の流れ角β分布104に示されるようにインシデンスが逆向きに大きくなりシュラウド側の損失が大きくなる課題を持っている。
【0009】
一方、特許文献2に示されるものは、仕切壁121が動翼124の前縁125から見て上流に有限の厚さを持つ板として存在するため、仕切壁121の後縁の下流にウエイク128が発達し、損失が増加する。
また、第一導入路122および第二導入路123からのガスは、動翼124の前縁125に対して傾斜して供給されるので、前縁125のシュラウド側壁面とハブ側壁面で境界層127が発達し損失が増加する。
【0010】
本発明は、上記問題点に鑑み、ハブ側とシュラウド側とで作動流体の供給を工夫し、翼の入口側端縁における形状を効果的に機能させ、インシデンス損失を低減させ得る斜流タービンを提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明の一態様は、上流側に位置する入口側端縁の形状線が上流側に向かって凸とされている斜流タービン動翼と、該斜流タービン動翼の外径側端縁を覆うシュラウド部を有するケーシングによって該斜流タービン動翼の上流側に形成され、該斜流タービン動翼の前記入口側端縁に向けて作動流体を供給する空間であるスクロールと、を備えている斜流タービンであって、前記スクロールは、スクロール分割壁によってシュラウド側空間とハブ側空間とに分割され、該スクロール分割壁の後縁側におけるシュラウド側分割壁面およびハブ側分割壁面は、それぞれそれらと対向する部分との間に前記作動流体が略半径方向に流れるシュラウド側流入路および前記斜流タービン動翼入口のハブ外周面の傾斜方向と略同等の方向に流れるハブ側流入路を形成している斜流タービンを提供する。
【0012】
斜流タービンの斜流タービン動翼では、入口側端縁のハブ側とシュラウド側とを結ぶ線は、通常シュラウド側が半径方向外側に位置している。
本態様によれば、斜流タービン動翼の入口側端縁は上流側に向かって凸とされている、言い換えると、入口側端縁のハブ側とシュラウド側とを結ぶ線よりもそれらの中間部は上流側に突出しているので、入口側端縁のシュラウド側部分は略同一半径位置に沿うように配置される。
シュラウド側空間からシュラウド側流入路を通って供給される作動流体は、略半径方向に流れているので、シュラウド側壁面に平行に、かつ、動翼の入口側端縁に略直交するように流入する。したがって、斜流タービン動翼入口のシュラウド部に、壁面境界層が増加することを防止できる。
ハブ側空間からハブ側流入路を通って供給される作動流体は、斜流タービン動翼入口のハブ外周面の傾斜方向と略同等の方向に流れているので、ハブ外周面に平行に流入する。したがって、ハブ外周面に、壁面境界層が増加することを防止できる。
【0013】
作動流体は、シュラウド側流入路において略半径方向に流れ、一方、ハブ側流入路において斜流タービン動翼入口のハブ側の傾斜方向と略同等の方向に流れるので、両流入路を通過した作動流体は交差する状態で斜流タービン動翼の入口側端縁に流入することになる。
言い換えると、斜流タービン動翼の入口側端縁から見た場合、上流側に作動流体の流れを阻止するものが存在しない。
したがって、スクロール分割壁によるウエイクの発達を抑制することができる。
この場合、スクロール分割壁の後縁側におけるシュラウド側分割壁面およびハブ側分割壁面は、それぞれそれらと対向する部分との間に、相互に交差するシュラウド側流入路およびハブ側流入路を形成しているので、シュラウド側面およびハブ側面は後縁側で交差するように延在されている。したがって、後縁でスクロール分割壁の厚さが無くなるように構成すれば、ウエイクの発生を防止することができる。
【0014】
このように、斜流タービン動翼の入口側端縁でのハブ外周面およびシュラウド部における壁面境界層の増加を防止でき、かつ、中間部分におけるスクロール分割壁によるウエイクの影響を無くすことができるので、入口側端縁が上流側に向かって凸とされている斜流タービン動翼によるインシデンス低減効果を確実に発揮させることができ、インシデンス損失を低減させることができる。
【0015】
また、上記態様では、前記スクロール分割壁と前記斜流タービン動翼との間に、翼面が回転軸と略平行に形成された翼型ノズルが備えられていてもよい。
【0016】
このように翼型ノズルを備えると、流れの周方向速度を大きくすることができるので、斜流タービンの効率を向上させることができる。
翼型ノズルは翼面が回転軸と略平行に形成されているので、鋳物にて容易に製作することができる。
【0017】
また、上記態様では、前記ハブ側流入路に、翼面が回転軸と略平行に形成されたハブ側翼型ノズルが備えられている構成としてもよい。
【0018】
ハブ側流入路は、半径方向に対して傾斜しているので、半径方向に沿うシュラウド側流入路よりも長くなる。さらに、ハブ側では半径が減少するために角運動量保存則によりハブ側の流速が大きくなる。このため作動流体はハブ側壁面での摩擦損失が増加し、ハブ外周面の入り口近傍では境界層が拡大する恐れがある。
本構成では、ハブ側翼型ノズルを備えているので、ハブ側流入路を流れる流れの周方向速度を大きくすることができる。これにより、境界層の拡大を阻止できるとともに斜流タービンの効率を向上させることができる。
ハブ側翼型ノズルは翼面が回転軸と略平行に形成されているので、鋳物にて容易に製作することができる。
【0019】
また、上記構成では、前記ハブ側翼型ノズルに、該ハブ型翼型ノズルの略延長部分となる案内板が、前記斜流タービン動翼の入口側端縁に接近する位置まで備えられているのが好適である。
【0020】
ハブ側流入路は半径方向に対して傾斜し、ハブ側翼型ノズルは翼面が回転軸と略平行に形成されているので、ハブ側翼型ノズルの後縁から斜流タービン動翼の入口側端縁までのハブ側壁面の長さが長い空間が形成される。さらにハブ側では半径が減少するために角運動量保存則によりハブ側の流速が大きくなるためハブ側壁面での摩擦損失が増加しハブ外周面近傍では境界層が拡大する恐れがある。言い換えると、半径方向内向きの旋回流が傾斜面を流れるときには旋回による遠心力の作用により流れが半径方向外向きに逆流する傾向があるので、境界層が平板の境界層以上に拡大する恐れがある。
このため、ハブ型翼型ノズルの略延長部分となる案内板を、ハブ側翼型ノズルの後縁から斜流タービン動翼の入口側端縁に接近する位置まで備えたので、流れが半径方向外向きに逆流する傾向を抑制でき、境界層の拡大を阻止できる。
【0021】
また、上記構成では、前記シュラウド側流入路に、翼面が回転軸と略平行に形成されたシュラウド側翼型ノズルが備えられ、該シュラウド側翼型ノズルのスロート幅は前記ハブ側翼型ノズルのスロート幅よりも大きくされているのが好適である。
【0022】
斜流タービン動翼の入口側端縁における翼角は、ハブ側が、たとえば、40度と大きく、シュラウド側は、たとえば、ラジアルタービンの動翼程度に小さくされている。言い換えると、シュラウド側の流れが示すタービン特性は反動タービンの特性となり、ハブ側の流れが示すタービン特性は衝動タービン特性となっている。
シュラウド側翼型ノズルのスロート幅はハブ側翼型ノズルのスロート幅よりも大きくされているので、シュラウド側翼型ノズルの翼は円周に対する角度がハブ側翼型ノズルのそれよりも大きくなる。
したがって、ハブ側翼型ノズルではハブ側の衝動タービン特性を持つ領域に適切なノズル翼角とし、シュラウド側翼型ノズルではシュラウド側の反動タービン特性を持つ特性に適切なノズル翼角を持たせることができる。
【0023】
また、上記態様では、前記スクロールの入口部分には、前記シュラウド側空間に連通するシュラウド側流路と前記ハブ側空間に連通するハブ側流路とに分割する入口分割壁が備えられ、該入口分割壁は、前記シュラウド側流路の流路断面積が前記ハブ側流路の流路断面積よりも大きくなる位置に取り付けられ、前記入口分割壁の上流側には、少なくとも前記シュラウド側流路を全閉可能とするとともに前記シュラウド側流路および前記ハブ側流路への前記作動流体の流入割合を調節する調節部材が備えられている構成としてもよい。
【0024】
本構成によれば、作動流体はスクロールの入口部分で入口分割壁によってシュラウド側流路とハブ側流路とに分割される。
シュラウド側流路に流入した作動流体はシュラウド側空間、シュラウド側流入路を通って斜流タービン動翼の入口側端縁のシュラウド側に供給される。
一方、ハブ側流路に流入した作動流体はハブ側空間、ハブ側流入路を通って斜流タービン動翼の入口側端縁のハブ側に供給される。
このとき、調整部材はシュラウド側流路を全閉可能とされているので、ハブ側流路にのみ作動流体を流入させることができる。
また、シュラウド側流路が全閉されていない場合、作動流体は調整部材によって調節された流入割合に沿う流入量でシュラウド側流路およびハブ側流路に流入される。
【0025】
たとえば、斜流タービン動翼のハブ側に流入する作動流体の条件を略一定とすると、ハブ側流路にのみ流れる全閉時と、そのままの状態でシュラウド側流路およびハブ側流路に流れる場合と、で作動流体の流量が異なることになる。すなわち、作動流体の流量は、前者の全閉時にはハブ側流路の流路断面積、後者ではシュラウド側流路の流路断面積およびハブ側流路の流路断面積を加えたもので決まるので、この比率が流量変化となる。
入口分割壁はシュラウド側流路の流路断面積がハブ側流路の流路断面積よりも大きくなる位置に取り付けられているので、この流量変化を大きくすることができる。
これにより、作動流体の供給量におけるより大きな変動量に対応でき、斜流タービンの制御性を向上させることができる。
【0026】
斜流タービン動翼におけるシュラウド側の流れが示すタービン特性は反動タービンの特性となり、ハブ側の流れが示すタービン特性は衝動タービン特性となっている。
反動タービンは、U/C0が小さいときに高効率となり、衝動タービンは、U/C0が大きいときに高効率となる。
調整部材は、シュラウド側流路を全閉可能とするとともにシュラウド側流路およびハブ側流路への作動流体の流入割合を調節できるので、作動流体のU/C0の状況に対応してシュラウド側流路およびハブ側流路への作動流体の流入割合を調節することによって高効率な状態で斜流タービンを用いることができる。
たとえば、U/C0が小さい場合には、調節部材によってシュラウド側流路を全閉とし、ハブ側流路へのみ作動流体を流入させ、作動流体を斜流タービン動翼の入口側端縁のハブ側に供給するようにする。これにより、低U/C0で高効率なハブ側の流れによって高効率な運転を行う。
【0027】
また、上記構成では、前記調節部材は、前記入口分割壁の上流端を軸線中心として揺動可能とされた板部材を備えていることが好適である。
このようにすると、板部材を揺動させることによって容易に作動流体の流入割合を調節することができる。
なお、調節を確実に行うために板部材は設置された部分の流路断面形状に沿う形状とされるのが好ましい。
【0028】
また、上記構成では、少なくとも前記板部材が揺動する部分の前記スクロールの前記入口部分の流路断面は、前記軸線中心に沿う高さが略一定とされ、前記板部材の前記軸線中心に沿う長さは前記高さと略同一とされているのが好適である。
【0029】
このようにすると、軸線中心に直交する板部材の端部からの作動流体の漏れを略防止できるので、調節の精度を向上させ、効率の低下を防止できる。
たとえば、流路断面および板部材としては、矩形、直線部を有する長円形、等が好ましい。
【発明の効果】
【0030】
本発明によれば、スクロールは、スクロール分割壁によってシュラウド側空間とハブ側空間とに分割され、スクロール分割壁の後縁側におけるシュラウド側分割壁面およびハブ側分割壁面は、それぞれそれらと対向する部分との間に作動流体が略半径方向に流れるシュラウド側流入路および動翼入口のハブ側の傾斜方向と略同等の方向に流れるハブ側流入路を形成しているので、動翼の入口側端縁におけるハブ外周面およびシュラウド側壁面に壁面境界層が増加することを防止でき、かつ、中間部分におけるスクロール分割壁によるウエイクの影響を無くすことができる。これにより、入口側端縁が上流側に向かって凸とされている動翼によるインシデンス低減効果を確実に発揮させることができ、インシデンス損失を低減させることができる。
【発明を実施するための最良の形態】
【0031】
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第一実施形態]
以下、本発明の第一実施形態にかかる斜流タービン1について、図1〜図3を用いて説明する。この斜流タービン1は、自動車のディーゼルエンジン用の過給機(ターボチャージャ)に用いられるものである。
図1は、本実施形態の斜流タービン1のケーシング3を示す正面図である。図2は、図1のX−X断面図である。図3は、図2の一部を拡大して示す部分断面図である。
【0032】
斜流タービン1には、ケーシング3と、ハブ5と、ハブ5の外周面6にその周方向に略等間隔に設けられた複数枚の翼(斜流タービン動翼)7と、が備えられている。
ハブ5の軸線中心部分には、回転軸9が固定されている。回転軸9は、ベアリングハウジング11に取り付けられた図示しないベアリングによって回転自在に支持され、その他端が図示しないターボ圧縮機に接続されている。
【0033】
ケーシング3には、略中空円筒形状をした本体13と、本体13にその接線方向に接続された略中空円筒形状の導入部(スクロールの入口部分)15と、本体13の一面から略同軸線中心Cをもつように突出した略中空円筒形状の吐出部17とが備えられている。
導入部15は、図示しないディーゼルエンジンの排気部と接続され、吐出部17は図示しない自動車の排気部と接続される。
【0034】
本体13、導入部15および吐出部17の中空部は連通しており、導入部15の導入口19から導入されたディーゼルエンジンから排気される排気ガス(作動流体)は、本体13で翼7に作用しハブ5を回転させ、吐出部17の吐出口21から排気される。
このハブ5の回転が、回転軸9を介して図示しないターボ圧縮機に伝達され、ターボ圧縮機は回転させられる。このターボ圧縮機の回転によって空気が圧縮され、ディーゼルエンジンに供給される。
【0035】
本体13の内側空間は、排気ガスを加速し、翼7に供給するスクロール23を構成している。本体13の内側部分には、図3に示されるように翼7の外径側端縁25を覆うシュラウド部27が形成されている。
本体13の内側には、外側から内側に向けて半径方向に突出するスクロール分割壁29が設けられている。スクロール23は、スクロール分割壁29によってシュラウド側空間31とハブ側空間33とに分割されている。
【0036】
スクロール分割壁29の内周(後縁)側のハブ側は、シュラウド側に向かい先細りとなるように傾斜したハブ側分割壁面35を形成している。スクロール分割壁29の内周側のシュラウド側は、略半径方向に延在するシュラウド側分割壁面37を形成している。
ケーシング3のハブ側におけるハブ側分割壁面35と対向するハブ側壁面39は、ハブ側分割壁面35と略平行となるようにされており、ハブ側分割壁面35との間にハブ側流入路41を形成している。
ハブ側流入路41は、ハブ5の外周部6の上流端における傾斜方向と略同等の傾斜方向とされている。
【0037】
ケーシング3のシュラウド側におけるシュラウド側分割壁面37に対向するシュラウド側壁面43は、シュラウド側分割壁面37と略平行となるようにされており、シュラウド側分割壁面37との間にシュラウド側流入路45を形成している。
シュラウド側分割壁面37は略半径方向に延在するので、シュラウド側流入路45は略半径方向に沿って延在している。
【0038】
翼7は、板状部材であり、面部が軸線方向に延在するようにハブ3の外周面6に立設されている。
前縁47と外径側端縁25との交点は、ハブ5と前縁45との交点よりも半径方向において外側に位置している。
翼7には、排気ガスの流れ方向上流側に位置する前縁(入口側端縁)47が備えられている。前縁47は、図3に示されるように上流側に向かってその全領域で凸状に滑らかに膨れている曲線で形成されている。
前縁47のシュラウド側部分は略同一半径位置に沿う、言い換えると、半径方向に略直交するような形状をしている。
【0039】
翼7の翼形状は、一定半径に投影したときに前縁47から下流側にかけて回転方向に凸になる放物線状の形状を有している。
前縁47の翼角βkは、ハブ5側から外径側端縁25側に向けて、たとえば、図20に示される従来のものと同様に放物線的に徐々に小さくなるようにされている。前縁47における翼角βkは、たとえば、ハブ5側で40度、外径側端縁25側で0度とされている。
ハブ5と翼7とは鋳造あるいは削り出しによって一体として形成されている。なお、ハブ5と翼7とは別体とし、溶接等によって強固に固定するようにしてもよい。
【0040】
以上、説明した本実施形態にかかる斜流タービン1の動作について説明する。
ディーゼルエンジンの排気ガスは、導入口19から導入部15に流入し、本体13に供給される。本体13に流入した排気ガスは、スクロール分割壁29によって分割され、それぞれシュラウド側空間31およびハブ側空間33に流入する。
シュラウド側空間31に流入した排気ガスは、シュラウド側流入路45を通って翼7の前縁47に供給される。
【0041】
このとき、シュラウド側流入路45は略半径方向に延在するようにされているので、排気ガスは略半径方向に流れる。前縁47のシュラウド側は半径方向に略直交するようにされているので、それに対して排気ガスは略直交するように流入する。このため、シュラウド部27の前縁47近傍に、壁面境界層が増加することを防止できる。
【0042】
一方、ハブ側空間33に流入した排気ガスは、ハブ側流入路41を通って翼7の前縁47に供給される。
このとき、ハブ側流入路41はハブ5の外周部6の上流端における傾斜方向と略同等の傾斜方向とされているので、ハブ側流入路41を通って前縁47に供給される排気ガスは、ハブ外周面6に平行に流入する。したがって、外周面6の前縁47近傍に、壁面境界層が増加することを防止できる。
【0043】
排気ガスは、シュラウド側流入路45において略半径方向に流れ、一方、ハブ側流入路41において前縁47のハブ外周面6の傾斜方向と略同等の方向に流れる。シュラウド側分割壁面37およびハブ側分割壁面35は、スクロール分割壁29の後縁で合流しているので、シュラウド側流入路45およびハブ側流入路41を流れる排気ガスはスクロール分割壁29の後縁で合流することになる。これにより、スクロール分割壁29の後縁に発生するウエイクの発達を抑制することができる。
これは、前縁47から見た場合、上流側に排気ガスの流れを阻止するものが存在しないことになる。
【0044】
このように、翼7の前縁47におけるハブ5の外周面6およびシュラウド部27での壁面境界層の増加を防止でき、かつ、中間部分でのスクロール分割壁29によるウエイクの影響を無くすことができるので、前縁47が上流側に向かって凸とされている翼7によるインシデンス低減効果を確実に発揮させることができ、インシデンス損失を低減させることができる。
【0045】
なお、図4に示されるようにスクロール分割壁29と翼7との間に翼面が回転軸と略平行に形成された翼型ノズル49を備えるようにしてもよい。
このように翼型ノズル49を備えると、流れの周方向速度を大きくすることができるので、斜流タービン1の効率を向上させることができる。
翼型ノズル49は翼面が回転軸と略平行に形成されているので、鋳物にて容易に製作することができる。
【0046】
このように翼7に流入した排気ガスは、翼7間を通る。このとき排気ガスは、翼7の圧力面を押して、翼7を回転方向に移動させる。
これにより、翼7と一体のハブ5が回転方向に回転する。ハブ5の回転力によって回転軸9を介してターボ圧縮機が回転される。ターボ圧縮機は空気を圧縮し、圧縮空気としてディーゼルエンジンに供給する。
【0047】
[第二実施形態]
次に、本発明の第二実施形態について、図5および図6を用いて説明する。
本実施形態における斜流タービン1は、ハブ側流入路41の構成が前述した第一実施形態のものと異なる。その他の構成要素については前述した第一実施形態のものと同じであるので、ここではそれら構成要素についての重複した説明は省略する。
なお、前述した第一実施形態と同一の部材には同一の符号を付している。
図5は、本体13を縦断しその一部を示す部分断面図である。図6は、ハブ側ノズル51の翼53および案内板55の形状を示す概略図である。
【0048】
本実施形態では、ハブ側流入路41に、翼面が回転軸Cと略平行に形成された複数の翼53で構成されたハブ側翼型ノズル51が備えられている。
ハブ側翼型ノズル51の翼53は、図6に示されるように円周に対して所定の角度を持つように傾斜して取り付けられている。
翼53は、ノズル入口半径NIとノズル出口半径NOとの間に取り付けられている。
ハブ側翼型ノズル51は翼面が回転軸と略平行に形成されているので、鋳物にて容易に製作することができる。
【0049】
ハブ側翼型ノズル51の下流側には、案内板55が各翼53に対応して取り付けられている。
案内板55は、対数らせん状断面形状とされ、翼53の略延長部分となるように取り付けられている。
案内板55の下流側端部Gは、前縁47の近くまで延び、前縁47のハブ側形状に略沿った形状とされている。
【0050】
このように構成された本実施形態にかかる斜流タービン1の動作は、基本的に前述の第一実施形態のものと同様であるので、重複した説明は省略し、異なる部分について説明する。
ハブ側流入路41は、半径方向に対して傾斜しているので、半径方向に沿うシュラウド側流入路45よりも長くなる。さらに、ハブ側では半径が減少するために角運動量保存則によりハブ側の流速が大きくなる。このため排気ガスはハブ側壁面39での摩擦損失が増加し、ハブ5の外周面6の前縁47近傍では境界層が拡大する恐れがある。
【0051】
本実施形態では、ハブ側流入路41にハブ側翼型ノズル51を備えているので、ハブ側流入路41を流れる流れの周方向速度を大きくすることができる。
これにより、境界層の拡大を阻止できるとともに斜流タービンの効率を向上させることができる。
【0052】
また、ハブ側流入路41は半径方向に対して傾斜し、ハブ側翼型ノズル51は翼面が回転軸と略平行に形成されているので、ハブ側翼型ノズル51の後縁から翼7の前縁47までのハブ側壁面39の長さが長い空間が形成される。さらにハブ側では半径が減少するために角運動量保存則によりハブ側の流速が大きくなるためハブ側壁面39での摩擦損失が増加しハブ5の外周面6近傍では境界層が拡大する恐れがある。言い換えると、半径方向内向きの旋回流が傾斜面を流れるときには旋回による遠心力の作用により流れが半径方向外向きに逆流する傾向があるので、境界層が平板の境界層以上に拡大する恐れがある。
【0053】
本実施形態では、ハブ側翼型ノズル51の翼53を出た流れは案内板55によって前縁47近傍まで案内される。
ハブ側翼型ノズル51を出た流れは、角運動量保存則にしたがって流れるので、理想的には対数らせん状の流れとなる。
案内板55は対数らせん状断面形状とされているので、この理想的な流れを維持することができる。
なお、案内板55は必要に応じて用いられるので、条件によってこれを省略してもよい。
【0054】
[第三実施形態]
次に、本発明の第三実施形態について、図7および図8を用いて説明する。
本実施形態における斜流タービン1は、シュラウド側流入路45の構成が前述した第二実施形態のものと異なる。その他の構成要素については前述した第二実施形態(第一実施形態)のものと同じであるので、ここではそれら構成要素についての重複した説明は省略する。
なお、前述した第一実施形態および第二実施形態と同一の部材には同一の符号を付している。
図7は、本体13を縦断しその一部を示す部分断面図である。図8は、図7のY−Y断面図である。
【0055】
本実施形態では、シュラウド側流入路45に、翼面が回転軸Cと略平行に形成された複数の翼57で構成されたシュラウド側翼型ノズル59が備えられている。シュラウド側翼型ノズル59は翼面が回転軸と略平行に形成されているので、鋳物にて容易に製作することができる
翼57は、図8に示されるように円周に対して所定の角度(翼角)を持つように傾斜して取り付けられている。
翼57の翼角は、図8に示されるように翼53の翼角よりも大きくされている。これにより、シュラウド側翼型ノズル59のスロート幅δs(流れが最も絞られる部分での幅)は、ハブ側翼型ノズル51のスロート幅δhよりも大きくなる。このため、シュラウド側翼型ノズル59は、ハブ側翼型ノズル51よりも流量が多くなる。
【0056】
このように構成された本実施形態にかかる斜流タービン1の動作は、基本的に前述の第一実施形態および第二実施形態のものと同様であるので、重複した説明は省略し、異なる部分について説明する。
翼7の前縁47における翼角は、ハブ側が、たとえば、40度と大きく、シュラウド側は、たとえば、ラジアルタービンの動翼程度に小さくされている。言い換えると、シュラウド側の流れが示すタービン特性は反動タービンの特性となり、ハブ側の流れが示すタービン特性は衝動タービン特性となっている。
【0057】
シュラウド側流入路45を流れる排気ガスは、シュラウド側翼型ノズル59の比較的小さな翼角に案内されて、比較的小さな翼角を持つ前縁47のシュラウド側へ滑らかに流入する。一方、ハブ側流入路41を流れる排気ガスは、ハブ側翼型ノズル51の比較的大きな翼角に案内されて、比較的大きな翼角を持つ前縁47のハブ側へ滑らかに流入する。
このように、シュラウド側翼型ノズル59のスロート幅δsがハブ側翼型ノズル51のスロート幅δhよりも大きくすることによって、ハブ側翼型ノズル51ではハブ側の衝動タービン特性を持つ領域に適切なノズル翼角とし、シュラウド側翼型ノズル59ではシュラウド側の反動タービン特性を持つ特性に適切なノズル翼角を持たせることができる。
なお、案内板55は必要に応じて用いられるので、条件によってはこれを省略してもよい。
【0058】
[第四実施形態]
次に、本発明の第四実施形態について、図9〜図17を用いて説明する。
本実施形態における斜流タービン1は、基本的構成が前述した第二実施形態のものと同じで、導入部15の構成が異なる。したがって、ここではこの異なる点を主体に説明し、その他の構成要素については重複した説明を省略する。
なお、前述した第一実施形態〜第二実施形態と同一の部材には同一の符号を付している。
図9は、斜流タービン1の縦断面図である。図10は、図9のZ視図である。図11は、図9のW視図である。図12は、翼7およびハブ5を示す縦断面図である。
【0059】
本実施形態にかかる斜流タービン1は、容量が広い範囲で変動できる可変容量タイプである。
タービン入り口と出口との圧力比が一定の場合、この斜流タービン1を適用したターボチャージャを乗用車やトラック等に搭載した場合、それらのエンジン特性から、斜流タービン1の最小流量と最大流量との流量比が1:3〜1:5の範囲で変化することが要求される。
【0060】
導入部15は略矩形断面とされている。導入部15の内部空間は、入口分割壁61によってハブ側空間31と連通するハブ側流路63と、シュラウド側空間31と連通するシュラウド側流路65とに分割されている。
入口分割壁61は、矩形状をした内部空間の1辺に略平行に設置されている。入口分割壁61は、ハブ側流路63の断面面積がシュラウド側流路65の断面面積よりも小さくなるように、それと略直交する辺の中間位置CLに対してずれる位置に設置されている。
【0061】
このずれ量は適宜設定されるが、ここではハブ側流路63の断面面積がシュラウド側流路65の断面面積の略半分となるようにされている。
すなわち、幅が約同一であるので、ハブ側流路63の高さAhがシュラウド側流路65の高さAsの略半分、言い換えると、Ah:As≒1:2とされている。
【0062】
入口分割壁61の上流部分である上流端には、流量可変弁(調節部材)67が備えられている。
流量可変弁67には、導入部15および入口分割壁61の上流端に回転可能に取り付けられた揺動軸69と、略矩形状をし、その一辺が揺動軸69に固定して取り付けられた弁体(板部材)71と、揺動軸69をその軸線中心回りに回転する油圧シリンダ73とが備えられている。
矩形状をした導入部15の内部空間は、揺動軸69に沿う高さが略一定であり、弁体71の揺動軸69に沿う長さはこの高さと略同一とされている。
【0063】
これにより、弁体71が移動した場合にすべての開度において導入部15の内壁面と弁体71との隙間を一定に維持できる。また、弁体71のシュラウド側を流れる流れは高さ方向にほぼ一様な流れとなりシュラウド側流路65に流入し、弁体71のハブ側を流れる流れは高さ方向にほぼ一様な流れとなりスクロールに流入することができる。
【0064】
なお、導入部15の内部空間の断面形状および弁体71の形状は、矩形状に限らず、適宜形状とできる。
このとき、弁体71が揺動する部分の導入部15の内部空間の流路断面は、揺動軸69に沿う高さが略一定とされ、弁体71の揺動軸69に沿う長さはこの高さと略同一とされているのが好適である。この形状としては、たとえば、直線部を有する長円形としてもよい。
このようにすると、揺動軸69に直交する弁体71の端部からの作動流体の漏れを略防止できるので、調節の精度を向上させ、効率の低下を防止できる。
【0065】
弁体71の最小長さおよび油圧シリンダ73の伸縮範囲は、弁体71がシュラウド側流路65を全閉できるようにされている。
また、油圧シリンダ73の伸縮範囲は、弁体71がハブ側流路63を狭くするように設定されたときの弁角度をマイナスと定義したとき、マイナス側への最大角度は−20〜−30度となるように制限されている。
弁体71の最大長さは、マイナス側へ最大角度となったとき、先端部が形成する面積とハブ側流路63の面積とが1:2.5以下の比率となるように設定されている。これは、弁体71とスクロール壁で構成される流路がディフューザになるので、面積比が2.5を越えると圧力損失が急増するためである。
【0066】
図12に翼7の前縁47形状を示す。半径線Kとハブ5の外周面に垂直な垂直線Vとの中間角度の直線を直線Hとし、シュラウド近傍の半径一定の直線Sとする。前縁47の形状は、ハブ側は直線Hに沿い、シュラウド側は直線Sに略沿い、中間部分はこの2直線を結ぶ円弧で構成されている。
この形状により、シュラウド側ノズル59後縁と前縁47との距離、および、ハブ側ノズル51の下流側に設けた案内板55の後縁と前縁47との距離、をほぼ一定に保つことが出来る。
【0067】
また、前縁47のハブ側の代表長さbhと、シュラウド側の代表長さbsとの関係を、bh:bs≒2:3にしている。
ハブ側翼型ノズル51のスロート幅δhと、シュラウド側翼型ノズル59のスロート幅δsをδh:δs≒3:4に設定している。
これにより、ハブ側翼型ノズル51のスロート面積Shとシュラウド側翼型ノズル59のスロート面積Stとの関係は2×3:3×4≒1:2になる。
すなわち、入口であるハブ側流路63とシュラウド側流路65との面積比と、出口であるスロート面積比が略同じに設定されたことになる。
【0068】
このように構成された本実施形態にかかる斜流タービン1の動作は、基本的に前述の第一実施形態、第二実施形態および第三実施形態のものと同様であるので、重複した説明は省略し、異なる部分について説明する。
【0069】
本実施形態によれば、導入部15に流入する排気ガスは入口分割壁61によってシュラウド側流路65とハブ側流路63とに分割される。
シュラウド側流路65に流入した排気ガスはシュラウド側空間31、シュラウド側流入路45を通って翼7の前縁47のシュラウド側に供給される。
一方、ハブ側流路63に流入した排気ガスはハブ側空間33、ハブ側流入路41を通って翼7の前縁47のハブ側に供給される。
【0070】
このとき、シュラウド側流路65およびハブ側流路63はシュラウド側流路を全閉可能とされているので、ハブ側流路にのみ作動流体を流入させることができる。
また、シュラウド側流路65が全閉されていない場合、排気ガスは弁体71によって調節された流入割合に沿う流入量でシュラウド側流路65およびハブ側流路63に流入される。
【0071】
弁体71の位置によってハブ側の流路面積AhSとシュラウド側の流路面積AsSが各流路位置でどうなるかの関係を図13に示している。
変化する節目の流路位置は、スクロールの入口である導入口19の位置SI、弁体71の先端である位置BI、入口分割壁61の上流端である位置DI、ノズル入口半径NI位置およびノズル出口半径NO位置である。
弁体71が入口分割壁61の延長位置に位置している、いわゆる全開時には、位置SI、位置BIおよび位置DIにおけるハブ側の流路面積AhSおよびシュラウド側の流路面積AsSは線Zosおよび線Zohに示されるように一定で変化しない。
【0072】
弁体71がシュラウド側流路を完全に閉鎖している、いわゆる全閉時には、シュラウド側の流路面積AsSは線Zssに示されるように位置BIにおいて0で、位置DIに向かって全開時の流路面積になるように増加する。一方、ハブ側の流路面積AhSは、線Zshに示されるように位置BIにて導入部15の全流路面積で、位置DIに向かって全開時の流路面積になるように減少する。
【0073】
弁体71がマイナスの角度に位置しているときには、シュラウド側の流路面積AsSは線Mksに示されるように位置BIにおいて弁体71の上流端位置に対応する量増加し、位置DIに向かって全開時の流路面積になるように減少する。一方、ハブ側の流路面積AhSは線Mkhに示されるように位置BIにおいてシュラウド側の流路面積AsSの増加分に相当するだけ減少し、位置DIに向かって全開時の流路面積になるように増加する。
【0074】
ハブ側流路63、ハブ側空間33およびハブ側流入路41は徐々に面積が低減されているので、位置DIから位置NOまでハブ側の流路面積は徐々に低減している。
シュラウド側流路65、シュラウド側空間31およびシュラウド側流入路45は徐々に面積が低減されているので、位置DIから位置NOまでシュラウド側の流路面積は徐々に低減している。
【0075】
全閉時には、排気ガスはハブ側流路63のみを流れ、全開時には、ハブ側流路63およびシュラウド側通路65を流れる。
ハブ側流路63の断面面積、すなわち、流路面積は、シュラウド側流路65の断面面積、すなわち、流路面積の略半分とされているので、全閉時と全開時との流路面積比は1:3となる。
たとえば、前縁47のハブ側に流入する作動流体の条件を略一定とすると、全閉時と全開時との流量比は1:3となる。
【0076】
このように、入口分割壁61はシュラウド側流路65の流路断面積がハブ側流路63の流路断面積の2倍となる位置に取り付けられているので、最小流量と最大流量との流量比を大きくすることができる。これにより、斜流タービン1の制御性およびエンジン側要求への対応性を向上させることができる。
さらに、全開時には、ハブ側流路63およびシュラウド側流路65に面積比に沿った量が流れるので、ハブ側流路63およびシュラウド側流路65を流れる排気ガスの流速がほぼ等しくなることにより、ハブ側流路63およびシュラウド側流路65の圧力損失を略等しくかつ最小にすることができる。
【0077】
シュラウド側流路65およびハブ側流路63に流入した排気ガスはシュラウド側空間31およびハブ側空間33に流入する。
シュラウド側空間31に流入した排気ガスは、シュラウド側流入路45を通って翼7の前縁47に供給される。ハブ側空間33に流入した排気ガスは、ハブ側流入路41を通って翼7の前縁47に供給される。
【0078】
このとき、第一実施形態で説明したように、翼7の前縁47におけるハブ5の外周面6およびシュラウド部27での壁面境界層の増加を防止でき、かつ、中間部分でのスクロール分割壁29によるウエイクの影響を無くすことができるので、前縁47が上流側に向かって凸とされている翼7によるインシデンス低減効果を確実に発揮させることができ、インシデンス損失を低減させることができる。
【0079】
すなわち、図14に示されるように、特許文献1の特性を持たない従来の斜流タービンでは、翼7の前縁47は、ハブ5とシュラウド部27との間で流れ角β71が直線的に変化する。一方で翼角βk73は放物線的に変化するため、翼高さの中央領域のインシデンスが最大限に増大している。
本実施形態では、翼7の前縁47が上流側に向かって凸に形成されているので、流れ角β75が小さくなる方向となり、図14に示されるように曲線的に減少して変化する。
その結果特にハブ5とシュラウド部27の中央部で翼角βk73分布と流れ角β75分布は接近し、インシデンスInaとなる。すなわち、インシデンスが△Inだけ低減するので、その分インシデンス損失が軽減される。
【0080】
図15はハブ側ノズル51と翼7のハブ側形状の関係を示している。ハブ側ノズル51のスロート幅δhは狭く、翼53の傾斜角度は小さい。一方、翼7の前縁47の翼角βkhは大きくされている。この様な形態のタービンは「衝動タービン」と呼ばれU/C0が小さいときに高効率となる。
図16はシュラウド側ノズル59と翼7のシュラウド側形状の関係を示している。シュラウド側ノズル59のスロート幅δsは広く、翼57の傾斜角度は大きい。一方、翼7の前縁47の翼角βksは小さくされている。この様な形態のタービンは「反動タービン」と呼ばれU/C0が大きいときに高効率となる。
【0081】
斜流タービン1を乗用車やトラックの可変容量ターボチャージャとして使う場合、加速時にはU/C0は0.5〜0.6まで小さくなり、一方最大出力時にはU/C0は0.7〜0.8まで高くなる。そして常用域UAはU/C0が0.6〜0.7の範囲で使用される。
図17は、斜流タービン1の無次元特性を示している。
弁体71を全閉にすると、排気ガスはハブ側流路63にのみを流れ、ハブ側流入路41を通って前縁47のハブ側に供給されるので、低U/C0で効率のよい全閉時特性75を示す。
【0082】
一方、全開時には、排気ガスはハブ側流路63およびシュラウド側流路65を流れ、前縁47のハブ側およびシュラウド側に供給される。このとき、シュラウド側に供給される排気ガス量はハブ側に供給される排気ガス量の略2倍となるので、シュラウド側の流れの特性が主体となる。したがって、高U/C0で効率のよい全開特性77を示す。
弁体71が全開と全閉との中間位置になると、全閉時特性75と全開時特性77との中間に位置するような中間時特性79を示す。
【0083】
全閉時特性75は、加速時作動点A近辺で最大効率を示し、全開時特性77は最大出力時作動点M近辺で最大効率を示している。また、中間開度時特性は、常用域UAで高い効率を示すものもある。
このように、弁体71の開度を調節することによって、加速時から最大出力時まで連続的に高効率な運転を行うことができる。
エンジンの作動点によってさらに大きなU/C0特性が必要になる場合には、弁体71の角度をマイナス側に制御し、シュラウド側の特性とハブ側の特性の比率をシュラウド側の特性主体に制御することができる。
【0084】
なお、本実施形態では、シュラウド側翼型ノズル59、ハブ側翼型ノズル51および案内板55を用いているが、これらは必要に応じて用いられるので、条件によってこれを省略してもよい。すなわち、本実施形態にかかる導入路15の構成は、第一実施形態、第二実施形態の構成に組み合わせるようにしてもよい。
【0085】
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
【図面の簡単な説明】
【0086】
【図1】本発明の第一実施形態にかかる斜流タービンのケーシングを示す正面図である。
【図2】図1のX−X断面図である。
【図3】図2の一部を拡大して示す部分断面図である。
【図4】本発明の第一実施形態にかかる斜流タービンの別の実施態様の図3同様部分を示す部分断面図である。
【図5】本発明の第二実施形態にかかる斜流タービンの本体を縦断しその一部を示す部分断面図である。
【図6】本発明の第二実施形態にかかるハブ側ノズルの翼および案内板の形状を示す概略図である。
【図7】本発明の第三実施形態にかかる斜流タービンの本体を縦断しその一部を示す部分断面図である。
【図8】図7のY−Y断面図である。
【図9】本発明の第四実施形態にかかる斜流タービンの縦断面図である。
【図10】図9のZ視図である。
【図11】図9のW視図である。
【図12】本発明の第四実施形態にかかる翼およびハブを示す縦断面図である。
【図13】本発明の第四実施形態にかかる弁体の位置によるハブ側の流路面積とシュラウド側の流路面積の変化を示すグラフである。
【図14】本発明の第四実施形態にかかるインシデンス分布を示すグラフである。
【図15】本発明の第四実施形態のハブ側ノズルと翼のハブ側形状の関係を示す概略構成図である。
【図16】本発明の第四実施形態のシュラウド側ノズルと翼のシュラウド側形状の関係を示す概略構成図である。
【図17】本発明の第四実施形態にかかる斜流タービンの無次元特性を示すグラフである。
【図18】従来の斜流タービンの本体を縦断しその一部を示す部分断面図である。
【図19】従来の斜流タービンの本体を縦断しその一部を示す部分断面図である。
【図20】従来の斜流タービンのインシデンス分布を示すグラフである。
【図21】従来の別の斜流タービンの本体を縦断しその一部を示す部分断面図である。
【符号の説明】
【0087】
1 斜流タービン
3 ケーシング
5 ハブ
6 外周部
7 翼
15 導入部
23 スクロール
25 外径側端縁
27 シュラウド部
29 スクロール分割壁
31 シュラウド側空間
33 ハブ側空間
35 ハブ側分割壁面
37 シュラウド側分割壁面
41 ハブ側流入路
45 シュラウド側流入路
47 前縁
49 翼型ノズル
51 ハブ側翼型ノズル
55 案内板
59 シュラウド側翼型ノズル
61 入口分割壁
63 ハブ側流路
65 シュラウド側流路
67 流量可変弁
71 弁体

【特許請求の範囲】
【請求項1】
上流側に位置する入口側端縁の形状線が上流側に向かって凸とされている斜流タービン動翼と、
該斜流タービン動翼の外径側端縁を覆うシュラウド部を有するケーシングによって該斜流タービン動翼の上流側に形成され、該斜流タービン動翼の前記入口側端縁に向けて作動流体を供給する空間であるスクロールと、を備えている斜流タービンであって、
前記スクロールは、スクロール分割壁によってシュラウド側空間とハブ側空間とに分割され、
該スクロール分割壁の後縁側におけるシュラウド側分割壁面およびハブ側分割壁面は、それぞれそれらと対向する部分との間に前記作動流体が略半径方向に流れるシュラウド側流入路および前記斜流タービン動翼入口のハブ外周面の傾斜方向と略同等の方向に流れるハブ側流入路を形成している斜流タービン。
【請求項2】
前記スクロール分割壁と前記斜流タービン動翼との間に、翼面が回転軸と略平行に形成された翼型ノズルが備えられている請求項1に記載された斜流タービン。
【請求項3】
前記ハブ側流入路に、翼面が回転軸と略平行に形成されたハブ側翼型ノズルが備えられている請求項1に記載された斜流タービン。
【請求項4】
前記ハブ側翼型ノズルに、該ハブ型翼型ノズルの略延長部分となる案内板が、前記斜流タービン動翼の入口側端縁に接近する位置まで備えられている請求項3に記載された斜流タービン。
【請求項5】
前記シュラウド側流入路の下流部に、翼面が回転軸と略平行に形成されたシュラウド側翼型ノズルが備えられ、該シュラウド側翼型ノズルのスロート幅は前記ハブ側翼型ノズルのスロート幅よりも大きくされている請求項3または請求項4に記載された斜流タービン。
【請求項6】
前記スクロールの入口部分には、前記シュラウド側空間に連通するシュラウド側流路と前記ハブ側空間に連通するハブ側流路とに分割する入口分割壁が備えられ、
該入口分割壁は、前記シュラウド側流路の流路断面積が前記ハブ側流路の流路断面積よりも大きくなる位置に取り付けられ、
前記入口分割壁の上流側には、少なくとも前記シュラウド側流路を全閉可能とするとともに前記シュラウド側流路および前記ハブ側流路への前記作動流体の流入割合を調節する調節部材が備えられている請求項1から請求項5のいずれか1項に記載された斜流タービン。
【請求項7】
前記調節部材は、前記入口分割壁の上流端を軸線中心として揺動可能とされた板部材を備えている請求項6に記載された斜流タービン。
【請求項8】
少なくとも前記板部材が揺動する部分の前記スクロールの前記入口部分の流路断面は、前記軸線中心に沿う高さが略一定とされ、前記板部材の前記軸線中心に沿う長さは前記高さと略同一とされている請求項7に記載された斜流タービン。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2009−281197(P2009−281197A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2008−132403(P2008−132403)
【出願日】平成20年5月20日(2008.5.20)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】