説明

検出素子、微小電気機械装置および電子機器

【課題】一構造あたり多軸方向の物理量検出に対応する場合であっても、ある検出軸の別の軸の変位がノイズとして混在するのを抑制して、検出結果のSN比改善を図れるようにする。
【解決手段】第一の軸方向に沿って延びるように配された可堯性を有する第一の梁部31と、前記第一の軸方向と直交する第二の軸方向に沿って延びるように配された可堯性を有する第二の梁部32と、前記第一の梁部31および前記第二の梁部32によって少なくとも二以上の方向に変位可能に支持される錘部33と、前記錘部33の変位に基づいて当該錘部33に作用する力学量を検出する検出部21とを備える検出素子において、前記錘部33は、前記第一の軸方向回りにおける回転し易さと前記第二の軸方向回りにおける回転し易さとに差が生じる態様で、前記第一の梁部31および前記第二の梁部32に支持されるようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検出素子、微小電気機械装置および電子機器に関する。
【背景技術】
【0002】
近年、微小電気機械装置(Micro Electro-Mechanical Systems、以下「MEMS」ともいう。)技術を利用した機能素子の一つとして、角速度、加速度、圧力、振動周波数等の物理量を検出する検出素子が知られている。ここでいう検出素子は、外部からの慣性力で変位するように支持される可動部と、その可動部と対向する検出電極とを備え、これらの間に生じる慣性力の大きさに応じて変化する静電容量値を検出するように構成されたものである。
このような検出素子にて角速度を検出する場合には、一般に、可動部を励振させる必要がある(例えば、特許文献1,2参照。)。可動部をXY面内方向に励振させることで、X軸あるいはY軸回りの回転によりZ軸方向のコリオリ力を発生させ、そのコリオリ力によるZ軸方向の変位を検出電極の利用によって検出することで、X軸あるいはY軸回りの角速度の検出を可能にするためである。励振のための駆動源としては、ローレンツ力を用いたもの(例えば、特許文献1参照。)や静電力を用いたもの(例えば、特許文献2参照。)等が知られている。以下、この励振による振動を「駆動振動」または「参照振動」ともいう。
【0003】
ところで、駆動振動は、物理量を検出する際の静電容量の検出軸に対して、完全に直交することが望ましい(例えば、特許文献3参照。)。直交しない成分は検出軸に漏れだして駆動に同期した検出信号となり、物理量を検出した信号と混在して検出結果についてのSN比を悪化させるからである。
この直交しない成分を小さくするためには、例えば可動部の横方向と縦方向の比率を変えバネ定数の比率を変えることで、非検出方向に可動部を動かし難い構造とすることが提案されている(例えば、特許文献3参照。)。また、二対の固定電極と可動電極によって形成される二つの静電容量の演算によって、検出軸方向の物理量を高感度に検出し、可動部分の剛性を高めることで他軸感度を抑制することも提案されている(例えば、特許文献4参照。)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000-65581号公報
【特許文献2】特開平11-64001号公報
【特許文献3】特許第3518067号公報
【特許文献4】特開2006−250702号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述した従来構造では、一構造で一軸の検出を行うことを想定している。つまり、一構造あたり一軸方向の物理量を検出するものに対応している。
その一方で、近年、手ブレ補正の高精度化や多様なヒューマンインターフェースの実現の一環として、例えば携帯電話機に代表されるモバイル機器、電子機器やゲーム機器のリモコン装置等では、多軸方向の物理量の検出が必要とされる傾向にある。ただし、一軸方向の物理量を検出する検出素子では、多軸方向の物理量を検出しようとすると、設置面積や容積等が大きくなるおそれがある。このことは、慣性センサの大きな市場であるモバイル、ウェアラブル商品に搭載することを想定すると致命的である。また、実装時の手間もかかるため、コスト増の要因にもなる。さらには、アセンブリの際に軸ごとの相対的な角度がずれることで、一軸の集合の多軸センサは他軸感度が悪化することが知られている。
このことから、最近では、一構造で多軸方向の検出が可能な検出素子が注目されている。一構造あたり多軸方向の物理量を検出し得る検出素子であれば、デバイスの小型化、実装の簡易化等の量産性、コストの面で一軸対応のアセンブリよりも優位性を持つからである。
【0006】
しかしながら、多軸方向の検出が可能な検出素子は、一般的に、一構造で多軸方向の検出モードを持つために、上述した従来構造を適用しても、必ずしもSN比の改善が図れるとは限らない。例えば、可動部の横方向と縦方向とのアスペクト比を変えて力学量検出方向以外への変位を抑制しても、ある検出軸についてその軸方向の変位を抑え他軸感度を抑制できるが、別の軸に対しては効果が小さい。つまり、多軸対応の場合のSN比を確保することが難しい。特に、駆動振動(参照振動)を有してコリオリ力による変位を検出する角速度センサ等では、この静電力、圧電、ローレンツ力等によって作り出された連続的な駆動変位によって励振される振動モードが駆動信号に同期したノイズとなる。そして、そのノイズが物理量を検出した信号と混在してしまい、検出結果のSN比を悪化させてしまうおそれがある。
【0007】
そこで、本発明は、一構造あたり多軸方向の物理量検出に対応する場合であっても、ある検出軸の別の軸の変位がノイズとして混在するのを抑制して、検出結果のSN比改善が図れる検出素子、微小電気機械装置および電子機器を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、上記目的を達成するために案出された検出素子で、第一の軸方向に沿って延びるように配された可堯性を有する第一の梁部と、前記第一の軸方向と直交する第二の軸方向に沿って延びるように配された可堯性を有する第二の梁部と、前記第一の梁部および前記第二の梁部によって少なくとも二以上の方向に変位可能に支持される錘部と、前記錘部の変位に基づいて当該錘部に作用する力学量を検出する検出部とを備え、前記錘部は、前記第一の軸方向回りにおける回転し易さと前記第二の軸方向回りにおける回転し易さとに差が生じる態様で、前記第一の梁部および前記第二の梁部に支持されている検出素子である。
【0009】
上記構成の検出素子では、各軸回りにおける錘部の回転し易さが互いに相違する。したがって、検出部による力学量検出方向以外については錘部を変位し難くすることが実現可能となる。具体的には、例えば、各軸方向における梁部のバネ定数を互いに相違させたり、各軸回りの錘部の慣性モーメントを互いに相違させたりすることで、検出部による力学量検出方向に比べて、当該力学量検出方向以外への錘部の変位を抑制することが考えられる。
【発明の効果】
【0010】
本発明によれば、一構造あたり多軸方向の物理量検出に対応する場合であっても、検出部による力学量検出方向以外への錘部の変位を抑制することができる。さらに具体的には、例えば、駆動振動によって励振される振動(並進、回転に関わらず)を抑制し得るようになる。したがって、ある検出軸の別の軸の変位がノイズとして混在するのを抑制することが実現可能となり、ノイズ混在を抑制しない場合に比べて検出結果のSN比改善が図れるようになる。そして、SN比改善を通じて、周波数や重心等についての事後調整を不要または軽減することができ、製造効率や装置コスト等の点でも良好なものとなる。
【図面の簡単な説明】
【0011】
【図1】本発明に係るMEMSの構成例を示す三面図である。
【図2】本発明に係るMEMSの製造手順の一具体例を示す説明図(その1)である。
【図3】本発明に係るMEMSの製造手順の一具体例を示す説明図(その2)である。
【図4】本発明に係る検出素子の概略構成例を示す説明図である。
【図5】本発明に係る検出素子による角速度等の検出手順の具体例を示す説明図である。
【図6】本発明の第1の実施の形態における検出素子部の概略構成例を示す説明図である。
【図7】本発明の第2の実施の形態における検出素子部の概略構成例を示す説明図である。
【図8】本発明の第3の実施の形態における検出素子部の概略構成例を示す説明図である。
【図9】本発明の第4の実施の形態における検出素子部の概略構成例を示す説明図である。
【図10】慣性力を検出する慣性センサの動作原理を示す信号ブロック図である。
【図11】慣性力検出処理の一例を示したフローチャートである。
【図12】慣性センサを含むSIPの一具体例を示す概略構成斜視図である。
【図13】電子機器の一具体例であるHDD装置の概略構成を示す説明図である。
【図14】電子機器の一具体例であるHDD装置を搭載したノート型パーソナルコンピュータの概略構成を示す説明図である。
【図15】電子機器の一具体例であるHDD装置を搭載したビデオカメラ装置の概略構成を示す説明図である。
【図16】電子機器の一具体例であるHDD装置を搭載したゲーム機の概略構成を示す説明図である。
【図17】電子機器の一具体例であるカメラ付き携帯端末装置の概略構成を示す説明図である。
【図18】電子機器の一具体例であるビデオカメラ装置の概略構成を示す説明図である。
【発明を実施するための形態】
【0012】
以下、図面に基づき本発明に係る検出素子、微小電気機械装置および電子機器について説明する。
【0013】
[微小電気機械装置の説明]
先ず、本発明に係る微小電気機械装置(MEMS)について説明する。
図1は、本発明に係るMEMSの構成例を示す三面図である。
【0014】
図例のように、ここで例に挙げて説明するMEMSは、第一基板10と、第二基板20と、を備えて構成されている。
第一基板10は、構造体形成基板であり、例えばシリコン(Si)基板またはガリウムヒ素(GaAs)基板からなる。
第二基板20は、変位検出基板であり、例えばガラス基板またはSi基板からなる。
これら第一基板10と第二基板20とは、陽極接合、Si接合、金属接合等によって接合されている。または、ガラスフリット、接着剤等によって接着されていてもよい。
【0015】
また、ここで例に挙げて説明するMEMSは、平面的にみると、駆動部11と、支持部12と、弾性支持体13と、を備えて構成されている。
駆動部11は、平面矩形状の平板状に形成されている。ここで、「平板状」とは、平面形状の大きさ(例えば、矩形の構成辺の大きさ。)に対して厚さ方向の大きさが十分に小さい形状をいい、面上が必ずしも平滑である必要はない。
支持部12は、駆動部11の外周側を囲うように、当該可動部の端縁から離間して配されている。ここで、「離間」とは、空間を介しての意である。
弾性支持体13は、支持部12に対して駆動部11を面内方向へ変位可能に支持する。ここで、「面内方向」とは、平板状の駆動部11の厚さ方向に対して直角方向の面方向を指す。この面内方向への変位のために、弾性支持体13は、駆動部11の各頂部近傍の四箇所のそれぞれに、一端が駆動部11に連結され、他端が支持部12に連結されるように、配設されている。
このような構成のMEMSでは、弾性支持体13の弾性変形を利用して、駆動部11が面内方向に変位することになる。この駆動部11の面内方向への動作は、ローレンツ力、静電力、ピエゾ素子等を利用して行われる。つまり、駆動部11は、ローレンツ力、静電力、ピエゾ素子等を用いた図示せぬ駆動源により、面内方向に励振されるようになっている。
【0016】
また、駆動部11には、検出素子部30が配設されている。検出素子部30は、例えばコリオリ力によって変位する振動子としての錘部等を有して構成されている。この検出素子部30については、詳細を後述する。
【0017】
さらに、第二基板20には、駆動部11上の検出素子部30と対面する位置に、当該検出素子部30における振動子について、当該駆動部11の可動方向と垂直方向(面内垂直方向)の変位を検出する検出部21が形成されている。この検出部21は、静電容量変化を検出する等、公知技術を利用して検出を行うものであればよい。
【0018】
図2および図3は、以上のような構成のMEMSの製造手順の一具体例を示す説明図である。図例は、図1中におけるA−A′断面に相当する部分を示している。
【0019】
なお、ここでは、第一基板10がSOI(Silicon on insulator)基板からなる場合を例に挙げる。
第一基板10を構成するSOI基板は、支持層10aと活性層10cとの間にSiO2(BOX層10b)を挿入した構造の基板である。その詳細については公知であるため、ここではその説明を省略する。
【0020】
上述した構成のMEMSの製造にあたっては、先ず、図2(a)に示すように、SOI基板からなる第一基板10の両面に絶縁層15を形成する。絶縁層15は、SiO2膜や窒化シリコン(SiN)膜等によって形成することが考えられる。
絶縁層15の形成後は、続いて、図2(b)に示すように、第一基板10の活性層10cの側の面に、駆動部11および弾性支持体13を形成するためのマスクパターン14を作成する。マスクパターン14は、例えばフォトレジスト膜によって作成することが考えられる。
そして、マスクパターン14を作成したら、図2(c)に示すように、当該マスクパターン14の作成面側からエッチング処理を行って、第一基板10の活性層10cに重なる絶縁層15および当該活性層10cについて、駆動部11および弾性支持体13となる部分を形成する。このエッチング処理は、酸化膜エッチングとD−RIE(Deep−Reactive Ion Etching)等の物理的ドライエッチングにより行うことが考えられる。
その後は、マスクパターン14の除去を行う。なお、図示はしていないが、第一基板10には、第二基板20と接合または接着する側の面に、当該第二基板20とのコンタクト部や配線等を形成しておく。
【0021】
活性層10c等に対するエッチング処理の後は、図2(d)に示すように、第一基板10の活性層10cの側の面に、エッチング処理した部分を塞ぐように、フォトレジスト膜16を塗布する。
さらに、図2(e)に示すように、第一基板10の支持層10aの側の面に、駆動部11および弾性支持体13を形成するためのマスクパターン17を作成する。このマスクパターン17も、上述したマスクパターン14と同様に、例えばフォトレジスト膜によって作成することが考えられる。なお、このとき、上述したマスクパターン14、すなわち第一基板10の活性層10cにおけるエッチング処理部分とのアライメントが必要になるが、これは例えば両面アライナーを用いて行えばよい。
そして、マスクパターン17を作成したら、図2(f)に示すように、当該マスクパターン17の作成面側からエッチング処理を行って、第一基板10の支持層10aに重なる絶縁層15および当該支持層10aについて、駆動部11および弾性支持体13となる部分を形成する。このエッチング処理も、酸化膜エッチングとD−RIE等の物理的ドライエッチングにより行うことが考えられる。
【0022】
また、支持層10aに対するエッチング処理後は、続いて、図3(a)に示すように、マスクパターン17および支持層10aの側の絶縁層15の除去を行う。そして、第一基板10のBOX層10bについてエッチング処理を行って、駆動部11および弾性支持体13となる部分を形成する。エッチング処理は、フッ酸(HF)によるウェットエッチングにて行うことが考えられる。
BOX層10bに対するエッチング処理後は、続いて、図3(b)に示すように、第一基板10の活性層10cの側の面におけるフォトレジスト膜16の除去を行う。
これにより、第一基板10には、厚さ方向に支持層10a、BOX層10b、活性層10cおよび絶縁層15が積層されてなる駆動部11および弾性支持体13が形成されることになる。
【0023】
一方、第二基板20については、図3(c)に示すように、その表面に、検出部21のためのギャップ(断面凹形状部分)を形成するためのマスクパターン22を作成する。マスクパターン22は、フォトレジスト膜、SiO2膜、熱酸化膜等によって作成することが考えられる。
そして、マスクパターン22を作成したら、図3(d)に示すように、当該マスクパターン22の作成面側からエッチング処理を行って、検出部21のためのギャップを形成する。エッチング処理は、例えばウェットエッチングにより行い、エッチング液としてテトラメチルアンモニウムハイドロキシド(TMAH:tetra methyl ammonium hydroxide)または水酸化カリウム(KOH)水溶液を用いる。ただし、ウェットエッチングに限定されることはなく、化学的ドライエッチングや物理的ドライエッチング等により行っても構わない。
その後は、マスクパターン22の除去を経て、図3(e)に示すように、形成したギャップ内に、電極形成膜を成膜して検出部21を形成する。検出部21となる電極形成膜の成膜には、例えば電子ビーム蒸着を用いることが考えられる。ただし、スパッタ法やCVD(Chemical Vapor Deposition)法等を用いてもよい。また、電極形成膜には、例えば、金、白金、クロムの三層金属材料、金、白金、チタンの三層金属材料、金、クロムや白金、クロムまたは、金、チタンや白金、チタン等の二層金属材料等を用いることができる。また、チタンの代わりに、窒化チタンとチタンとの積層材料を用いてもよい。さらには、クロムやチタンの代わりに、銅を用いてもよい。
なお、第二基板20には、第一基板10と接合または接着する側の面に、当該第二基板20とのコンタクト部や配線等を形成しておく。
【0024】
その後は、図3(f)に示すように、第一基板10と第二基板20とを、陽極接合、Si接合、金属接合等によって接合する。または、ガラスフリット、接着剤等によって接着する。なお、図示はしていないが第一基板と第二基板の接合面で導通を取るためにコンタクト部を形成しておく。このコンタクト部は、例えば無電解めっき法や電解めっき法により金の支柱で形成する。そして、図示はしていないが、ダイシングによるチップ個片化を行う。
以上のような手順を経ることで、図1に示す構成のMEMSが製造されることになる。
【0025】
[検出素子の説明]
次に、以上のような構成のMEMSにおける検出素子部30について、さらに詳しく説明する。この検出素子部30および検出部21は、本発明に係る検出素子に相当するものである。
【0026】
<検出素子の概要>
先ず、検出素子部30の概略構成を説明する。ここでは、いわゆる慣性センサに適用する場合を例に挙げて説明するが、これはセンサの種類を限定するものでないことは言うまでもない。
図4は、本発明に係る検出素子の概略構成例を示す説明図である。
【0027】
図4(a)に示すように、検出素子部30は、MEMSを構成する駆動部11上に配設されたもので、SOI基板等からなる第一基板10を加工することにより形成されている。さらに詳しくは、検出素子部30は、第一の梁部31と、第二の梁部32と、錘部33と、を備えて構成されている。
【0028】
第一の梁部31および第二の梁部32は、いずれも、駆動部11に対して、錘部33を変位可能に支持するものである。そのために、第一の梁部31および第二の梁部32は、SOI基板の活性層10cのみによって形成され、これにより可堯性を有して構成されている。そして、その一端が駆動部11に連結され、他端が錘部33に連結されるように、配設されている。
ただし、第一の梁部31と第二の梁部32とでは、その配設方向が異なる。
第一の梁部31は、錘部33に作用する力学量を検出する際の第一の軸方向に沿って延びるように配されている。ここで、第一の軸方向は、例えば駆動部11が振動する際の面内方向におけるx軸方向が相当する。
一方、第二の梁部32は、第一の軸方向と直交する第二の軸方向に沿って延びるように配されている。ここで、第二の軸方向は、例えば駆動部11が振動する際の面内方向におけるy軸方向が相当する。
なお、ここでは、第一の軸方向がx軸方向であり、第二の軸方向がy軸方向である場合を例に挙げているが、この対応関係は一具体例に過ぎず、これに限定されないことは勿論である。
【0029】
錘部33は、その外周側が駆動部11によって囲われるように当該駆動部11から離間して配されているとともに、第一の梁部31および第二の梁部32によって少なくとも二以上の方向に変位可能に支持されたものである。すなわち、第一の梁部31および第二の梁部32の可撓性を利用して変位し得るように支持されている。具体的には、x軸方向およびy軸方向に加えて、各軸方向に鉛直な方向、すなわち面内垂直方向であるz軸方向にも変位し得るようになっている。
また、錘部33は、第一の梁部31および第二の梁部32が活性層10cのみによって形成されるのに対して、SOI基板の支持層10a、BOX層10bおよび活性層10cの積層体によって形成されている。したがって、錘部33は、図4(b)または(c)に示すような釣鐘型の構造となる。
このような釣鐘型の構造で支持される錘部33は、当該錘部33にz軸方向の力が作用すると、第一の梁部31および第二の梁部32の撓みにより、図4(b)に示すように、並進方向に変位することになる。
一方、錘部33にx軸方向またはy軸方向の力が作用すると、当該錘部33は、第一の梁部31および第二の梁部32の撓みにより、図4(c)に示すように、回転方向に変位することになる。
なお、図4(b)または(c)に示すように、錘部33と対向する位置には、当該錘部33の変位に基づいて当該錘部33に作用する力学量を検出するための検出部21が配設されているものとする。
【0030】
このような構成の検出素子部30としては、例えば1mm四方の大きさの駆動部11上に配設されて、数kHz程度の検出共振周波数を持つものが、具体例として挙げられる。
【0031】
続いて、以上のような構成の検出素子部30を用いた角速度等の検出手順を説明する。
図5は、角速度等の検出手順の具体例を示す説明図である。
【0032】
角速度等の検出にあたっては、駆動部11を面内方向に励振させる。すなわち、第一の梁部31、第二の梁部32および錘部33を含む駆動部11の全体に対して、当該錘部33が数kHz程度の共振周波数で周期的に振動するような駆動振動を与える。具体的には、例えばy軸方向に沿って振動するような駆動振動を与える。
この状態で、例えば、x軸周りに角速度を印加すると、z軸方向にコリオリ力が発生する。
コリオリ力は、Fcoriolis=2mvΩで与えられる。ここで、mは振動子である錘部33の質量、vは駆動方向の振動速度、Ωは外部から印加される角速度である。
コリオリ力がz軸方向に発生すると、振動子である錘部33にコリオリ力が印加され、z軸方向に変位する。錘部33は重心位置と支持位置の高さが異なるために、コリオリ力によりモーメントが発生し、捻り方向に振動する。
この捻り方向の変位を、図5に示すように、四つの電極からなる検出部21の静電容量変化によって検出する。四つの電極のうち、傾いて隙間が広がった側の二電極は静電容量が減少し、傾いて隙間が狭まった側の二電極は静電容量が増加する。広がった側同士で容量の和をとり、狭まった同士で容量の和をとった後に、それぞれの電極の容量の和同士の差分を取ることにより、効率よく捻りによる変位、つまり角速度を検出することができる。
また、z軸周りに角速度を印加すると、x軸方向にコリオリ力が発生する。よって、上述した場合と同様に、四つの電極からなる検出部21の静電容量変化によって、z軸周りに発生する角速度を検出することができる。
このような検出手順によれば、二軸分の角速度を検出することが可能である。
つまり、駆動部11の全体がy軸方向に並進駆動(駆動振動)している場合において、x軸周りに角速度が印加されれば、z軸方向にコリオリ力が発生する。このz軸方向の力により、錘部33はz並進方向に動く。また、z軸周りに角速度が印加されれば、x軸方向にコリオリ力が発生し、y軸周りに錘部33は回転する。
【0033】
ところで、上述したように、駆動部11の全体の並進駆動(駆動振動)を利用して錘部33にコリオリ力を発生させ、これにより二軸分の角速度を検出することを可能にする場合には、その駆動振動による連続的な駆動変位によって励振される振動モードが駆動信号に同期したノイズとなるおそれがある。このようなノイズは、角速度の検出信号と混在してSN比を悪化させてしまうため、除去すべきである。
つまり、複数(多軸)の検出モードについては、特に角速度検出の際の駆動振動で励起されるモードが存在し、駆動ノイズとなり、角速度検出に置いて一般的な回路方式である同期検波で除去することが難しくなるため、SN比を悪化させる要因となってしまう。
【0034】
そこで、検出素子部30については、以下に述べるような構成とすることで、検出部21による力学量検出方向以外への錘部33の変位を抑制することが考えられる。特に、駆動モードによって励振される振動(並進、回転に関わらず)を抑制する。当該抑制により、駆動周波数に同期したノイズを除去することができ、検波後のSN比を向上させることができるからである。
【0035】
具体的には、錘部33について、第一の軸方向(例えば、x軸方向。)回りにおける回転し易さと第二の軸方向(例えば、y軸方向。)回りにおける回転し易さに差が生じる態様で、当該錘部33が第一の梁部31および第二の梁部32に支持されるようにする。つまり、各軸回りにおける錘部33の回転し易さを互いに相違させるのである。
特に、駆動モードによって励振される振動を抑制するのであれば、駆動振動の方向に沿った軸方向回りのほうが当該駆動振動の方向と直交する軸方向回りよりも回転し易くなる態様で、当該錘部33が第一の梁部31および第二の梁部32に支持されるようにする。
このようにすれば、検出部21による力学量検出方向以外については錘部33を変位し難くすることが実現可能となる。
【0036】
さらに詳しくは、以下に述べるような構成とすることが考えられる。
例えば、駆動モードによって励振される振動が並進方向の場合、そのバネマス系のバネ定数を大きくすることで、駆動振動によるメカ同期ノイズを小さくすることができる。すなわち、第一の梁部31および第二の梁部32における撓み量を特定するバネ定数を、それぞれで相違させるようにする。具体的には、バネ定数に比例、つまり共振周波数の二乗に比例してメカ同期成分の実振幅を小さくできる。
また、例えば、駆動モードによって励振される振動が回転方向の場合、その系の慣性モーメントを大きくすることで、駆動振動によるメカ同期ノイズを小さくすることができる。慣性モーメントが大きければ回転しにくくなり、メカ同期ノイズは小さくなる。
また、例えば、並進、回転に共通して、駆動周波数と駆動モードによって励振される不要なモードの周波数を離すことによって、メカニカルカップリングの係数を下げることができるため、さらに振幅を小さくすることができる。
【0037】
このような構成とすれば、力学量検出方向以外への変位、特に駆動モードによって励振される振動(並進、回転に関わらず)を抑制する半導体力学量センサを提供できる。そして、駆動周波数に同期したノイズを除去することによって、検波後のSN比を向上させることができる。さらには、SN比改善を通じて、周波数や重心等についての事後調整を不要または軽減することができ、製造効率や装置コスト等の点でも良好なものとなる。
【0038】
以下、検出素子部30の具体的な構成について、第1〜第4の実施の形態を例に挙げて順に説明する。
【0039】
<第1の実施の形態>
図6は、第1の実施の形態における検出素子部の概略構成例を示す説明図である。
図例の検出素子部30は、第一の梁部31および第二の梁部32のバネ定数が互いに異なっており、これにより各軸回りにおける錘部33の回転し易さに差が生じるようになっている。さらに詳しくは、第一の梁部31および第二の梁部32の配設本数が互いに異なっている。具体的には、図例のように、x軸方向に沿って延びる第一の梁部31は片側二本の計四本が配設されているが、y軸方向に沿って延びる第二の梁部32は錘部33の中心を通るように片側一本の計二本が配設されている。
【0040】
このような構成では、錘部33の中心を計二本の第二の梁部32が支持するy軸方向回りに比べて、錘部33の両端近傍を計四本の第一の梁部31が支持するx軸方向回りのほうが、当該錘部33が回転し難くなる。計二本の第二の梁部32よりも、計四本の第一の梁部31のほうが、総断面積が大きくなり、その結果としてバネ定数も大きくなるからである。したがって、錘部33は、駆動振動の方向に沿ったy軸方向回りのほうが駆動振動の方向と直交するx軸方向回りよりも回転し易くなる態様で、第一の梁部31および第二の梁部32に支持されることになる。
【0041】
このことは、単にxy平面上における梁幅を互いに相違させることによっても、同様の作用が得られることを意味する。したがって、第一の梁部31におけるバネ定数を大きくするためには、片側二本の梁間を埋めてしまうこと(すなわち、第一の梁部31を極端に太くすること。)も考えられる。ところが、その場合には、z軸方向の並進振動も阻害されてしまうおそれがある。一方の梁長さを極端に短くする場合についても同様である。このことから、第1の実施の形態では、第一の梁部31と第二の梁部32とについて、それぞれを同様の太さおよび長さのものとしつつ、それぞれの配設本数を相違させることで、互いのバネ定数を異なるものとしているのである。
【0042】
なお、ここでは計四本の第一の梁部31と計二本の第二の梁部32とが配設されている場合を例に挙げたが、それぞれの配設本数はこれに限定されることはなく、互いに相違していれば他の本数であっても構わない。
【0043】
<第2の実施の形態>
図7は、第2の実施の形態における検出素子部の概略構成例を示す説明図である。
図例の検出素子部30も、上述した第1の実施の形態の場合と同様に、第一の梁部31および第二の梁部32のバネ定数が互いに異なっており、これにより各軸回りにおける錘部33の回転し易さに差が生じるようになっている。ただし、第1の実施の形態の場合とは異なり、第一の梁部31および第二の梁部32の配設本数ではなく、それぞれの形成厚を相違させることで、互いのバネ定数を異なるものとしている。すなわち、第一の梁部31および第二の梁部32は、x,y軸方向に鉛直なz軸方向におけるそれぞれの形成厚が互いに異なっている。
【0044】
具体的には、第一の梁部31は、図7(b)に示すように、活性層10aのみから構成されている。これに対して、第二の梁部32は、図7(c)に示すように、活性層10aと支持層10cとが積層されて構成されている。これにより、第一の梁部31と第二の梁部32とは、z軸方向における形成厚が互いに異なるものとなっている。
【0045】
このような構成では、y軸方向に沿って配された第二の梁部32の形成厚が大きいので、その第二の梁部32によって振動が制限され、錘部33がx軸方向回りに回転し難くなる。例えば、活性層10aが10μm厚、支持層10cが400μm厚とすると、x軸方向とy軸方向とで100倍以上の共振周波数差を実現することが可能となる。したがって、錘部33は、駆動振動の方向に沿ったy軸方向回りのほうが駆動振動の方向と直交するx軸方向回りよりも回転し易くなる態様で、第一の梁部31および第二の梁部32に支持されることになる。
【0046】
<第3の実施の形態>
図8は、第3の実施の形態における検出素子部の概略構成例を示す説明図である。
図8(a)は、上述した第1の実施の形態の場合と同様に、第一の梁部31および第二の梁部32の配設本数を互いに相違させた構成を示している。
図8(b)は、図8(a)に示した構成に対して、第一の梁部31による錘部33の支持連結位置を変え、これにより各軸回りにおける錘部33の回転し易さに差が生じるようにして、≡軸方向回りの回転し易さを制限した構成を示している。
具体的には、図8(a)の構成では検出軸回りの支持点が外側にあるのに対して、図8(b)の構成では検出軸回りの支持点が内側にある。支持点は回転を阻害する要因の一つであるため、支持点が遠い後者の方が同じ外力に対する回転角は大きい。
その一方で、検出軸と直行する向き(ノイズ成分に相当)では支持点の回転中心からの距離は変わらないため、同じ外力に対する回転角は大差ない。
このように、物理量を検出する向きの回転角が大きくなる一方で、ノイズ成分に対する反応は変わらないために、SN比として後者のほうが大きくなり、その結果として信号の検出が容易となるのである。
参考のため、支持点間の距離と信号を検出する共振モードの周波数、ノイズとなる共振モードの周波数、信号/ノイズの周波数比の具体例を、図8(c)に示す。この図8(c)によれば、支持点間の距離を離せば信号を検出する周波数がほぼ一定であるが、ノイズの共振周波数が高くなっていることがわかる。
【0047】
つまり、図8(b)の構成のように、図8(a)に示した構成に対して第一の梁部31による錘部33の支持連結位置を変えると、回転中心からの当該支持連結位置についてのモーメントが変わる。したがって、錘部33は、第二の梁部32に沿ったy軸方向回りに回転し易くなり、相対的にx軸方向回りに回転し難くなるのである。
このように、錘部33に対する支持連結位置を互いに異ならせることによっても、当該錘部33は、駆動振動の方向に沿ったy軸方向回りのほうが駆動振動の方向と直交するx軸方向回りよりも回転し易くなる態様で、第一の梁部31および第二の梁部32に支持されることになる。
【0048】
<第4の実施の形態>
図9は、第4の実施の形態における検出素子部の概略構成例を示す説明図である。
図9(a)は、上述した第1の実施の形態の場合と同様に、第一の梁部31および第二の梁部32の配設本数を互いに相違させた構成を示している。
図9(b)は、図9(a)に示した構成に対して、錘部33の断面二次モーメントを変え、これにより各軸回りにおける錘部33の回転し易さに差が生じるようにして、≡軸方向回りの回転し易さを制限した構成を示している。
【0049】
一般に、N個の質点からなる系の慣性モーメントIは、i番目の質量miと、i番目の回転半径aiとを用いて、I=Σmii2と表すことができる。
したがって、同じ質量でもノイズ軸に対する回転半径が大きければ、すなわち慣性モーメントが大きければ、物体は回転しにくくなるため、ノイズ成分を抑制することが可能である。また、検出軸周りの慣性モーメントを小さくしてやれば、同じトルクに対する回転角が大きくなるため、単位物理量あたりの信号を増やすことが可能である。
【0050】
このことから、図9(b)の構成では、各軸回りにおける錘部33の断面形状を変化させることによって、各軸回りの断面二次モーメントをコントロールし、これにより各軸回りの慣性モーメントを互いに相違させている。そして、y軸方向回りの慣性モーメントを小さくすることで、錘部33をy軸方向回りに回転し易くする一方で、相対的にx軸方向回りに回転し難くするのである。このように、錘部33の断面二次モーメントをコントロールことによっても、当該錘部33は、駆動振動の方向に沿ったy軸方向回りのほうが駆動振動の方向と直交するx軸方向回りよりも回転し易くなる態様で、第一の梁部31および第二の梁部32に支持されることになる。
なお、このことは、錘部33の質量分布をコントロールし、これによりy軸方向回りの慣性モーメントを小さくすることによっても実現可能である。質量分布のコントロールについては、公知技術を利用して行えばよいため、ここではその説明を省略する。
【0051】
[慣性センサへの適用例の説明]
次に、以上のような構成の検出素子部30を備えたMEMSの慣性センサへの適用例について具体的に説明する。
【0052】
図10は、慣性力を検出する慣性センサの動作原理を示す信号ブロック図である。図例のように、慣性力の検出には、各慣性センサで得られた信号を増幅するアンプ、温度補正回路、フィルタを、各1系統ずつ設けるようにする。
図11は、慣性力検出処理の一例を示したフローチャートである。図例の慣性力検出処理では、慣性センサが「慣性力(加速度や角速度)」を検出すると、「しきい値範囲」で、検出した慣性力が予め慣性センサに設定された検出可能な慣性力か否かを判定する。この判定部において、検出した慣性力がしきい値範囲であれば「yes」と判定し、所定の処理を実行する。一方、判定部において、検出した慣性力がしきい値範囲でない「no」と判定した場合は、再度、慣性センサで慣性力の検出を行う。
図12は、慣性センサを含むSIP(System in a Package)の一具体例を示す概略構成斜視図である。図例のSIPは、1つのパッケージ71内に、本発明が適用された構成の慣性センサ100、メモリチップ81およびASIC(Application Specific Integrated Circuit)チップ91を搭載してなる。なお、ここで示したSIPは一具体例に過ぎず、上記チップ以外にも如何なる半導体チップも搭載することができ、それらの半導体チップと慣性センサ100とを組み合わせて、システムが構成されていてもよい。
【0053】
[慣性センサを備える電子機器の説明]
次に、MEMSの一具体例である慣性センサを備えて構成された電子機器について、具体例を挙げて説明する。以上、説明した本発明に係わるMEMSは、加速度や角速度の慣性力を検出することができるので、様々な電子機器に適用することが可能である。
【0054】
図13は、電子機器の一具体例であるハードディスク駆動(Hard disk drive、以下「HDD」と略す。)の概略構成を示す説明図である。
図例のHDD装置110は、ベース部材111と、これを覆うカバー112と、を有している。そして、ベース部材111のベース基板113上には、磁気ディスク114、その駆動モータ115、支軸116を中心に回動するアクチュエータアーム117、その先端部にヘッドサスペンション118を介して形成された磁気ヘッド119等が設けられている。さらに、ベース基板113上には、慣性センサ100が設置されている。なお、慣性センサ100は、ベース部材111、カバー112等に設置することも可能であり、落下検出手段や衝撃検知や振動制御等に用いられる。
【0055】
図14は、電子機器の一具体例であるHDD装置を搭載したノート型パーソナルコンピュータの概略構成を示す説明図である。
図例では、HDD装置を搭載したノート型パーソナルコンピュータの一例を示しており、(a)には表示部を開いた状態を示し、(b)には表示部を閉じた状態を示している。
図例のノート型パーソナルコンピュータ130は、本体131内に、文字等を入力するとき操作されるキーボード132、画像を表示する表示部133、HDD装置134等を含んで構成されている。これらのうち、HDD装置134は、上述した慣性センサ100が搭載されたものを用いることにより作製されている。また、慣性センサ100は、ノート型パーソナルコンピュータ130の基板(図示せず)や本体131や表示部133を構成する筐体の内側の空いている領域に取付けてもよく、落下検出手段や衝撃検知や振動制御等に用いられる。
【0056】
図15は、電子機器の一具体例であるHDD装置を搭載したビデオカメラ装置の概略構成を示す説明図である。
図例のビデオカメラ装置170は、本体171に、前方を向いた側面に被写体撮影用のレンズ172、撮影時のスタート/ストップスイッチ173、表示部174、ファインダー175、撮影した画像を記録するHDD装置176等を含んで構成されている。これらのうち、HDD装置176は、上述した慣性センサ100が搭載されたものを用いることにより作製されている。また、慣性センサ100は、ビデオカメラ装置170の基板(図示せず)や本体171を構成する筐体の内部側の空いている領域に取付けてもよく、落下検出手段や衝撃検知や振動制御等に用いられる。
【0057】
図16は、電子機器の一具体例であるゲーム機の概略構成を示す説明図である。
図例のゲーム機150は、本体151に、画面等を操作する第1操作ボタン群152、第2操作ボタン群153、画像を表示する表示部154、HDD装置155等を含んで構成されている。これらのうち、HDD装置155は、上述した慣性センサ100が搭載されたものを用いることにより作製されている。また、慣性センサ100は、ゲーム機150の基板(図示せず)や本体151を構成する筐体の内部側の空いている領域に取付けてもよく、入力インターフェースや落下検出手段や衝撃検知や動作検知等に用いられる。
【0058】
図17は、電子機器の一具体例である携帯端末装置の概略構成を示す説明図である。
図例では、携帯端末装置の一例として携帯電話機を示しており、(a)は開いた状態での正面図、(b)はその側面図、(c)は閉じた状態での正面図、(d)は左側面図、(e)は右側面図、(f)は上面図、(g)は下面図である。
図例の携帯電話機190は、上側筐体191、下側筐体192、連結部(ここではヒンジ部)193、ディスプレイ194、サブディスプレイ195、ピクチャーライト196、カメラ197、加速度センサ198等を含んで構成されている。これらのうち、加速度センサ198は、上述した慣性センサ100を用いることにより作製される。また、加速度センサ198は、携帯電話機190の上側筐体191の内部側の他の位置、下側筐体192の内部側の空いている領域に取付けてもよく、入力インターフェースや動作検知等に用いられる。
【0059】
図18は、電子機器の一具体例であるビデオカメラ装置の概略構成を示す説明図である。
図例のビデオカメラ装置510は、本体510と、その前に被写体撮影用のレンズ512を備える。また本体511の前方(レンズ側)側面に撮影時のスタート/ストップスイッチ513、表示部514と備え、本体511の後方にファインダー515を備える。また本体511の内部に、撮影したか画像を記録する記録装置(図示せず)、固体撮像装置等の撮像素子516等を有する。撮像素子516が搭載される基板517に慣性センサ100が取り付けられており、手振れ補正等に用いられる。
【0060】
なお、上述した実施の形態では、本発明の好適な実施具体例を説明したが、本発明はその内容に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更することが可能である。
例えば、上述した実施の形態では、MEMSの一具体例として慣性センサを挙げたが、例えば回路内の接続の切替え等を電子素子に因らず光素子により行う光スイッチのような他装置であっても、MEMS構造を用いて構成されたものであれば、本発明を適用することが可能である。
【符号の説明】
【0061】
11…駆動部、12…支持部、13…弾性支持体、21…検出部、30…検出素子部、31…第一の梁部、32…第二の梁部、33…錘部

【特許請求の範囲】
【請求項1】
第一の軸方向に沿って延びるように配された可堯性を有する第一の梁部と、
前記第一の軸方向と直交する第二の軸方向に沿って延びるように配された可堯性を有する第二の梁部と、
前記第一の梁部および前記第二の梁部によって少なくとも二以上の方向に変位可能に支持される錘部と、
前記錘部の変位に基づいて当該錘部に作用する力学量を検出する検出部とを備え、
前記錘部は、前記第一の軸方向回りにおける回転し易さと前記第二の軸方向回りにおける回転し易さとに差が生じる態様で、前記第一の梁部および前記第二の梁部に支持されている
検出素子。
【請求項2】
前記第一の梁部、前記第二の梁部および前記錘部に対して駆動振動を与える励振部を備えるとともに、
前記錘部は、前記駆動振動の方向に沿った軸方向回りのほうが前記駆動振動の方向と直交する軸方向回りよりも回転し易くなる態様で、前記第一の梁部および前記第二の梁部に支持されている
請求項1記載の検出素子。
【請求項3】
前記第一の梁部および前記第二の梁部は、各軸回りにおける前記錘部の回転し易さに差が生じるように、それぞれのバネ定数が互いに異なる
請求項1または2記載の検出素子。
【請求項4】
前記第一の梁部および前記第二の梁部は、それぞれの配設本数が互いに異なる
請求項3記載の検出素子。
【請求項5】
前記第一の梁部および前記第二の梁部は、それぞれの各軸方向に鉛直な方向における形成厚が互いに異なる
請求項3記載の検出素子。
【請求項6】
前記第一の梁部および前記第二の梁部は、各軸回りにおける前記錘部の回転し易さに差が生じるように、それぞれの前記錘部に対する支持連結位置が互いに異なる
請求項1または2記載の検出素子。
【請求項7】
前記錘部は、各軸回りにおける当該錘部の回転し易さに差が生じるように、各軸回りの質量分布または断面二次モーメントが互いに異なる
請求項1または2記載の検出素子。
【請求項8】
前記第一の梁部、前記第二の梁部および前記錘部は、SOI基板を用いて構成されている
請求項1〜7のいずれか1項に記載の検出素子。
【請求項9】
第一の軸方向に沿って延びるように配された可堯性を有する第一の梁部と、
前記第一の軸方向と直交する第二の軸方向に沿って延びるように配された可堯性を有する第二の梁部と、
前記第一の梁部および前記第二の梁部によって少なくとも二以上の方向に変位可能に支持される錘部と、
前記錘部の変位を検出する検出部とを備え、
前記錘部は、前記第一の軸方向回りにおける回転し易さと前記第二の軸方向回りにおける回転し易さとに差が生じる態様で、前記第一の梁部および前記第二の梁部に支持されている
微小電気機械装置。
【請求項10】
第一の軸方向に沿って延びるように配された可堯性を有する第一の梁部と、
前記第一の軸方向と直交する第二の軸方向に沿って延びるように配された可堯性を有する第二の梁部と、
前記第一の梁部および前記第二の梁部によって少なくとも二以上の方向に変位可能に支持される錘部と、
前記錘部の変位に基づいて当該錘部に作用する力学量を検出する検出部とを備え、
前記錘部は、前記第一の軸方向回りにおける回転し易さと前記第二の軸方向回りにおける回転し易さとに差が生じる態様で、前記第一の梁部および前記第二の梁部に支持されている検出素子
を搭載して構成された電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2010−169401(P2010−169401A)
【公開日】平成22年8月5日(2010.8.5)
【国際特許分類】
【出願番号】特願2009−9521(P2009−9521)
【出願日】平成21年1月20日(2009.1.20)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】