説明

荷電粒子線装置

【課題】イメージシフトの際、両立が困難であった、広い偏向領域と高い寸法計測再現性とを両立できる荷電粒子線装置を提供する。
【解決手段】荷電粒子源101、偏向手段(103、104、105等)、焦点位置変更手段(106、108)を制御すると共に検出器119により検出された電気信号により画像用データを作成する制御演算部121と、撮像条件ごとに登録された補正係数を保存する記録部120を有する荷電粒子線装置において、制御演算部は、焦点位置を変えながら複数の画像を取得し、画像内のマークの位置ずれ量と、記録部に登録された補正係数にもとづいて、計測用画像を取得する際に、荷電粒子線のランディング角が垂直となるように光学条件を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料の微細パターンの寸法を計測する荷電粒子線装置に関する。
【背景技術】
【0002】
荷電粒子線装置の一つである走査電子顕微鏡(SEM:Scanning Electron Microscope)は、電子源から放出された電子を加速し、静電または電磁レンズによって収束させて試料表面上に照射する。これを一次電子線という。一次電子線の照射によって試料からは二次電子が発生する。二次電子の発生量は、試料パターンのエッジ部分で大きくなるため、一次電子線を電磁気的な偏向によって試料表面上で走査させて二次電子信号強度を取得すると、試料の形状を反映した電子顕微鏡画像(SEM画像)が得られる。このようなSEMは、一次電子線を小さく収束させることにより微細なパターンを観察できるため、半導体製造プロセスにおける微細回路パターンの寸法計測に用いられている。
【0003】
SEMにおいては、通常、偏向を行わない場合の一次電子線の試料に対するランディング角は垂直である。一方、偏向させた場合は、一般に、一次電子線の軌道が変わりランディング角が変化する。ランディング角が異なれば、同一の試料パターンの画像を取得してもパターンの見え方が変化し、測長値が変化する。また、一次電子線を偏向させると、像面湾曲収差、非点収差、コマ収差、歪収差、色収差などの偏向収差が発生する。偏向収差により画像がぼけたり歪んだりすることによっても、測長値が変化する。
【0004】
半導体回路パターンの寸法計測では、1nm以下の高い寸法計測再現性が要求される。そのような高い計測再現性を確保するために、偏向起因の測長値変化が顕在化しないよう、一次電子線の偏向領域は例えば5μm以下などに制限されている。一方で、同一試料内で多数の箇所の計測が必要となる事例が増加しており、広い領域を一次電子線の偏向によって走査することで、視野移動のためのステージ移動の頻度を削減し、スループットを向上することが求められている。上記のような寸法計測再現性とスループットの両立を実現するためには、偏向起因の測長値変化を抑えて広い偏向領域を利用可能にする必要がある。
【0005】
この問題に対し、一次電子線の偏向に起因する像面湾曲収差、非点収差、歪収差を補正する方法が特許文献1に、また、偏向領域内でランディング角を等しくする方法が特許文献2に開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−173035号公報
【特許文献2】特開2007−187538号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1では、像面湾曲収差、非点収差、歪収差を計測し、これらの偏向収差を補正する方法が開示されているが、一次電子線のランディング角変化に対する対処法は記述されていない。特許文献2では、ピラミッドパターンを用いてランディング角を計測し、偏向に伴うランディング角変化を抑制する方法が開示されているが、偏向収差を補正する方法は記述されていない。偏向起因の測長値変化を抑えて広い偏向領域を利用可能にするためには、偏向収差とランディング角変化の両方を抑制する必要があるが、上記の2つの方法は、それぞれ単独ではどちらか片方しか抑制することができない。
【0008】
さらに、上記の2つの方法をあわせて適用することも、次の理由により困難である。ランディング角の計測には、ピラミッドパターンなど特定の立体構造をもつ試料が必要であり、これらのパターンは、通常1μm程度の高さを持つ。したがって、これらパターンを用いて、例えば像面湾曲収差を計測しようとしても、1μm程度の精度でしか計測できない。一方で、1nm以下の高い寸法計測再現性を得るには、100nm以下の焦点計測精度が必要であり、これらの試料は適当でない。
【0009】
本発明の目的は、イメージシフトの際、両立が困難であった、広い偏向領域と高い寸法計測再現性とを両立することである。
【課題を解決するための手段】
【0010】
上記目低を達成するための一実施形態として、荷電粒子源と、前記荷電粒子源から発せられた荷電粒子線を偏向する偏向手段と、前記荷電粒子線の焦点位置を変更する焦点位置変更手段と、前記荷電粒子線が照射された試料からの電気信号を検出する検出器と、前記荷電粒子源、前記偏向手段、前記焦点位置変更手段を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部と、撮像条件ごとに登録された補正係数を保存する記録部を有する荷電粒子線装置において、前記制御演算部は、前記偏向手段により前記荷電粒子線を所定の量だけ偏向させ、前記試料上の同じマークの画像を、前記焦点位置変更手段により焦点位置を変えて複数枚数取得し、取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて、前記荷電粒子線を前記所定の量だけ偏向させて計測用画像を取得する際に、前記荷電粒子線のランディング角が所望の値となるように光学条件を制御することを特徴とする荷電粒子線装置とする。
【0011】
また、荷電粒子源と、前記荷電粒子源から発せられた荷電粒子線を偏向する偏向手段と、前記荷電粒子線の焦点位置を変更する焦点位置変更手段と、前記荷電粒子線が照射された試料からの電気信号を検出する検出器と、前記荷電粒子源、前記偏向手段、前記焦点位置変更手段を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部と、撮像条件ごとに登録された補正係数を保存する記録部を有する荷電粒子線装置において、前記制御演算部は、前記偏向手段により前記荷電粒子線を所定の量だけ偏向させ、前記試料上の同じマークの画像を前記焦点位置変更手段により焦点位置を変えて複数枚数取得し、前記荷電粒子線を前記所定の量だけ偏向させて前記試料上に形成された微細パターンの画像を取得して前記微細パターンの画像に基づいて前記微細パターンの寸法を計測し、取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて、前記微細パターンの計測値を補正することを特徴とする荷電粒子線装置とする。
【0012】
また、荷電粒子源と、前記荷電粒子源から発せられた一次荷電粒子線を偏向する偏向手段と、前記荷電粒子源から発せられた荷電粒子線の焦点位置を変更する焦点位置変更手段と、前記一次荷電粒子線が照射された試料からの電気信号を検出する検出器と、前記荷電粒子源、前記偏向手段、前記焦点位置変更手段を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部と、撮像条件ごとに登録された補正係数を保存する記録部を有する荷電粒子線装置において、前記制御演算部は、前記偏向手段により前記一次荷電粒子線を異なる複数の量だけ偏向し、前記試料上の立体形状が既知であるマークの画像を取得し、取得した前記マークの画像における形状パターンから前記一次荷電粒子線のランディング角を算出し、前記一次荷電粒子線の偏向量と、算出した前記ランディング角との関係から算出した係数を、前記記録部に登録することを特徴とする荷電粒子線装置とする。
【発明の効果】
【0013】
本発明を用いることで、イメージシフトの際、一次荷電粒子線の偏向に伴う測長値変化を低減することができ、広い偏向領域と高い計測再現性とを両立することが可能になる。
【図面の簡単な説明】
【0014】
【図1】実施例1〜9に係る荷電粒子線装置(電子顕微鏡)の概略全体構成図である。
【図2】実施例1に係る荷電粒子線装置を用いてランディング角計測、補正を行う際のフローチャートである。
【図3】実施例1〜9に係る荷電粒子線装置の説明図で、偏向量x、yとイメージシフト偏向器の制御値との関係の一例を示すテーブルである。
【図4】実施例1〜9に係る荷電粒子線装置の説明図で、比例係数kx、kyの算出に係わるマーク位置ずれ量と焦点変化量の関係を示す。
【図5】実施例1〜9に係る荷電粒子線装置の説明図で、撮像条件毎のランディング角補正係数の一例を示すテーブルである。
【図6】実施例2に係る荷電粒子線装置を用いてランディング角計測、補正を行う際のフローチャートである。
【図7】実施例2に係る荷電粒子線装置の説明図で、計測を行うイメージシフト偏向量を点で示した図である。
【図8】実施例2に係る荷電粒子線装置における表示画面の例である。
【図9】実施例2に係る荷電粒子線装置における表示画面の他の例である。
【図10】実施例2に係る荷電粒子線装置の説明図で、イメージシフト連動アライメント制御値を示すテーブルである。
【図11】実施例3に係る荷電粒子線装置を用いてランディング角計測、補正を行う際のフローチャートである。
【図12】実施例3に係る荷電粒子線装置における表示画面の例である。
【図13】実施例3に係る荷電粒子線装置における表示画面の他の例である。
【図14】実施例3に係る荷電粒子線装置の説明図で、イメージシフト連動アライメント制御値、焦点制御値、非制御値の一例を示すテーブルである。
【図15】実施例4に係る荷電粒子線装置を用いてランディング角計測、寸法計測値補正を行う際のフローチャートである。
【図16】実施例4に係る荷電粒子線装置の説明図で、ランディング角に応じた寸法計測値の補正値の一例を示すテーブルである。
【図17】実施例4に係る荷電粒子線装置における表示画面の例である。
【図18】実施例5に係る荷電粒子線装置で用いる計測用マークを示す模式図である。
【図19】実施例7に係る荷電粒子線装置で用いる計測用マークを示す模式図である。
【図20】実施例8に係る荷電粒子線装置における表示画面の例である。
【図21】実施例9に係る荷電粒子線装置を用いてランディング角補正係数の校正を行なう際のフローチャートである。
【図22】実施例9に係る荷電粒子線装置で用いる計測用マークの一例を示す模式図である。
【図23】実施例9に係る荷電粒子線装置で用いる計測用マークの他の例を示す模式図である。
【発明を実施するための形態】
【0015】
上記の課題を解決するための一例として、ピラミッド試料のような特定の立体構造を持つ試料を必要としないランディング角の計測アルゴリズム、および、そのアルゴリズムによる計測結果を光学系制御にフィードバックする荷電粒子線装置を提案する。
【0016】
具体的には、ステージ位置を固定して焦点位置を変えながら複数の画像を取得し、画像内のパターン移動を計測して焦点変化とビームの照射位置ずれの比例係数を求め、この比例係数とランディング角との関係をあらかじめ求めておくことで、ランディング角が求められる。所定の偏向量にて、ランディング角を計測し、以降、該偏向量に偏向する際にはランディング角が垂直となるよう光学系制御にフィードバックする。また、上記方法に加え、同じ複数の画像について画像の先鋭度を計測して、焦点変化と先鋭度の関係から先鋭度が最大となる焦点位置を求め、像面湾曲収差を計測する方法、及び、同じ複数の画像について画像の方向別の先鋭度を計測して、焦点変化と先鋭度の関係から、先鋭度最大となる焦点位置の方向によるずれを求め、非点収差を計測する方法を備え、それらの計測結果も用いて、光学系制御にフィードバックする。
【0017】
本発明は、電子に限らずイオンを用いた各種の荷電粒子線装置に適応可能であるが、以下の実施例ではSEMを例として説明する。
【0018】
また、本発明を用いればランディング角が所望の値となるよう光学条件を制御することが可能であるが、以下の実施例ではランディング角が垂直となるよう制御する場合を例として説明する。
【実施例1】
【0019】
本発明に係る第1の実施例について図1〜図5を用いて説明する。図1は、本実施例に係る電子顕微鏡の概略全体構成図である。電子銃制御部111によって制御された電子銃(電子源)101から発せられた一次電子線109は、ステージ108の上に置かれた試料107の表面上に収束して照射される。一次電子線の焦点の調整は、対物レンズ制御部116によって対物レンズ106の励磁を制御することにより、またはリターディング電圧制御部117でステージ108に印加されるリターディング電圧を制御することにより行う。図1では、対物レンズ以外の静電あるいは電磁レンズは省略したが、対物レンズ以外に一次電子線を収束させる1つあるいは複数のレンズがあっても良い。一次電子線109の非点収差の補正は、非点補正器制御部112によって非点補正器102の電流値を制御することにより行う。
【0020】
一次電子線の照射によって試料表面から発生する二次電子110は、検出器119によって検出される。
【0021】
一次電子線109は、走査偏向器105を走査偏向器制御部115によって制御することで、試料表面上で走査を行うことができる。また、イメージシフト偏向器104をイメージシフト偏向器制御部114によって制御することで、ステージを移動させることなく一次電子の照射範囲を移動させることが出来る。
【0022】
さらに、上記偏向器とは別に、一次電子を偏向させるアライメント偏向器103が設置されており、アライメント偏向器制御部113によって偏向量を制御することで、一次電子線のランディング角を変更できる。なお、アライメント偏向器以外の偏向器を用いる方法により一次電子線の入射角を変更しても良い。図1では、上記イメージシフト偏向器104、アライメント偏向器103、走査偏向器105以外の偏向器は省略したが、これ以外の目的で一次電子線109を偏向させる偏向器があっても良い。また、それぞれの偏向器を2つ以上設けても良い。
【0023】
装置(SEM)全体の制御演算装置121は、予め登録されている動作手順などを表した制御プログラムを処理するプロセッサを含み、各制御部へ制御信号を送る制御信号生成部123と、データ処理を行う演算部124と、一時的にデータを保存するメモリ125と、表示装置122に表示させるデータを生成する表示データ生成部126等で構成される。また、記録装置120には、イメージシフト偏向量とイメージシフト偏向器制御部114の制御値との関係が保存されたイメージシフト制御量保存領域127と、ランディング角補正係数保存領域128と、焦点変化量と対物レンズ制御部116あるいはリターディング電圧制御部117の制御値との関係、及び非点収差変化量と非点補正器制御部112の制御値との関係が保存された焦点非点変化係数保存領域129と、一次電子線のランディング角変化とアライメント偏向器制御部113の制御値変化との関係が保存されたランディング角変化係数保存領域130と、イメージシフト量に連動したアライメント偏向器制御部113の制御値の補正量を記録したイメージシフト連動アライメント制御量保存領域131と、イメージシフト量に連動した対物レンズ制御部116あるいはリターディング電圧制御部117の制御値の補正量、およびを非点補正機制御部112の制御値の補正量を記録したイメージシフト連動焦点非点制御量保存領域132と、寸法補正値保存領域133とがあり、必要に応じて、演算部124によりデータ読み出し、書き込みを行う。
【0024】
SEMは、画像検出器119で得られた二次電子信号強度を、走査偏向器制御部115への制御信号に従って配置させることで画像データとして表示データ生成部126にて生成され、表示装置122上に表示される。
【0025】
上記のような構成をした電子顕微鏡を用いて、イメージシフト偏向に伴うランディング角変化を計測し、偏向器(103、104、105)や対物レンズ106の電流や電圧、ステージ108に印加するリターディング電圧などの光学条件を補正して画像取得し、寸法計測を行うフローチャートを図2に示す。以下、このフローチャートの各ステップについて説明する。
【0026】
まず、ステップS201にて、イメージシフト偏向量0の状態で軸調整を行う。軸調整とは、焦点位置を変化させても画像内のパターンが上下左右に移動しない状態となるよう、一次電子線109の軌道を調整する作業であり、この軸調整を実施すれば、イメージシフト偏向量0の状態でのランディング角が垂直となる。具体的には、以下のように行う。焦点を変化させながら、SEM画像を表示装置122に表示させる。焦点の変化は、対物レンズ制御部116あるいはリターディング電圧制御部117の制御値を変化させることで行う。装置操作者はSEM画像を見ながら画像内のパターンの移動が小さくなるようアライメント偏向器制御部113の制御値を調整する。このステップは、装置操作者によるマニュアル動作ではなく、自動で行うことも可能である。その場合は、焦点を変化させながら取得した画像をメモリ125に記録し、演算部124を用いて焦点移動に伴うパターンの移動量を計測し、移動量と方向に応じて制御信号生成部123によってアライメント偏向器制御部113へ送られる制御値を調整する。このような軸調整は、一般的に、装置使用開始直後、あるいは定期的に実施されるものであるため、装置の状態によっては、このステップS201は省略しても良い。
【0027】
ステップS202では、イメージシフト偏向器制御部114を用いてイメージシフト偏向器104にかかる電流、あるいは電圧を制御し、所定のイメージシフト偏向量となるように設定する。このときのX方向、Y方向の偏向量をそれぞれx、yとする。通常、図3に示すような偏向量x、yとイメージシフト制御値ISX、ISYとの関係がイメージシフト制御量保存領域127に保存されており、偏向量を指定すると、演算部124がイメージシフト制御量保存領域127に記録された関係に基づいて制御値を決定し、制御信号生成部123を通してイメージシフト偏向器制御部114へ制御値が設定される。なお、この関係は、図3に示すようなテーブル形式でも良いし、x、yからISX、ISYを算出する近似式の形式でも良い。
【0028】
ステップS203では、焦点を変化させ、焦点位置の異なる状態で、試料107上の同じ計測マークの画像を複数枚取得する。取得した画像は、メモリ125に保存される。マークはXY方向へのパターン移動量が検出できるような二次元的なものであれば良い。また、焦点の変化量は、1μm程度の範囲で行えば、SEM画像はそれほどぼけず、次のステップS204にて行う位置ずれ計測を精度良く実施できる。
【0029】
ステップS204では、演算部124により、メモリ125に保存された画像同士を比較し、画像内のマークの相対的な位置ずれを計算する。位置ずれの計算法は、正規化相関法、位相限定相関法など、画像内のパターンの相対的な移動量を検出するアルゴリズムなら、一般に使用可能である。位置ずれ量を計算した後、図4に示すように、X方向、Y方向それぞれの位置ずれ量についてその焦点変化量依存性を直線近似し、比例係数kx、kyを求める。なお、焦点変化量は、制御値1LSBあたりの焦点変化量をあらかじめ焦点非点変化係数保存領域129に保存しておくことで、S203で変化させた対物レンズ、あるいはリターディング電圧の制御値の変化量から算出する。
【0030】
ステップS205からS206は、ステップS204で求めた位置ずれ量と、ランディング角補正係数保存領域128に登録された補正係数に基づいて、光学条件を制御するステップである。具体的には、次のとおりである。
【0031】
ステップS205は、演算部124により、kx、kyから、ランディング角θX、θYを求めるステップである。ここで、θX、θYは、それぞれ試料表面の法線からの角度のX成分、Y成分である。ランディング角の算出には、下記の計算式を用いる。
【0032】
【数1】

【0033】
【数2】

【0034】
ここで、補正係数A、B、C、Dは、図5に示したように、加速電圧、モードなどの撮像条件毎にランディング角補正係数保存領域128にあらかじめ記録しておき、これを読み出して計算を行う。これらの補正係数は、実験によって決定して記録しても良いし、計算により決定して記録しても良い。
【0035】
ランディング角が求まると、ステップS206で、ランディング角が垂直となるよう光学条件を補正する。具体的には、アライメント偏向器103を用いて補正する場合は、制御信号生成部123によってアライメント偏向器制御部113へ送られる制御値を調整することでアライメント偏向器103にかかる電流、あるいは電圧を調整し、一次電子線のランディング角を変化させて、垂直となるよう制御する。なお、ランディング角を垂直とするために必要なアライメント偏向器制御部113の制御値の変化量は、あらかじめランディング角変化係数保存領域130に記録しておいた制御値1LSBあたりのランディング角の変化量を演算部124により読み出して算出する。
【0036】
ここでは、アライメント偏向器103を用いた補正の方法を記述したが、その他の偏向器を用いてランディング角を変えて補正しても良いし、2つ以上の偏向器を用いて補正を行っても良い。例えば、イメージシフト偏向器104が上下の2段で構成されている場合、上下の偏向器に印加する電流値、あるいは電圧値の強度比と相対回転角を変えることで、偏向支点を変化させ、ランディング角を変えることもできる。
【0037】
最後に、ステップS207において、補正した光学条件において画像を取得し、演算部124を用いて寸法計測を行うとともに、結果と画像とを表示装置122に表示させる。
【0038】
なお、装置によっては、ステップS201にて、イメージシフト偏向を使用しない状態で軸調整を実施しても、ランディング角が垂直とならない場合がある。その場合、ステップS205で求めたランディング角θX、θYは、試料面の法線からの角度ではなく、イメージシフト偏向を行わない状態での一次電子線のランディング角を基準とした角度となるが、図2のフローチャートを実施し計測されるランディング角θX、θYが0となるよう補正することで、イメージシフト偏向に伴うランディング角の変化を低減できる。
【0039】
以上の手順により、イメージシフト偏向に伴う測長値変化を低減することができ、広い偏向領域と高い計測再現性とを両立することが可能となる。偏向領域を広くできるため高スループット計測も可能となる。
本実施例に係るSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0040】
なお、ステップS201の軸調整にて用いる焦点変化、及び、ステップS203における焦点変化は、通常、対物レンズ制御部116を用いて対物レンズ106の電流値を変えることで行うが、リターディング電圧制御部117を用いてステージ108の電位を変えることで行って良い。対物レンズ106を用いる場合に比べて、リターディング電圧を用いる場合では、一般にランディング角の補正量が小さくなり、補正に伴う誤差が減少するため、より高精度なランディング角の計測が可能となる。したがって、リターディング電圧による焦点変化は有効と言える。また、これら以外の手段を用いて、焦点変化を行っても良い。ただし、ステップS201における軸調整にて用いる焦点変化手段と、ステップS203にて用いる焦点変化手段が異なると、ランディング角計測に誤差が発生する場合があるので、同じ焦点変化手段を用いるのが望ましい。
【0041】
また、ここではイメージシフト偏向を例にとって説明したが、他の偏向器を用いた偏向についても、同様の手順を適用可能である。
【0042】
以上、本実施例によれば、イメージシフトの際、広い偏向領域と高い寸法計測再現性とを両立することが可能な荷電粒子線装置を提供することができる。また、高スループット計測が可能となる。
【実施例2】
【0043】
第2の実施例について、図6〜図10を用いて説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。
【0044】
図6は、イメージシフト偏向に伴うランディング角変化を計測し、光学条件を補正して画像取得し寸法計測を行う他の実施例のフローチャートである。この実施例では、複数の異なるイメージシフト偏向量において、試料上の同じマークの画像を、焦点位置を変えて複数枚数取得し、取得した画像におけるマークの位置ずれ量を計測して、ランディング角補正係数保存領域128に登録された補正係数に基づいて、任意の電子線偏向量の画像を取得する際に光学条件を制御する。具体的には、次に記述する方法によりランディング角の補正を行い、計測を行ったイメージシフト偏向量の間をフィッティングにより補間することで、任意のイメージシフト偏向量においても、ランディング角が垂直となるよう補正する。以下、フローチャートに従って説明する。
【0045】
まず、ステップS601では、ステップS201と同様にイメージシフト偏向量0の状態で軸調整を行う。なお、装置の状態によっては、このステップS601は省略しても良い。
【0046】
ステップS602では、ステップS202と同様に、イメージシフト偏向器制御部114を用いてイメージシフト偏向器104にかかる電流値、あるいは電圧値を制御し、所定のイメージシフト偏向量となるように設定する。このときのX方向、Y方向の偏向量をそれぞれx、yとする。この実施例では、図7に示す25点のイメージシフト偏向量について、順々に計測を行う。計測点数は、多いほど精度は向上するが、スループットが低下するので、必要に応じて加減しても良い。
【0047】
ステップS603、S604、S605では、ステップS203、S204、S205と同様に、焦点位置の異なる状態でマークの画像を複数枚取得し、取得した画像からマーク位置ずれ量の比例係数kx、kyを求め、あらかじめランディング角補正係数保存領域128に保存しておいた補正係数を用い、kx、kyからランディング角θX、θYを求める。求めたランディング角は、メモリ125に記録する。
【0048】
ステップS606では、演算部124を用いて、全てのイメージシフト偏向量25点について計測を完了したかを判定し、完了していない場合は、ステップS602に戻って次のイメージシフト偏向量での計測を行う。完了している場合には、次のステップS606に進む。
【0049】
ステップS607では、演算部124を用いて、メモリ125に記録されたランディング角θX、θYのイメージシフト偏向量依存性を、下記のようにイメージシフト偏向量x、yの1次関数でフィッティングする。
【0050】
【数3】

【0051】
【数4】

【0052】
ここで、p、q、r、sはフィッティングによって求まるフィッティングパラメータである。このフィッティングにより、誤差を含む個々の計測データから、ランディング角のイメージシフト偏向量依存性を精度良く求めることができる。さらに、計測を行っていないイメージシフト偏向量についても、上記の式を用いることで、ランディング角を算出することができる。なお、ここでは、25点全てのデータを一括して1次関数でフィッティングを行う例を示したが、十分なデータ点数がある場合などには、2次関数など他の関数でフィッティングを行っても良いし、計測データをいくつかのグループに分けて、それぞれのグループのデータでフィッティングを行っても良い。
【0053】
ステップS608では、計測した結果、あるいはフィッティング結果を示す表示データを表示データ生成部126にて生成し、表示装置122に表示する。表示は、図8(a)のように、各計測点でのランディング角を矢印型のベクトルで図示する形式でも良いし、図8(b)のように、特定の偏向量におけるフィッティング結果を数値で表示する形式でも良い。
【0054】
ステップS609では、演算部124により、計測した結果からイメージシフト偏向領域内のランディング角分布が均一かどうかの判定を行う。フィッティングで得られたパラメータp、q、r、sが、いずれも、あらかじめ指定した範囲内となった場合は、ランディング角が十分均一であると判定して、ステップS612へ移る。一方、p、q、r、sのいずれかが指定した範囲内から外れた場合には、補正が必要と判定し、ステップS610へ移る。なお、ここでは、フィッティングパラメータにより判定を行ったが、他の方法として、あらかじめ定められた偏向量におけるフィッティング値が指定した範囲内にあるかどうかで判定を行っても良いし、計測したランディング角の全てが、指定した範囲内にあるかどうかで判定を行っても良い。
【0055】
ステップS610では、ランディング角のイメージシフト依存性が十分均一でないこと示すアラート表示データを表示データ生成部126にて生成し、表示装置122に表示させる。表示は、図9(a)のように、補正を行うことを通知するだけでも良いし、図9(b)のように、補正の必要があることを表示し補正を実行するかどうかを、装置操作者に選択させても良い。あるいは、図9(c)のように、これらの表示をステップS608で表示させた結果とあわせて表示しても良い。または、アラートを表示させず、自動で補正が実施されるよう設定しても良い。
【0056】
ステップS611では、計測結果を用いて光学条件を補正する。具体的には、イメージシフト連動アライメント制御値を更新する。イメージシフト連動アライメント制御とは、演算部124によって、イメージシフト連動アライメント制御量保存領域131に保存された図10のようなテーブルを読み出し、イメージシフト偏向量に応じて、アライメント偏向器制御部113の電流値、あるいは制御値を微調整する機能である。この機能は、通常、イメージシフト偏向に伴って軸ずれが発生することを防止するために用いられる。しかし、イメージシフト偏向を使用時の軸ずれのない軌道はランディング角が垂直とはならない。そこで、この実施例では、この機能を、イメージシフト偏向に伴う軸ずれの防止ではなくイメージシフト偏向に伴うランディング角変化の防止に用いる。具体的には、各イメージシフト偏向量においてランディング角を垂直とするのに必要なアライメント偏向器制御部113の制御値の変化量を演算部124によって算出し、イメージシフト連動アライメント制御量保存領域131に記録されていた値に、算出した変化量を加えて新しい調整量を求め、記録し直す。ランディング角を垂直とするのに必要なアライメント偏向器制御部113の制御値の変化量は、アライメント偏向器103の制御値1LSBあたりのランディング角の変化量をあらかじめランディング角変化係数保存領域130に保存しておき、これを用いて算出する。
【0057】
以降、イメージシフト偏向を行うと、更新されたテーブルにしたがってイメージシフト連動アライメント制御が実施され、イメージシフト偏向によるランディング角の変化がアライメント偏向器103による軌道調整により解消される。このような補正を実施後、ステップS601に戻り、再度、ランディング角のイメージシフト偏向量依存性を計測し、ランディング角変化が補正されているか確認する。
【0058】
なお、ここでは、ランディング角変化係数保存領域130に記録された、イメージシフト量に連動して行うアライメント偏向器制御部113の制御値の補正の補正量を更新することでランディング角を補正する方法を記述したが、その他の偏向器を用いてランディング角を変えて補正しても良いし、2つ以上の偏向器を用いて補正を行っても良い。例えば、イメージシフト偏向器104が上下の2段で構成されている場合、上下の偏向器に印加する電流、あるいは電圧の強度比と相対回転角を変えることで、偏向支点を変化させ、ランディング角を変えることもできる。このような上下段の強度比と相対回転角の調整による軌道調整は、イメージシフト偏向量に応じて個別に設定するのではなく、全てのイメージシフト偏向量に対して共有の値を設定しても良い。
【0059】
ステップS612では、所望のイメージシフト偏向量となるよう、ステップS202と同様にイメージシフト偏向器制御部114を用いてイメージシフト偏向器104の電流値、あるいは電圧値を設定し、ステップS207と同様に画像取得して寸法計測を行う。このステップは、必ずしもS601からS611までのステップと連続して行う必要はなく、S601からS611までのステップを実施してランディング角補正を完了すれば、光学系の状態が変化しない限り、いつでも一次電子線が垂直ランディングの状態で画像取得して寸法計測を行える。
【0060】
以上の手順により、イメージシフト偏向に伴うランディング角変化を抑制して測長値変化を低減することができ、広い偏向領域と高い計測再現性とを両立することが可能となる。この方法では、数10点程度のイメージシフト偏向量について計測を行うだけで、任意のイメージシフト偏向量について、イメージシフト偏向に伴うランディング角変化を抑制できる。
本実施例に係るSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0061】
なお、実施例1と同様に、ステップS601の軸調整にて用いる焦点変化、及び、ステップS603における焦点変化は、通常、対物レンズ制御部116を用いて対物レンズ106の電流値を変えることで行うが、リターディング電圧制御部117を用いてステージ108の電位を変えることや、その他の手段で行って良い。対物レンズを用いる場合に比べて、リターディング電圧を用いる場合では、一般にランディング角の補正量が小さくなり、補正に伴う誤差が減少するため、より高精度なランディング角の計測が可能となる。
【0062】
なお、ここではイメージシフト偏向を例にとって説明したが、他の偏向器を用いた偏向についても、同様の手順を適用可能である。
【0063】
以上、本実施例によれば、実施例1と同様の効果が得られる。また、数10点程度のイメージシフト偏向量について計測を行うことにより、任意の位置においてイメージシフト偏向に伴うランディング角変化を抑制できる。
【実施例3】
【0064】
第3の実施例について図11〜図14を用いて説明する。なお、実施例1又は2に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。
【0065】
図11は、イメージシフト偏向に伴うランディング角変化を計測する画像を用いて、像面湾曲収差、非点収差を計測し、これらに基づいて光学条件を補正して画像取得し寸法計測を行う実施例のフローチャートである。この実施例は、実施例2に像面湾曲収差と非点収差の計測、補正を加えたものであり、それ以外の部分は実施例2と同じである。ここでは、図6のフローチャートと比較して異なる部分について、図11のフローチャートを用いて説明する。なお、本実施例では像面湾曲収差と非点収差の両者の計測、補正を行う例について示すが、像面湾曲収差と非点収差のうちのいずれか一者とすることもできる。
【0066】
ステップS1101からS1105は、ステップS601からS605と同様である。
【0067】
ステップS1106では、ステップS1103においてメモリ125に保存した複数の画像について、演算部124によって画像の先鋭度を計測して、焦点変化と先鋭度の関係から先鋭度が最大となる焦点位置を算出し、像面湾曲収差fを求め、メモリ125に保存する。また、同じ複数の画像について画像の方向別の先鋭度を計測して、焦点変化と先鋭度の関係から、先鋭度最大となる焦点位置の方向によるずれを算出し、非点収差ax、ayを求め、メモリ125に保存する。axはSEM画像の0°方向(上下方向)と90°方向(左右方向)との間に発生する非点、ayは、45°方向(右上左下方向)と135°(右下左上方向)方向との間に発生する非点である。もちろん、ax、ayは互いに45度ずれた方向であれば、どの方向の非点と定義しても良い。像面湾曲収差、非点収差の計測アルゴリズムは公知であり、たとえば、特許第4286625号などに記述された方法を用いれば良い。
【0068】
ステップS1107、S1108は、ステップS606、S607と同様である。
【0069】
ステップS1109では、ステップS1106にメモリ125に保存した像面湾曲収差f、非点収差ax、ayのイメージシフト偏向量依存性について、演算部124により、下記のようなイメージシフト偏向量の関数でフィッティングする。
【0070】
【数5】

【0071】
【数6】

【0072】
【数7】

【0073】
ここで、t、u、φはフィッティングによって求まるフィッティングパラメータである。このフィッティングにより、誤差を含む個々の計測データから、像面湾曲収差、非点収差のイメージシフト偏向量依存性を精度良く求めることができる。さらに、計測を行っていないイメージシフト偏向量についても、上記の式を用いることで、像面湾曲収差、非点収差を算出することができる。なお、ここでは、25点全てのデータを一括してフィッティングする例を示したが、十分なデータ点数がある場合などには、計測データをいくつかのグループに分けて、それぞれのグループのデータでフィッティングを行っても良い。また、ここで示した関数以外の関数でフィッティングを行っても良い。
【0074】
ステップS1110では、ステップS1108およびS1109で得られた結果、あるいはフィッティング結果を示す表示データを表示データ生成部126により生成し、表示装置122に表示させる。表示は、図12(a)のように、各計測点でのランディング角を矢印型のベクトルで図示し、像面湾曲収差と非点収差を等高線で図示する形式でも良いし、図12(b)のように、特定の偏向量におけるフィッティング結果を数値で表示する形式でも良い。
【0075】
ステップS1111では、演算部124により、計測したイメージシフト偏向に伴うランディング角変化、像面湾曲収差、非点収差が、あらかじめ定めた範囲内に入っているかの判定を行う。フィッティングで得られたパラメータp、q、r、s、t、uが、いずれも、あらかじめ指定した範囲内となった場合は、イメージシフト偏向に伴うランディング角変化、像面湾曲収差、非点収差が十分小さいと判定して、ステップS1115へ移る。一方、p、q、r、s、t、uのいずれかが指定した範囲内から外れた場合には、補正が必要と判定し、ステップS1112へ移る。なお、ここでは、フィッティングパラメータにより判定を行ったが、他の方法として、あらかじめ定められた偏向量におけるフィッティング値が指定した範囲内にあるかどうかで判定を行っても良いし、計測したランディング角、像面湾曲収差、非点収差の全データが、指定した範囲内にあるかどうかで判定を行っても良い。
【0076】
ステップS1112では、ランディング角、像面湾曲収差、非点収差のイメージシフト依存性が十分均一でないこと示すアラート表示データを表示データ生成部126にて生成し、表示装置122に表示させる。表示は、図13(a)のように、補正を行うことを通知するだけでも良いし、図13(b)のように、補正の必要があることを表示し補正を実行するかどうかを、装置操作者に選択させても良い。あるいは、図13(c)のように、これらの表示をステップS1115で表示させた結果とあわせて表示し、補正を実行するかどうかを、装置操作者に選択させても良い。または、アラートを表示させず、自動で補正が実施されるよう設定しても良い。
【0077】
ステップS1113は、ステップS611と同様である。
【0078】
ステップS1114では、計測結果を用いてイメージシフト連動の焦点制御値、非点制御値を更新する。イメージシフト連動の焦点制御、非点制御とは、イメージシフト連動焦点非点制御量保存領域132に保存された図14のようなテーブルを演算部124により読み出し、イメージシフト偏向量に応じて、対物レンズ制御部116、および非点補正器制御部112の制御値を微調整する機能である。制御値の更新は、具体的には次のとおりである。各イメージシフト偏向量において、演算部124により、像面湾曲収差を補正するために必要な対物レンズ制御部116の制御値の変化量、非点収差を補正するために必要な非点補正器制御部112の制御値の変化量を算出し、イメージシフト連動焦点非点制御量保存領域132に保存されていた値に算出した変化量を加えて新しい調整量を求め、記録し直す。像面湾曲収差、および非点収差を補正するために必要な制御値の変化量は、対物レンズ制御部116および非点補正器制御部112の制御値1LSBあたりの焦点変化量および非点収差変化量をあらかじめ焦点非点変化係数保存領域129に保存しておき、これを演算部124により読み出して用い、算出する。
【0079】
以降、イメージシフト偏向を行うと、更新されたテーブルにしたがってイメージシフト連動の焦点非点制御が実施され、像面湾曲収差は対物レンズ106の電流値の変化により、非点収差は非点補正器102の電流値の変化により解消される。このような補正を実施後、ステップS1101に戻り、再度、ランディング角、像面湾曲収差、非点収差を計測し、補正されているかを確認する。
【0080】
ここでは、ランディング角、像面湾曲収差、非点収差の補正を全て行う例を示したが、ステップS1111にてそれぞれ別々に判定を行い、必要な項目のみステップS1112でアラートを表示し、ステップS1113、S1114のうち、必要な補正のみ行うこととしても良い。
【0081】
ステップS1115はステップS612と同様である。
【0082】
なお、実施例1と同様に、本実施例における焦点変化の手段は、リターディング電圧制御部117を用いてステージ108の電位を変える方法や、その他の手段で行っても良い。
【0083】
以上の手順により、イメージシフト偏向に伴うランディング角変化、像面湾曲収差、非点収差を抑制して測長値変化を低減することができ、広い偏向領域と高い計測再現性とを両立することが可能となる。この方法では、ランディング角、像面湾曲収差、非点収差を同じ画像を用いて計測、補正でき、それぞれ別々に計測、補正を行う場合に比べてスループットが向上できる。
本実施例に係るSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0084】
以上、本実施例によれば、実施例2と同様の効果が得られる。また、像面湾曲収差、非点収差の計測、補正を行うことにより、寸法計測再現性をさらに向上することができる。
【実施例4】
【0085】
第3の実施例について図15〜図17を用いて説明する。なお、実施例1〜3のいずれかに記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。
【0086】
図15は、実施例1の変形例で、試料上の同じマークの画像を焦点位置を変えて複数枚数取得し、取得した画像におけるマークの位置ずれ量と、ランディング角補正係数保存領域128に登録された補正係数に基づいて、所定の電子線偏向量にて画像を取得して試料上に形成された微細パターンの寸法を計測する際の寸法計測値を補正する実施例フローチャートである。である。つまり、ランディング角の計測のみ行って補正は行わず、寸法計測値に対して計測したランディング角に応じて補正を行う実施例のフローチャートである。
【0087】
ステップS1501からS1505は、図2のS201からS205と同様であるが、ステップS1506では、ランディング角の補正を行わないままで画像を取得し、演算部124により寸法計測を行って結果をメモリ125に記録する。
【0088】
その後、ステップS1507では、演算部124により、ステップS1505において計測してメモリ125に記録しておいたランディング角を読み出し、寸法計測値に補正を行う。例えば、パターンの断面形状が既知である場合には、電子線散乱シミュレーションを用いて、一次電子線のランディング角と寸法計測値との関係をあらかじめ求めておいて、図16に示すようなテーブルを寸法補正値保存領域133に保存しておき、ステップS1504で求めたランディング角から、寸法計測したい方向と直交する方向のランディング角θを求め、このテーブルを参照してステップS1506においてメモリ125に記録した寸法計測値を補正する。
【0089】
あるいは、図17に示すような入力ダイアログの表示データを表示データ生成部126にて生成し、表示装置122に表示させてパターンの高さhを装置操作者に入力させ、式(8)に従って寸法補正量ΔCDを決定しても良い。
【0090】
【数8】

【0091】
なお、ここではイメージシフト偏向量が1点のみの場合について記述したが、実施例2のように、複数のイメージシフト偏向量にてランディング角を計測して、計測結果をフィッティングして任意のイメージシフト偏向量についてランディング角を求め、以降、イメージシフト偏向を使用する際には、図16に示すテーブルを参照して、あるいは、式(8)を用いて、寸法計測値を補正することも可能である。
【0092】
さらに、実施例3のように、ランディング角のみならず、像面湾曲収差、非点収差についても計測を行い、図16と同様なテーブルを像面湾曲収差、非点収差に対して作成して記録装置120に保存しておき、計測したランディング角、像面湾曲収差、非点収差に応じて、寸法計測値を補正することも可能である。
【0093】
以上の手順により、イメージシフト偏向に伴う測長値変化を低減することができ、広い偏向領域と高い計測再現性とを両立することが可能となる。この方法では、光学条件を変化させてランディング角、像面湾曲収差、非点収差を補正する必要がないため、制御値の補正量を算出する演算部が不要となり装置のハード、ソフトを簡略化でき、また、補正を行う手順が省略できるので、スループットを向上できる。
本実施例に係るSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0094】
以上、本実施例によれば、実施例3と同様の効果が得られる。また、一次荷電粒子線のランディング角他を実際には補正しないため更なる高スループット計測が可能となる。
【実施例5】
【0095】
第5の実施例について図18を用いて説明する。図18は本実施例に係る荷電粒子線装置で用いる計測用マークを示す模式図である。実施例1〜4において、図18に示すような微細なホールのアレイパターンを計測用のマークとして用いることで、ランディング角、像面湾曲収差、非点収差を高い計測精度で計測できる。その結果、他のマークを用いる場合と比較して、一次電子線の偏向に伴う寸法計測値変化をより低減できる。あるいは、より少ない画像取得枚数で同等の効果を得ることができる。
【0096】
微細ホールからなるマークを用いると、ホール底から放出された二次電子の大部分がホールの側壁に衝突して検出器119で検出されなくなるため、検出される信号はほぼ試料の上面からの信号のみとなり、ピラミッド試料など高さのある試料で課題であった、像面湾曲収差や非点収差の計測精度劣化は解消される。また、ホール底からの二次電子信号がほぼ検出されないために、ホール部とそれ以外の部分との間の信号コントラストが高くなり、S/Nが高いSEM画像が得られるという利点がある。また、ホールアレイパターンは等方的に多数のエッジが存在するため、2次元的なパターン移動量の検出や、画像の先鋭度の方向依存性の計測が必要となる非点収差計測に適している。
【0097】
さらにアレイ化することで、エッジの長さが長くなり、結果として、ランディング角計測のための位置ずれ計測と、像面湾曲収差、および非点収差計測のための、画像の先鋭度の両方の計測精度を向上できる。
【0098】
本実施例での使用に適したマークの寸法は、例えば、ホール深さ100nm程度、ホール直径50nm程度、ピッチ100nm程度、縦横5列の計25個程度のアレイである。
【0099】
本実施例により明らかなように、本発明を用いることで同一試料での、ランディング角、像面湾曲収差、非点収差の高精度計測が可能となり、同じ精度を得るために必要な画像撮影枚数を減らすことができ、計測、補正のスループットを向上できる。光学条件を高精度に補正することで、イメージシフト偏向に伴う測長値変化を低減して、広い偏向領域と高い計測再現性とを両立することが可能となる。
図1に示すSEM(荷電粒子線装置)と図18に示す計測用マークとを用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0100】
以上、本実施例によれば、イメージシフトの際、広い偏向領域と高い寸法計測再現性とを両立することが可能な荷電粒子線装置を提供することができる。また、計測用のマークとして微細なホールのアレイパターンを用いることにより、計測精度を更に向上することができる。
【実施例6】
【0101】
第6の実施例について、以下に説明する。この実施例では、実施例1〜5において、ランディング角、像面湾曲収差、非点収差の計測と共に、複数の異なる電子線偏向量において取得した画像から、一次電子線のビーム径を算出する。ビーム径は、画像の先鋭度を用いて算出すれば良い。微細ホールアレイはシリコン基板にドライエッチングを行うことで形成可能である。この時算出するビーム径は、像面湾曲補正や非点補正の有無に応じて求め方が異なる。例えば、像面湾曲や非点補正を行わない場合は焦点変化無しの画像からビーム径を求め、像面湾曲や非点補正を行う場合は最適焦点補正や最適非点補正でのビーム径をその近傍の画像から推測して求める。
【0102】
これにより、偏向色収差やコマ収差を定量的に計測できる。定期的にこの計測を行うことで、これらの収差の経時変化のモニタリングが可能となり、また、異なる装置に対して計測を行うことで、これらの収差の機差を把握が可能となり、検査で用いる各装置の機差を低減することが可能となる。また、寸法計測値に経時変化が発生した場合や、装置間の機差が発生した場合の原因追究に役立つ。
図1に示すSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0103】
以上、本実施例によれば、イメージシフトの際、広い偏向領域と高い寸法計測再現性とを両立することが可能な荷電粒子線装置を提供することができる。また、一次電子線のビーム径を求めることにより、偏向色収差やコマ収差を定量的に計測できる。さらに、複数の荷電粒子装置について、これら収差を定期的に計測することにより、機差を低減することが可能となる。
【実施例7】
【0104】
第6の実施例について図19を用いて説明する。なお、実施例1〜6のいずれかに記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。図19は本実施例に係る荷電粒子線装置で用いる計測用マークを示す模式図である。この実施例では、例えば図19に示したような、マークが試料表面上に格子状に配置された試料を用い、実施例2あるいは3におけるイメージシフト偏向量の計測点(図7に示す25点)を、マークの配置と同じように設定することで、ランディング角、像面湾曲収差、非点収差の計測と共に、複数の異なる電子線偏向量において取得した画像から歪収差を算出する。この時算出する歪収差は、像面湾曲補正や非点補正の有無に応じて求め方が異なる。例えば、像面湾曲や非点補正を行わない場合は焦点変化無しの画像から歪を求め、像面湾曲や非点補正を行う場合は最適焦点補正や最適非点補正での歪をその近傍の画像から推測して求める。以降、任意の電子線偏向量の画像を取得する際に、前記算出の歪収差基づいて光学条件を制御する。歪収差の計測、補正アルゴリズムは公知の方法を用いれば良い。
【0105】
これにより、ランディング角、像面湾曲収差、非点収差、歪収差の補正が可能となる。この方法では、ランディング角、像面湾曲収差、非点収差、歪収差を同じ画像を用いて計測、補正でき、それぞれ別々に計測、補正を行う場合に比べてスループットが向上できる。
図1に示すSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0106】
以上、本実施例によれば、イメージシフトの際、広い偏向領域と高い寸法計測再現性とを両立することが可能な荷電粒子線装置を提供することができる。また、格子状に配置されたマークの一つ一つを格子状のマークとすることにより、ランディング角、像面湾曲収差、非点収差、歪収差を同じ画像を用いて計測、補正できる。これにより、個別の計測、補正に比し、高スループット計測が可能となる。
【実施例8】
【0107】
第8の実施例について図20を用いて説明する。この実施例では、定期的に、実施例1〜7のいずれかを行う。表示装置122に、図20に示したようなダイアログを表示し、定期的に実施例1〜7の補正を実施するかどうかを装置操作者に選択させる。この際、実施の頻度などを指定できるようにしても良い。あるいは、図20のようなダイアログは表示させず、自動で、あらかじめ設定された頻度で定期的に実施例1〜7のいずれかを実施しても良い。
【0108】
これにより、装置操作者に負担をかけず、イメージシフト偏向に伴う測長値変化を低減することができ、広い偏向領域と高い計測再現性とが両立する状態を維持することが可能となる。
図1に示すSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0109】
以上、本実施例によれば、イメージシフトの際、広い偏向領域と高い寸法計測再現性とを両立することが可能な荷電粒子線装置を提供することができる。また、自動で定期的にランディング角や各種収差の計測、補正を行うことにより測長値変化を簡便に低減することができる。
【実施例9】
【0110】
第9の実施例について図21〜図23を用いて説明する。図21は、実施例1〜8にて用いる補正係数A、B、C、D(図5)を校正する実施例のフローチャートである。複数の異なる電子線偏向量において、試料上の立体形状が既知であるマークの画像を取得し、取得した画像における形状パターンから一次電子線のランディング角を算出し、電子線偏向量と算出したランディング角との関係から算出した係数を、記録装置120のランディング角補正係数保存領域128に登録する。具体的には、図22に示すようなピラミッドマークをリファレンスとして用いて、ランディング角計測を行う。もちろん、ピラミッドマークに限らず、既知の立体構造を持つマークであれば一般に使用可能である。以下、フローチャートに従って説明する。
【0111】
ステップS2101では、制御信号生成部123によって各制御部に対して制御信号を送り、校正を行う撮像条件(加速電圧、光学モードなど)に設定する。複数の撮像条件での校正を行う場合は、ステップS2101からS2108を繰り返す。
【0112】
ステップS2102では、各イメージシフト偏向量において、実施例2にて説明した軸調整を行い、イメージシフト連動アライメント制御量保存領域131に保存された補正テーブル(図10)を登録して、イメージシフト偏向を使用しても、軸ずれが発生しないようにする。
【0113】
ステップS2103では、ステップS202と同様に、イメージシフト偏向器制御部114を用いてイメージシフト偏向器104にかかる電流値、あるいは電圧値を制御し、所定のイメージシフト偏向量となるように設定する。このときのX方向、Y方向の偏向量をそれぞれx、yとする。この実施例では、図7に示すような25点のイメージシフト偏向量について、順々に計測を行うが、計測点数は、加減しても良い。
【0114】
ステップS2104では、ピラミッドマークの画像を取得し、メモリ125に保存する。なお、ステップS2103で設定したイメージシフト偏向量においてSEM画像を取得した際にちょうどピラミッドマークが画像内に位置するよう、試料上のピラミッドマークの配置と、設定するイメージシフト偏向量を対応させることで、ステージ108を移動させてピラミッドマークの位置を一次電子線照射位置に合わせる必要がなく、簡便に作業を行える。
【0115】
ステップS2105では、ステップS2104でメモリ125に保存した画像を用いて、演算部124によりランディング角θX、θYを求め、メモリ125に記録する。この際には、公知のアルゴリズムを用いれば良い。ここで求めたランディング角は、軸調整軌道のランディング角となる。
【0116】
ステップS2106では、ステップS606と同様に、全てのイメージシフト偏向量25点について計測を完了したかを判定し、完了していない場合は、ステップS2103に戻って次のイメージシフト偏向量での計測を行う。完了している場合には、次のステップS2107に進む。
【0117】
ステップS2107では、ステップS2105にてメモリ125に記録したランディング角θX、θYのイメージシフト偏向量依存性に対し、演算部124により、下記のようなイメージシフト偏向量x、yの1次関数でフィッティングを行う。
【0118】
【数9】

【0119】
【数10】

【0120】
ここで、α、β、γ、δはフィッティングによって求まるフィッティングパラメータである。
【0121】
ステップS2108では、求めたフィッティングα、β、γ、δを、それぞれ新しい補正係数A、B、C、D(図5)とし、演算部124を用いてランディング角補正係数保存領域128に保存する。
【0122】
ステップS2109では、演算部124により、校正の必要な撮像条件(加速電圧、光学モードなど)について、全て完了したかを判定し、完了していない場合は、ステップS2101に戻って次の撮像条件について校正を行う。
【0123】
以上のフローチャートを実施することで、補正係数A、B、C、Dを校正でき、実施例1〜8におけるランディング角計測の精度を確保することができる。
【0124】
なお、図23のような、微細ホールアレイマークとピラミッドマークとが同一試料内に存在するような試料を用いると、本実施例による補正係数の校正と、実施例1〜8によるランディング角の計測、補正とを同一試料を用いて連続して実施することが可能となり、試料交換の手間が省け、作業が簡便となる。微細ホールアレイはシリコン基板にドライエッチングを行うことで形成可能であり、一方、ピラミッドマークはシリコン基板に異方性エッチングを用いて形成可能であるため、この2つのマークの組み合わせは同一基板に形成するうえで有効な組み合わせとなる。
本実施例に係るSEM(荷電粒子線装置)を用い、イメージシフトで半導体基板上のライン寸法を測定したところ、良好な結果が得られた。
【0125】
以上、本実施例によれば、イメージシフトの際、広い偏向領域と高い寸法計測再現性とを両立することが可能な荷電粒子線装置を提供することができる。また、補正係数A、B、C、D(図5)を校正することにより更に高精度の計測を行なうことができる。更に、ランディング角や各種収差用マークと補正係数校正用マークを同一試料内に設けることにより、ランディング角や各種収差の計測、補正と、補正係数の校正を簡便に行なうことができる。
【0126】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【符号の説明】
【0127】
101----電子源(電子銃)、102----非点補正器、103----アライメント偏向器、104----イメージシフト偏向器、105----走査偏向器、106----対物レンズ、107----試料、108----ステージ、109----一次電子線、110----二次電子線、111----電子銃制御部、112----非点補正器制御部、113----アライメント偏向器制御部、114----イメージシフト偏向器制御部、115----走査偏向器制御部、116----対物レンズ制御部、117----リターディング電圧制御部、119----検出器、120----記録装置、121----装置全体の制御演算装置、122----表示装置、123----制御信号生成部、124----データ処理演算部、125----メモリ、126----表示データ生成部、127----イメージシフト制御量保存領域、128----ランディング角補正係数保存領域、129----焦点非点変化係数保存領域、130----ランディング角変化係数保存領域、131----イメージシフト連動アライメント制御量保存領域、132----イメージシフト連動焦点非点制御量保存領域、133----寸法補正値保存領域。

【特許請求の範囲】
【請求項1】
荷電粒子源と、前記荷電粒子源から発せられた荷電粒子線を偏向する偏向手段と、前記荷電粒子線の焦点位置を変更する焦点位置変更手段と、前記荷電粒子線が照射された試料からの電気信号を検出する検出器と、前記荷電粒子源、前記偏向手段、前記焦点位置変更手段を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部と、撮像条件ごとに登録された補正係数を保存する記録部を有する荷電粒子線装置において、
前記制御演算部は、
前記偏向手段により前記荷電粒子線を所定の量だけ偏向させ、前記試料上の同じマークの画像を、前記焦点位置変更手段により焦点位置を変えて複数枚数取得し、
取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて、前記荷電粒子線を前記所定の量だけ偏向させて計測用画像を取得する際に、前記荷電粒子線のランディング角が所望の値なるように光学条件を制御することを特徴とする荷電粒子線装置。
【請求項2】
請求項1に記載の電子線装置において、
前記制御演算部は、
前記偏向手段により前記荷電粒子線を異なる複数の量だけ偏向し、それぞれの偏向量に対して前記試料上の同じマークの画像を、焦点位置を変えて複数枚数取得し、
取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて、前記荷電粒子線を任意の量だけ偏向させて計測用画像を取得する際に、前記荷電粒子線のランディング角が所望の値となるように光学条件を制御することを特徴とする荷電粒子線装置。
【請求項3】
請求項2に記載の荷電粒子線装置において、
前記制御演算部は、
取得した複数の前記マークの画像から歪収差を算出し、前記荷電粒子線を任意の量だけ偏向させて計測用画像を取得する際に、算出した前記歪収差基づいて更に前記光学条件を制御することを特徴とする荷電粒子線装置。
【請求項4】
請求項2に記載の荷電粒子線装置において、
前記制御手段は、
取得した複数の前記マークの画像から、前記荷電粒子線のビーム径を算出することを特徴とする荷電粒子線装置。
【請求項5】
請求項1記載の荷電粒子線装置において、
更に、荷電粒子線の非点収差を補正する非点補正器を備え、
前記制御演算部は、前記非点補正器を制御すると共に、
取得した前記マークの画像におけるマークの位置ずれ量と、前記記録部に登録された補正係数、および、取得した複数枚の前記マークの画像から算出した、像面湾曲収差、あるいは、非点収差、あるいはその両方に基づいて、前記光学条件を制御する荷電粒子線装置。
【請求項6】
請求項5に記載の荷電粒子線装置において、
前記制御演算部は、
前記偏向手段により前記荷電粒子線を異なる複数の量だけ偏向し、それぞれの偏向量に対して前記試料上の同じマークの画像を、焦点位置を変えて複数枚数取得し、
取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数、および、取得した複数枚の前記マークの画像から算出した、像面湾曲収差、あるいは、非点収差、あるいはその両方に基づいて、前記荷電粒子線を任意の量だけ偏向させて計測用画像を取得する際に、前記光学条件を制御することを特徴とする荷電粒子線装置。
【請求項7】
請求項6に記載の荷電粒子線装置において、
前記制御演算部は、
取得した複数の前記マークの画像から歪収差を算出し、前記荷電粒子線を任意の量だけ偏向させて計測用画像を取得する際に、算出した前記歪収差もとづいて更に前記光学条件を制御することを特徴とする荷電粒子線装置。
【請求項8】
請求項1に記載の荷電粒子線装置において、
前記取得した前記画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて光学条件を制御するとは、
前記取得した前記マークの画像における前記マークの位置ずれ量と、焦点位置との関係から求めた係数に対し、前記記録部に登録された補正係数を用いて補正を行って補正値を算出し、前記補正値に基づいて前記光学条件を制御することであることを特徴とする荷電粒子線装置。
【請求項9】
請求項8に記載の荷電粒子線装置において、
前記補正値は、前記荷電粒子線のランディング角であることを特徴とする荷電粒子線装置。
【請求項10】
請求項1に記載の荷電粒子線装置において、
前記焦点位置変更手段は、前記試料を乗せるステージへの電圧印加手段であることを特徴とする荷電粒子線装置。
【請求項11】
請求項1に記載の荷電粒子線装置において、
前記試料上の同じマークは、複数のホールパターンからなるマークであることを特徴とする荷電粒子線装置。
【請求項12】
荷電粒子源と、前記荷電粒子源から発せられた荷電粒子線を偏向する偏向手段と、前記荷電粒子線の焦点位置を変更する焦点位置変更手段と、前記荷電粒子線が照射された試料からの電気信号を検出する検出器と、前記荷電粒子源、前記偏向手段、前記焦点位置変更手段を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部と、撮像条件ごとに登録された補正係数を保存する記録部を有する荷電粒子線装置において、
前記制御演算部は、
前記偏向手段により前記荷電粒子線を所定の量だけ偏向させ、前記試料上の同じマークの画像を前記焦点位置変更手段により焦点位置を変えて複数枚数取得し、
前記荷電粒子線を前記所定の量だけ偏向させて前記試料上に形成された微細パターンの画像を取得して前記微細パターンの画像に基づいて前記微細パターンの寸法を計測し、
取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて、前記微細パターンの計測値を補正することを特徴とする荷電粒子線装置。
【請求項13】
請求項12に記載の荷電粒子線装置において、
前記取得した前記マークの画像における前記マークの位置ずれ量と、前記記録部に登録された補正係数に基づいて補正するとは、
前記取得した前記マークの画像における前記マークの位置ずれ量と、焦点位置との関係から求めた係数に対し、前記記録部に登録された補正係数を用いて補正を行って補正値を算出し、前記補正値に基づいて補正することであることを特徴とする荷電粒子線装置。
【請求項14】
荷電粒子源と、前記荷電粒子源から発せられた一次荷電粒子線を偏向する偏向手段と、前記荷電粒子源から発せられた荷電粒子線の焦点位置を変更する焦点位置変更手段と、前記一次荷電粒子線が照射された試料からの電気信号を検出する検出器と、前記荷電粒子源、前記偏向手段、前記焦点位置変更手段を制御すると共に前記検出器により検出された電気信号により画像用データを作成する制御演算部と、撮像条件ごとに登録された補正係数を保存する記録部を有する荷電粒子線装置において、
前記制御演算部は、
前記偏向手段により前記一次荷電粒子線を異なる複数の量だけ偏向し、
前記試料上の立体形状が既知であるマークの画像を取得し、
取得した前記マークの画像における形状パターンから前記一次荷電粒子線のランディング角を算出し、
前記一次荷電粒子線の偏向量と、算出した前記ランディング角との関係から算出した係数を、前記記録部に登録することを特徴とする荷電粒子線装置。
【請求項15】
請求項14に記載の荷電粒子線装置において、
前記試料は、前記立体形状が既知であるマークと複数のホールパターンとをマークとして有することを特徴とする荷電粒子線装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2012−234754(P2012−234754A)
【公開日】平成24年11月29日(2012.11.29)
【国際特許分類】
【出願番号】特願2011−103949(P2011−103949)
【出願日】平成23年5月9日(2011.5.9)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】