説明

配線基板およびプローブカード

【課題】 表面配線を小さくしても表面配線と表面ビア導体とを確実に接続することができ、浮遊容量を小さくすることで、より高速な素子の検査や、高速の検査ができる高信頼性の配線基板を提供する。
【解決手段】 セラミックスから成る複数の絶縁層1aが積層された絶縁基体1と、絶縁基体1の下面に形成された外部電極2と、外部電極2に接続されて絶縁基体1の上面に導出された、ビア導体を含む内部配線3とを有し、内部配線3のうち最上層の絶縁層1aを貫通して上端面が絶縁基体1の上面に露出した表面ビア導体3aが上面視で配線基板4の中心からの放射線の方向に沿った形状である配線基板である。表面ビア導体3aが位置ずれしても位置ずれ方向と反対方向に延在する部分が存在するので、表面配線5の大きさを小さくしても表面ビア導体3aと確実に接続でき、表面配線5の浮遊容量を低下させることができる配線基板となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プローブカードに用いられる配線基板およびその配線基板を用いたプローブカードに関する。
【背景技術】
【0002】
近年、電子機器の小型化・高密度化に伴い、電子機器に使用される半導体素子のみならず、その半導体素子が搭載されるパッケージや配線基板、あるいは半導体素子の電気的な検査をするためのプローブカードに対しても、配線の微細化および高密度化が要求されている。また、半導体素子の高速化に伴って高周波信号の伝送が可能であることも求められており、プローブカードに対しては平坦性に優れていることも求められている。
【0003】
このような要求に応えるものとして、微細なパターン加工が可能であり、平坦性および高周波特性に優れた基板として、研磨加工により平坦化したセラミック基板上に薄膜導体を形成した配線基板がある。この薄膜導体の上にプローブピンを形成することでプローブカードとなる。配線基板の上の表面配線の上に、さらに絶縁樹脂層と薄膜配線層とを積層して樹脂配線層を形成することによって、より緻密な配線を形成してプローブピンの間隔を小さくする場合もある。図12(a)は、従来の薄膜導体を形成した配線基板の一例を示す上面図であり、図12(b)はそのA−A線における断面図である。従来の配線基板14は、セラミックから成る複数の絶縁層11aと内部配線13および外部電極12とから成る配線基板14の上面の、表面ビア導体13aが露出した部分の上に薄膜で表面配線15を形成することによって作製されていた。
【0004】
このとき、配線基板14はその作製工程である焼成時に、焼結収縮ばらつきによる寸法ばらつきが発生することから、研磨加工により平坦化した配線基板14上に露出する表面ビア導体13aの位置も同様にばらつきがあるものであった。そのため、配線基板14の表面ビア導体13aと接続する表面配線15を形成する場合は、配線基板14の収縮ばらつきを考慮して、その大きさを大きくする必要があった。例えば、寸法ばらつきがない場合であれば配線基板14の表面ビア導体13aの露出する部分の径が100μmである場合には、表面配線15を
形成する際の位置合わせのずれが±50μmであるとすると、表面配線15の直径を200μm
にすれば、表面ビア導体13aの露出する部分のすべてが表面配線15と接続される。これに対して、配線基板14の寸法ばらつきが±0.2%程度発生する場合には、配線基板14の中央
部に、表面ビア導体3aが縦横に配置され、最外周に位置する表面ビア導体13aの中心を結ぶと200mm角の正方形となる場合であれば、配線基板14の中心から最も離れた角部に
位置する表面ビア導体13aでは、配線基板14の中心を基準とした位置ずれが±280μm程
度発生する可能性がある。これに表面配線15を形成する際の位置合わせにおけるずれである±50μmを考慮すると、表面ビア導体13aの露出する部分の径が同じく100μmである
場合には、表面配線15の直径を760μm程度と大きくすることが必要となる。
【0005】
また、表面配線を、表面ビア導体に接続する接続パッドとプローブピンとなる導体バンプが接続される部分とその間の引き出し線とで形成して、接続パッドを配線基板の中心から離れるに伴って段階的に大きくするようにしたり、さらに接続パッドの形状を配線基板の中心からの放射線の方向に長軸を有する楕円状としたりした配線基板がある(例えば、特許文献1〜3を参照。)。セラミック配線基板の中心からの放射線の方向が表面ビア導体の位置ずれの方向であり、この方向に長軸を有する楕円状の接続パッドとする、つまり位置ずれの方向に接続パッドを大きくするというものである。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−289657号公報
【特許文献2】特開2002−350466号公報
【特許文献3】特開2002−373924号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、配線基板14の表面の表面配線15が大きくなると、表面配線15と配線基板14の内部配線13および樹脂配線層の内部の薄膜配線との間に浮遊容量が発生しやすくなる。浮遊容量が大きいと、配線基板に流れる信号の立ち上がりが悪くなるために信号の高速伝送ができず、検査の高速化が妨げられることとなる。また、これによって、高速の信号で動作する素子の検査をすることができない場合がある。そして、半導体ウエハの大きさはより大きくなる傾向があり、ウエハの大きさに合わせてプローブカードも大きくして、プローブカード用の配線基板を大型にすると、配線基板14の収縮ばらつきによる影響が大きくなるので、上記のような問題はより顕著となる。
【0008】
本発明は上記課題を解決するためになされたものであり、その目的は、表面配線を小さくしても表面配線と表面ビア導体とを確実に接続することのできる配線基板、および表面配線を小さくすることで浮遊容量の小さいプローブカード用の配線基板、ならびにより高速な素子の検査や、高速に検査のできるプローブカードを提供することにある。
【課題を解決するための手段】
【0009】
本発明の配線基板は、セラミックスから成る複数の絶縁層が積層された絶縁基体と、該絶縁基体の下面に形成された外部電極と、該外部電極に接続されて前記絶縁基体の上面に導出された、ビア導体を含む内部配線とを有する配線基板であって、前記内部配線のうち最上層の前記絶縁層を貫通して上端面が前記絶縁基体の上面に露出した表面ビア導体は、上面視で前記配線基板の中心からの放射線の方向に沿った形状であることを特徴とするものである。
【0010】
また、本発明の配線基板は、上記構成において、前記絶縁基体の上面において、薄膜から成る表面配線が前記表面ビア導体に接続されていることを特徴とするものである。
【0011】
また、本発明の配線基板は、上記構成において、前記表面ビア導体が前記放射線に沿って前記放射線を挟んで交互に配列されており、前記表面配線が前記放射線上に突出した突出部を有する形状である部分を有することを特徴とするものである。
【0012】
また、本発明のプローブカードは、上記構成の本発明の配線基板と、前記配線基板の上面の前記表面配線に接続されたプローブピンとを具備することを特徴とするものである。
【発明の効果】
【0013】
本発明の配線基板によれば、表面ビア導体が上面視で配線基板の中心からの放射線の方向に沿った形状であることから、表面ビア導体の形状は、通常の円形の表面ビア導体と比較して、表面ビア導体が配線基板の外側に位置ずれした場合には内側方向に延在する部分が存在し、表面ビア導体が配線基板の内側に位置ずれした場合には外側方向に延在する部分が存在する形状となるので、表面配線の大きさを小さくしても表面配線と表面ビア導体とを確実に接続でき、表面配線の浮遊容量を小さくすることができる配線基板となる。
【0014】
また、本発明の配線基板によれば、上記構成において、絶縁基体の上面において、薄膜から成る表面配線が表面ビア導体に接続されていることから、小型の表面配線とすることで、表面配線の浮遊容量が小さく、高速に信号を伝送することができる配線基板となる。
【0015】
また、本発明の配線基板によれば、上記構成において、表面ビア導体が放射線に沿って放射線を挟んで交互に配列されており、表面配線が放射線上に突出した突出部を有する形状である部分を有することから、表面配線の間隔を小さいものにすることができるので、表面配線の配線密度が高い配線基板となる。
【0016】
また、本発明のプローブカードは、上記構成の本発明の配線基板と、配線基板の上面の表面配線に接続されたプローブピンとを具備することから、表面配線の浮遊容量が小さいことから、高速の検査が可能な、あるいはより高速の信号で動作する素子の検査をすることが可能なプローブカードとなる。
【図面の簡単な説明】
【0017】
【図1】(a)は本発明の配線基板の実施の形態の一例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図2】(a)〜(e)は、それぞれ本発明の配線基板の表面ビア導体の一例を示す上面図である。
【図3】(a)は本発明の配線基板の実施の形態の他の例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図4】(a)は本発明の配線基板の実施の形態の他の例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図5】(a)は本発明の配線基板の実施の形態の他の例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図6】(a)は本発明の配線基板の実施の形態の他の例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図7】(a)は本発明のプローブカードの実施の形態の他の一例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図8】(a)は本発明の配線基板の実施の形態の他の例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図9】(a)は従来の配線基板の要部を拡大して示す上面図であり、(b)は本発明の配線基板の実施の形態の他の例の要部を拡大して示す上面図である。
【図10】(a)は本発明の配線基板の実施の形態の他の例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【図11】(a)は本発明の配線基板の実施の形態の他の例の要部を、(b)は図10(a)のB部をそれぞれ拡大して示す上面図である。
【図12】(a)は従来の配線基板の他の一例を示す上面図であり、(b)は(a)のA−A線における断面図である。
【発明を実施するための形態】
【0018】
本発明の配線基板ならびにそれを用いたプローブカードについて、添付の図面を参照しつつ詳細に説明する。図1〜図11において、1は絶縁基体、1aは絶縁層、2は外部電極、3は内部配線、3aは表面ビア導体、4は配線基板、5は表面配線、5aは表面配線5の突出部、6は樹脂絶縁層、7は微細配線、8はプローブピンである。
【0019】
図1に示す例では、配線基板4の上面に露出した表面ビア導体3aは縦横に7つ並んでおり、配線基板4の絶縁層1aは3層と簡略化した例を示している。また、図4に示す例は、図1に示す配線基板4の上面の表面ビア導体3aと接続するように表面配線5を薄膜で形成した例を示している。プローブカードで検査するウエハ上の半導体素子の数および半導体素子の端子の数、およびそれらの配置に応じて、表面配線5,表面ビア導体3aを含む内部配線3,外部電極2および絶縁層1aの大きさや配置が設定される。
【0020】
本発明の配線基板は、図1および図3に示す例のように、セラミックスから成る複数の絶縁層1aが積層された絶縁基体1と、絶縁基体1の下面に形成された外部電極2と、外部電極2に接続されて絶縁基体1の上面に導出された、ビア導体を含む内部配線3とを有する配線基板であって、内部配線3のうち最上層の絶縁層1aを貫通して上端面が絶縁基体1の上面に露出した表面ビア導体3aが上面視で配線基板4の中心からの放射線の方向に沿った形状であることを特徴とするものである。このような構成としたから、表面ビア導体3aの形状は、通常の円形の表面ビア導体と比較して、表面ビア導体3aが配線基板4の外側に位置ずれした場合には内側方向に延在する部分が存在し、表面ビア導体3aが配線基板4の内側に位置ずれした場合には外側方向に延在する部分が存在する形状となるので、表面配線5の大きさを小さくしても表面配線5と表面ビア導体3aとを確実に接続でき、表面配線5の浮遊容量を小さくすることができる配線基板となる。
【0021】
また、本発明の配線基板は、図4〜図6に示す例のように、上記構成において、絶縁基体1の上面において、薄膜から成る表面配線5が表面ビア導体3aに接続されていることから、小型の表面配線5とすることで、表面配線5の浮遊容量が小さく、高速に信号を伝送することができる配線基板となる。
【0022】
配線基板4は、絶縁基体1と、その表面に形成された外部電極2および内部に形成された表面ビア導体3aを含む内部配線3とを有する。絶縁基体1を図1に示す例のように複数のセラミックスから成る絶縁層1aで構成して内部配線3を展開することで、配線基板4の下面の外部電極2の間隔を大きくすることができる。
【0023】
配線基板4の下面の外部電極2は、配線基板4を外部回路に接続するためのものである。内部配線3は、配線基板4の下面の外部電極2と上面の表面配線5等とを電気的に接続するためのものであり、絶縁層1a・1a間の内部配線層と、絶縁層1aを貫通して内部配線層間および内部配線層と外部電極2とを接続する内部ビア導体や内部配線層と表面配線5とを接続する表面ビア導体3aといったビア導体がある。
【0024】
絶縁基体1の絶縁層1aは、酸化アルミニウム(アルミナ:Al)質焼結体,窒化アルミニウム(AlN)質焼結体,炭化珪素(SiC)質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックスから成るものである。プローブカードに用いる場合は、熱膨張係数がウエハを形成するシリコン(Si)に近い、酸化アルミニウム(Al)質焼結体、ムライト質(3Al・2SiO)焼結体またはガラスセラミックスが好ましい。絶縁層1aがこのようなセラミックスから成るものであると、配線基板4上にプローブピンを形成する際に、プローブピンやプローブピンの接合部に加わる、プローブピンとともに接合されるウエハと配線基板4(絶縁基体1)との熱膨張差による熱応力が比較的小さなものとなるので好ましい。また、プローブカードとして用いた場合に、半導体素子の電気特性の測定時における熱負荷に対する熱変形を有効に防止できる。
【0025】
配線基板4の表面ビア導体3aを含む内部配線3および外部電極2は、絶縁層1aと同時焼成により形成される、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn)合金,銀(Ag),銅(Cu),金(Au),銀−パラジウム(Pd)合金等の金属を主成分とするメタライズから成るものである。
【0026】
このような配線基板4は、例えば、絶縁層1aが酸化アルミニウム質焼結体で形成される場合には、以下の方法により製作される。まず、酸化アルミニウム,酸化珪素,酸化マグネシウムおよび酸化カルシウムの原材料粉末に適当な有機バインダおよび溶媒を添加混合して泥漿状となすとともに、これをドクターブレード法等によってシート状に成形し、絶縁層1aとなる複数のセラミックグリーンシートを作製する。
【0027】
次に、セラミックグリーンシートのビア導体が形成される所定位置に金型等を用いた打ち抜き加工やレーザ加工によって貫通孔を形成するとともに、貫通孔に導体ペーストを充填する。また、スクリーン印刷法等によってセラミックグリーンシートの所定位置に内部配線層あるいは外部電極2となる導体ペースト層を10〜20μmの厚みに形成する。導体ペーストは、タングステン,モリブデン,モリブデン−マンガン合金等の融点の高い金属粉末と適当な樹脂バインダおよび溶剤とを混練することにより作製される。レーザ加工によって貫通孔を形成する場合は、金型による加工のように耐久性を考慮した形状とする必要が無く、用途に応じて最適の形状を決定することができるので好ましい。
【0028】
最後に、これらセラミックグリーンシートを重ね合わせて圧着して積層体を作製し、この積層体を1500℃〜1600℃程度の高温で焼成することによって配線基板4が作製される。
【0029】
絶縁層1aがガラスセラミックスから成る場合であれば、セラミックグリーンシートが焼結する温度では焼結収縮しない、アルミナ等を主成分とする拘束グリーンシートを積層体の両面に積層して焼成すると、拘束グリーンシートによりセラミックグリーンシートの積層面方向の焼結収縮が抑えられて収縮ばらつきの小さい配線基板4が得られる。これによって、表面ビア導体3aの位置ばらつきを小さいものとなるので、表面配線5をより小型化でき、また高密度に形成できるので好ましい。
【0030】
表面ビア導体3aは、上面視で配線基板4の中心からの放射線の方向に沿った形状であることが重要である。放射線の方向に沿った形状とは、放射線の方向の長さが、放射線の方向に対して垂直な方向の長さ(幅)よりも大きい形状であり、例えば、図2(a)〜図2(e)に示すようなものである。図2(a)〜図2(e)の各図における2点鎖線は、配線基板4の中心からの放射線を示している。表面ビア導体3aの形状は、図2(a)に示す例では、長径方向が配線基板4の中心からの放射線の方向に沿っている楕円形であり、図2(b)に示す例では、4つの円形をずらして放射線上に配置した形状であり、図2(c)に示す例では、2つの半円が半円の直径の幅の方形(図2(c)では長方形)で接続された長円形であり、図2(d)に示す例では、角が丸められた(角にRを形成した)長方形であり、図2(e)に示す例では、長方形である。同じ幅の表面ビア導体3aであれば、図2(a)に示す楕円よりも図2(b)〜図2(e)に示す形状の方が表面ビア導体3aの横断面積が大きく電気抵抗が小さくなるとともに、表面配線5が表面ビア導体3aの端部に接続された場合に、接続面積が大きく接続部の電気抵抗が小さくなるので好ましい。図2(e)に示す長方形の場合が最も横断面積が大きくなり電気抵抗が最も小さくなるが、セラミックグリーンシートに貫通孔を形成した際に角部を起点としてクラックが入る場合があり、また角部がない方が貫通孔への導体ペーストの充填性がよいので、図2(c)や図2(d)のように角部を丸めた形状の方が好ましい。本発明の配線基板の表面ビア導体3aは通常の表面ビア導体より大きくなるので、セラミックグリーンシートの貫通孔に充填される導体ペーストの量が多く、その重みで貫通孔から抜け落ちてしまう場合があるが、図2(b)に示す例のような形状の場合は、図2(c)〜図2(e)に示す例に比較すると、導体ペーストとセラミックグリーンシートとが接触する面積が大きいので、導体ペーストが抜け落ちてしまうことが抑えられるので好ましい。
【0031】
なお、表面ビア導体13aの位置ずれは配線基板4の中心からの距離に比例して大きくなるので、図3に示す例のように、表面ビア導体3aの放射線の方向に沿った長さは、上面視で配線基板4の中心からの距離に比例して大きくなるようにすると、配線基板4の中心に近い側の表面ビア導体13aを小さくすることができるので、表面ビア導体13aおよび表面配線5をより高密度に形成できるので好ましい。
【0032】
配線基板4の上面の表面配線5は、上記のようにして配線基板4を作製して、その上面を研磨するなどして平坦にした後に、蒸着法,スパッタリング法,イオンプレーティング
法等の薄膜形成法によって形成する。下面の外部電極2も同様に、薄膜形成法によって形成してもよい。具体的には、配線基板4の上面の全面に、0.1μm〜3μm程度の厚みの
、例えばクロム(Cr)−Cu合金層やチタン(Ti)−Cu合金層から成る下地導体層を形成し、その上に接続配線6のパターン形状の開口を有するレジスト膜を形成して、このレジスト膜をマスクとしてめっき等で銅や金等の金属から成る、2μm〜10μm程度の厚みの主導体層を形成する。そして、レジスト膜を剥離除去し、下地導体層の露出した部分をエッチングにより除去することで表面配線5が形成される。その表面には、さらに、めっき法によりニッケルや金のめっき層を形成するとよい。
【0033】
表面ビア導体3aの位置ずれは配線基板4の中心からの放射線に沿った方向に発生するので、位置ずれを吸収するために表面配線5を大きくするのは、この方向だけにしてもよい。図4に示す例のように表面配線5を円形とするのではなく、図5に示す例のように、表面配線5を表面ビア導体3aと同様に上面視で配線基板の中心からの放射線の方向に沿った形状とした場合には、表面配線5を円形で形成した場合に比べて、表面配線5の面積をより小さくすることができ、浮遊容量をより小さくすることができるので好ましい。この場合の表面配線5の幅は、表面配線5を形成するときに発生する位置ずれを考慮して、表面ビア導体3aの幅より大きくしておくとよい。
【0034】
また、表面ビア導体3aの位置ずれは配線基板4の中心からの距離に比例して大きくなるので、図6に示す例のように、表面ビア導体3aおよび表面配線5の放射線の方向に沿った長さは、上面視で配線基板4の中心からの距離に比例して大きくなるようにしてもよい。このようにすると、図5に示す例のように、全ての表面ビア導体3aおよび表面配線5の長さを最大の長さに合わせて同一にした場合に比較して、表面配線5のピッチ(中心間の距離)を小さくすることができるので、より高密度に表面配線5を形成できるので好ましい。
【0035】
図8に示す例は、上述したような配線基板4の上面にさらに樹脂絶縁層6と微細配線7とから成る樹脂配線層を形成したものであり、例えば、配線基板4の上に従来のビルドアップ方式により樹脂絶縁層6および微細配線7を形成した例である。このような樹脂配線層を形成することによって、配線の間隔をより小さくすることができ、樹脂配線層の最上面の微細配線7にプローブピン8接続することによって、プローブピン8の間隔が小さく、より微細な半導体素子の検査をすることのできるプローブカードとすることができる。
【0036】
図8に示す例のように、配線基板4の上の樹脂配線層は、樹脂絶縁層6と微細配線7の微細配線層とが交互に積層され、上下の微細配線層間および微細配線層と配線基板4の上面の表面配線5とが樹脂絶縁層6を貫通する微細ビア導体で接続されて形成されている。図8に示す例では、絶縁樹脂層6は2層であるが、プローブカードで検査するウエハ上の半導体素子の数および半導体素子の端子の数、およびそれらの配置に応じて設定される。
【0037】
樹脂配線層の樹脂絶縁層6は、ポリイミド樹脂,ポリフェニレンサルファイド樹脂,全芳香族ポリエステル樹脂,BCB(ベンゾシクロブテン)樹脂,エポキシ樹脂,ビスマレイミドトリアジン樹脂,ポリフェニレンエーテル樹脂,ポリキノリン樹脂あるいはフッ素樹脂等の絶縁性の樹脂から成るものである。
【0038】
樹脂配線層の樹脂絶縁層6が、例えば、ポリイミド樹脂からなる場合には、ワニス状のポリイミド前駆体を配線基板4の上面にスピンコート法,ダイコート法,カーテンコート法あるいは印刷法等の塗布法により塗布し、しかる後、400℃程度の熱で硬化させてポリ
イミド化させることによって、10μm〜50μm程度の厚みに形成する。あるいは、上記樹脂から成る10μm〜50μm程度のフィルムの下面に、シロキサン変性ポリアミドイミド樹脂,シロキサン変性ポリイミド樹脂,ポリイミド樹脂,ビスマレイミドトリアジン樹脂あ
るいはエポキシ樹脂等の樹脂接着剤を乾燥厚みで5μm〜20μm程度にドクターブレード法等の塗布法にて塗布して乾燥させることで接着剤層を形成し、これを配線基板4の上に重ねて加熱プレスすることで形成する。
【0039】
微細配線7の微細配線層の形成は、まず、蒸着法,スパッタリング法あるいはイオンプレーティング法等の薄膜形成法により、樹脂絶縁層6の主面の全面に、0.1μm〜3μm
程度の厚みの、例えばクロム(Cr)−Cu合金層やチタン(Ti)−Cu合金層から成る下地導体層を形成する。次に、下地導体層の上に微細配線層のパターン形状の開口を有するレジスト膜を形成して、このレジスト膜をマスクとしてめっき等で銅や金等の電気抵抗の小さい金属から成る、2μm〜10μm程度の厚みの主導体層を形成する。そして、レジスト膜を剥離除去し、下地導体層の露出した部分をエッチングにより除去することで、微細配線層が形成される。または、RIE(Reactive Ion Etching:反応性イオンエッチング)等を用いて形成した微細配線層の形状の凹部を充填して微細配線層を形成することによって、微細配線層が樹脂絶縁層6に埋め込まれた形にしてもよい。最上層の樹脂絶縁層6の上の微細配線層はプローブピン8が接続されるので、めっき法によりニッケルや金のめっき層を形成するとよい。
【0040】
次に、微細配線層が形成された樹脂絶縁層6の上に、さらに樹脂絶縁層6を形成する。樹脂絶縁層6を形成する方法は、上述したワニス状の樹脂を塗布する方法、または樹脂フィルムに接着剤層を形成して加熱プレスする方法のどちらを用いてもよい。いずれの方法においても、樹脂絶縁層6にビア導体を含む樹脂配線層7を形成して上記工程を必要な樹脂絶縁層6の数だけ繰り返すことで、複数の樹脂絶縁層6が形成される。フィルムの樹脂を用いる方法は、複数のフィルムを一括してプレスすることが可能であり、1層毎に塗布および硬化を行なう必要がないので、製造工程を短くすることができる。
【0041】
樹脂絶縁層6には、樹脂絶縁層6を貫通する微細ビア導体が形成されるので、この部分には例えば、直径20μm〜100μmの貫通孔が形成される。この貫通孔の形成方法は、樹
脂絶縁層6に開口を有するレジスト膜を形成するとともにこのレジスト膜の開口に位置する樹脂絶縁層6をエッチングすることによって、あるいはレーザを使って直接樹脂絶縁層6の一部を除去することによって形成される。このときのレーザにはエキシマレーザまたはCOレーザ等を用いることができるが、貫通孔の内壁の形状を垂直に近く調整でき、さらに貫通孔の内壁面を滑らかに加工できる紫外線レーザで形成しておくのが望ましい。あるいは、樹脂絶縁層6の形成方法がワニス状の樹脂を塗布する方法の場合であれば、感光性の樹脂を用いて、例えば露光により貫通孔が形成される部分以外を硬化させて、貫通孔が形成される部分の樹脂をエッチングにより除去することによって貫通孔を有する樹脂絶縁層6を形成してもよい。
【0042】
微細ビア導体は、微細配線層を形成する前に、例えば、銅等の金属粉末と樹脂を主成分とする導体ペーストを樹脂絶縁層6の貫通孔に充填しておくことにより、図8に示す例のような、貫通孔が導体により充填されたものが形成される。あるいは、微細配線層を形成する際に、貫通孔の内面にも下地導体層および主導体層を形成することにより、微細配線層と同時に形成してもよい。この場合の微細ビア導体は、樹脂絶縁層6の貫通孔の内面に被着して形成され、貫通孔は導体により充填されたものとはならない。主導体層を形成する際のめっき厚みを厚くすると、図8に示す例のような、貫通孔が導体により充填されたものとすることができる。微細ビア導体を微細配線層と同時に形成する場合は、貫通孔の内面に薄膜により下地導体層を良好に形成することができるように、貫通孔は樹脂絶縁層6の上面側の方が大きくなるような形状にするのが好ましい。このような形状の貫通孔は、エッチングにより貫通孔を形成する場合はエッチング条件により、レーザにより貫通孔を形成する場合はレーザの出力等の調節により、感光性樹脂を用いる場合は露光条件やエッチング条件により形成することができる。
【0043】
このような樹脂絶縁層6および微細配線7(微細ビア導体および微細配線層)の形成を必要な数だけ繰り返すことによって、配線基板4の上に樹脂配線層が形成される。
【0044】
図9(a)および図9(b)は、それぞれ、従来の配線基板および本発明の配線基板の要部を拡大して示す上面図であるが、表面配線5と表面ビア導体3aとの重なりがわかるように、表面配線を透視して示している。
【0045】
中央部に表面ビア導体3aが縦横に配置され、最外周に位置する表面ビア導体3aの中心を結ぶと200mm角の正方形となる、配線基板の場合であれば、図12に示す例のような
従来の配線基板14では、0.2%の焼成収縮ばらつきが発生すると、配線基板14の中心から
距離が大きく、収縮ばらつきによる位置ずれが最も大きくなる角部においては、表面ビア導体13a(が上面に露出する部分)の、配線基板14の中心に対する位置ばらつき(図9(a)に示すU)は±280μm程度発生する。表面ビア導体13aの直径(図9(a)に示す
Dv)が100μmである場合には、表面配線15を直径660μmの円形(図9(a)に破線で示す円)とすれば、図9(a)に2点鎖線で示すような、ずれた位置にある表面ビア導体13aと、表面ビア導体13aの上端面の全面で接続することができる。通常は配線基板14の表面の表面配線15についても、その形成工程における位置ずれが発生するので、この表面配線15の位置ずれ(図9(a)に示すS)が±50μmであるとすると、表面配線15の外径(Dp=(U+S)×2+Dv)を760μmとすれば、表面ビア導体13aが表面配線15の
径内に収まって、表面ビア導体13aの上端面の全面で接続されるようになる。このときの、表面配線15の面積は、約0.454mmである。
【0046】
これに対して、図4に示す例のような本発明の配線基板4では、表面ビア導体3aの形状を、上面視で配線基板4の中心からの放射線の方向に沿った形状、例えば、図9(b)に示す例のような2つの半円を長方形で接続したような長円形状として、配線基板4の中心からの放射線の方向の長さ(図9(b)に示すLv)を430μmとし、幅(図9(b)
に示すWv)を100μmとした場合(半径50μmの2つの半円を、幅が100μmで長さが330μmの長方形で接続した場合)には、表面配線5を直径330μmの円形(図9(b)に破線で示す円)とすれば、図9(b)に2点鎖線で示すような、ずれた位置にある表面ビア導体3aは、表面ビア導体3aの端から100μmが表面配線5と重なり、図9(a)に示
す従来の配線基板と同程度の面積で接続することができる。同様に、表面配線5の位置ずれ(図9(b)に示すS)が±50μmであるとすると、表面配線5の外径(図9(b)に示すDp)を430μmとすればよい。このときの、表面配線5の面積は約0.145mmであり、上記した従来の配線基板の表面配線15の面積の約32%の面積となる。
【0047】
さらに、表面配線5の形状を、図5に示す例のように、表面ビア導体3aと同様に上面視で配線基板4の中心からの放射線の方向に沿った形状とした場合、具体的には長径430
μm、短径300μmの長円形状(半径150μmの2つの半円で幅が300μmで長さが130μmの長方形を挟んだ長円)とした場合には、表面配線5の面積は約0.110mmとなり、さ
らに面積を小さくすることができる。
【0048】
また、表面配線5の形状および寸法が上述した従来の配線基板のような場合であれば、隣接する表面配線15・15間の絶縁性を確保するために隣接する表面配線15・15間の間隔を100μmとすると、表面配線15のピッチ(表面配線15の中心間の距離)はDp+100μm=860μmとなる。上述したような形状および寸法の表面ビア導体3および表面配線5を有する本発明の配線基板の場合は、表面ビア導体3aは、位置ずれがあった場合は平面視で表面配線5からはみ出して接続されるので、表面配線5と放射線方向に隣接する表面配線5に接続する表面ビア導体3との間の間隔を、上記と同様に100μmとする。また、表面ビ
ア導体3aが表面配線5からはみ出す長さ(図9(b)に示すLv’)は、表面ビア導体
3aの長さLvから表面配線5との重なる長さ(上述した表面ビア導体3aの端からの長さ100μm+S)を差し引いた長さである。そして、表面配線5のピッチ(表面配線5の
中心間の距離)は、Dp+Lv’+100μm=810μmとなり、従来よりも50μm小さくすることができ、配線密度の高い配線基板4とすることができる。
【0049】
表面配線5の配置は、プローブカードで検査するウエハ上の半導体素子や配線基板に搭載される半導体素子の端子の配置に応じて配置されるものであり、縦横に等間隔で配置される場合が多く、図4〜図6に示す例のように、配列された表面配線5の内の最外周のものを結ぶと方形状となる場合が多い。そして、配線基板4(絶縁基体1)の平面視の形状は、この方形より一回り大きい形状である。この方形の中に配列された表面ビア導体3aが上面視で配線基板4の中心からの放射線の方向に沿った形状であると、この放射線のうち配線基板4の中心と方形の辺(配線基板4の外辺)の中央とを結ぶ線に沿って配列される表面ビア導体3aの間隔およびそれに接続される表面配線5の間隔が最も小さいものとなる。
【0050】
図10および図11(b)に示す例では、配線基板4は、表面ビア導体3aが配線基板4の中心からの放射線(図11(b)に示す一点鎖線R)に沿って放射線Rを挟んで交互に配列されており、表面配線5が放射線R上に突出した突出部5aを有する形状である部分を有する。即ち、表面ビア導体3aの一部は、配線基板4の中心からの放射線のうちの配線基板4の中心と方形の辺の中央とを結ぶ線Rに沿って、配線基板4の中心から外側にかけて放射線Rを挟んで交互に配列されている。そして、表面配線5は放射線R上に突出した突出部を有している。このようにすると、表面配線5の間隔を小さいものにすることができるので、表面配線5の配線密度が高い配線基板4となる。
【0051】
図11(b)は図10(a)のB部を拡大して示す上面図である。図11(a)は、図1のB部を拡大して示す上面図であり、図5に示す例のような表面配線5を形成した状態を示す。図11(a)に示す例のように、図1のB部において、表面ビア導体3(および表面配線5)は、配線基板4の中心からの放射線R上に配列されている。これに対して、図10のB部においては、図11(b)に示す例のように、表面ビア導体3および表面配線5は、配線基板4の中心からの放射線Rに沿って、配線基板4の中心から外側にかけて放射線Rを挟んで交互に配列されている。図11(a)に示す例の場合の表面配線5のピッチPは、上述したのと同様にP=Lp+Lv’+Gとなる。Gは表面配線5と放射線R方向に隣接する表面配線5に接続する表面ビア導体3aとの間の間隔である。これに対して、図10および図11(b)に示す例の場合は、放射線R方向に隣接する表面ビア導体3aは同一直線上に配置されていないことから、表面ビア導体3aが表面配線5からはみ出す部分と隣接する表面配線5とが接することがないので、放射線R方向において表面ビア導体3aと表面配線5とを重ねて(重なり長さは図11(b)に示すLo)配置することができ、表面配線5のピッチPを小さくすることができる。
【0052】
この例の場合は、突出部5aを有さない表面配線5の中心部と突出部5aを有する表面配線5の突出部5aが、縦横に等間隔で配列される。そして、この配線基板4の表面配線5にプローブピン8を接続してプローブカードを作製する場合は、突出部5aを有さない表面配線5の中心部および突出部5aを有する表面配線5の突出部5aにプローブピン8が接続される。
【0053】
また、この例の場合の表面配線5の形状は、図10および図11(b)に示す例のような、放射線R方向の長さの異なる2つを接続した、凸字状(T字状)の形状とするのがよい。即ち、表面ビア導体3aに接続される部分に、それより放射線R方向の長さの短い突出部5aが接続された形状である。表面ビア導体3aに接続される部分は、表面ビア導体3aの形状と同様の形状とし、表面配線5を形成するときに発生する位置ずれを考慮して、表
面ビア導体3aより一回り大きいものである。例えば、表面配線5の位置精度が±100μ
mであれば、表面ビア導体3aの幅より200μm大きいものである。
【0054】
突出部5aの大きさは、突出部5aに接続される、例えばプローブピン8の大きさに応じて設定すればよい。突出部5aの幅(突出部5aの放射線Rに平行な方向の長さ)は、プローブピンを接続する場合であれば、例えば40〜80μm程度であればよい。また、突出部5aの長さ(突出部5aの放射線Rに垂直な方向の長さ)は、50μmより小さいと、放射線R上に突出部5aを配置すると、表面配線5同士の間隔が小さくなりすぎて表面端子5間の絶縁性が低下してしまう可能性があるので、突出部5aの長さは50μm以上であることが好ましい。突出部5aの長さが長すぎると、突出部5aの長さ方向において隣接する表面配線5との間隔が小さくなって、その間の絶縁性が低下してしまうので、表面配線5のピッチに応じて設定すればよい。例えば、図11(a)に示す例において表面配線5のピッチが上述のような810μmである場合に対して、突出部5aを有する表面配線5を図10および図11(b)に示す例のように配列した場合のピッチをこれより小さい600μmとする場合であれば、以下のようになる。図10および図11(b)の横方向(図11(b)の放射線Rに垂直な方向)のピッチも同様に600μmであり、この横方向においても隣接する表
面配線5・5間の間隔を100μmとすると、表面配線5が配列される領域の横方向の幅(
図11(b)に示すW)を500μm(600μm−100μm)以下にすることが好ましい。その
ため、上述した表面ビア導体3aに接続される部分の幅を、上述した例と同様の300μm
をすると、突出部5aの長さは200μm(500μm−300μm)以下とすることが好ましい

【0055】
突出部5aの形状は、図10および図11に示す例では半円形状としているが、方形等の他の形状であってもよく、突出部5aに接続される、例えばプローブピン8の形状に応じて、または位置決めしやすい形状に適宜設定すればよい。
また、突出部5aは、図11(b)においては、表面配線5の表面ビア導体3aとの接続部の中央部から突出して形成されているが、表面配線5の表面ビア導体3aとの接続部と接続して形成されていれば良く、例えば接続部の端から突出して形成されてもかまわない。つまり、プローブカードとして使用するため配線基板4に形成するプローブピン8を高密度に形成することができるように、表面配線5の形成される場所によって適宜突出部5aの位置や形状を設計すればよい。
【0056】
上述したように、表面配線5は、表面配線5を形成していない配線基板4の上面を研磨するなどして平坦にした後に、薄膜形成法によって形成される。この研磨によって絶縁基体1と表面ビア導体3aとの材質の違いで微小な段差が発生する場合があり、プローブピン8を配線基板4に接続する場合に、この段差によりプローブピン8が傾いて接続される場合がある。これに対して、表面配線5が突出部5aを有する形状であり、突出部5aにプローブピン8を接続した場合には、その下には表面ビア導体3aが無いので傾くことなくプローブピン8が接続されることとなる。このため、全ての表面配線5に突出部5aを形成すると、プローブピン8の先端位置がより正確なものとなるので好ましい。
【0057】
本発明のプローブカードは、図7に示す例のように、上記構成の本発明の配線基板と、配線基板4の上面の表面配線5に接続されたプローブピン8とを具備するものである。このような構成としたことから、表面配線5の浮遊容量がより小さいことで高速の検査が可能な、あるいはより高速の信号で動作する素子の検査をすることが可能なプローブカードとなる。
【0058】
プローブピン8は、例えば、以下のようにして作製され、本発明の配線基板4に接続される。まず、シリコンウエハの1面にエッチングにより複数のプローブピン8の雌型を形成する。ついで、雌型を形成した面にめっき法によりニッケルから成る金属を被着させる
とともに雌型をニッケルで埋め込み、埋め込まれた部分以外のウエハ上のニッケルをエッチング等の加工を施すことにより除去して、ニッケル製のプローブピン8が埋設されたシリコンウエハを作製する。このシリコンウエハに埋設されたニッケル製プローブピン8を配線基板4の上面の表面配線5にはんだ等の接合材で接合する。そして、シリコンウエハを水酸化カリウム水溶液で除去することによって、配線基板4の上面の表面配線5にプローブピン8が接続された本発明のプローブカードが得られる。
【符号の説明】
【0059】
1:絶縁基体
1a:絶縁層
2:外部電極
3:内部配線
3a:表面ビア導体
4:配線基板
5:表面配線
5a:突出部
6:樹脂絶縁層
7:微細配線
8:プローブピン

【特許請求の範囲】
【請求項1】
セラミックスから成る複数の絶縁層が積層された絶縁基体と、該絶縁基体の下面に形成された外部電極と、該外部電極に接続されて前記絶縁基体の上面に導出された、ビア導体を含む内部配線とを有する配線基板であって、前記内部配線のうち最上層の前記絶縁層を貫通して上端面が前記絶縁基体の上面に露出した表面ビア導体は、上面視で前記配線基板の中心からの放射線の方向に沿った形状であることを特徴とする配線基板。
【請求項2】
前記絶縁基体の上面において、薄膜から成る表面配線が前記表面ビア導体に接続されていることを特徴とする請求項1記載の配線基板。
【請求項3】
前記表面ビア導体が前記放射線に沿って前記放射線を挟んで交互に配列されており、前記表面配線が前記放射線上に突出した突出部を有する形状である部分を有することを特徴とする請求項2に記載の配線基板。
【請求項4】
請求項2または請求項3に記載の配線基板と、前記配線基板の上面の前記表面配線に接続されたプローブピンとを具備することを特徴とするプローブカード。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2011−222928(P2011−222928A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−122942(P2010−122942)
【出願日】平成22年5月28日(2010.5.28)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】