説明

高分子化合物とその製造方法および該高分子化合物を含有する有機電子デバイス

【課題】高分子化合物が有機溶媒に可溶で凝集性がなく、均質な薄膜形成を行うことが可能であり、該化合物を使用することにより電荷移動度に優れ高耐熱性を有する有機電子デバイスを提供する。
【解決手段】一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物。
【化1】



(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、塗布等により容易に成膜できる有機半導体材料、該材料を用いた有機電子デバイスに関するものである。さらに詳しくは、フェナザシリン骨格を有する高分子化合物からなる有機半導体材料に関するものである。
【背景技術】
【0002】
近年、有機半導体材料を用いた電子デバイス、すなわち有機電子デバイス、の開発が広く行われており、これらの有機電子デバイスには有機トランジスタ、有機エレクトロルミネッセンス、有機太陽電池、有機半導体レーザ等が含まれる。有機電子デバイスが実用レベルで利用されるためには、有機半導体材料からなる有機半導体層が広い使用温度範囲において安定した電荷移動度を示すことが必要であると共に、広い面積で均一な薄膜を容易に作製できることが必要である。特に、従来のような蒸着等による成膜ではなく、塗布形成による成膜が可能であると共に、成膜時の環境下での特性安定性に優れていることが望ましい。このような有機電子デバイスはローコストで、ガラスやプラスチック基板の上に集積回路を形成する技術として有望視されている。
【0003】
従来より塗布形成による成膜可能な有機半導体材料として有用な高分子化合物が提案されており、例えば、ポリ(3−ヘキシルチオフェン)等のポリチオフェン類が知られている。これらの高分子化合物は、有機溶媒に対して多少の溶解度を持つので、各種の塗布や印刷手段を用いた成膜が可能であるという利点がある。
【0004】
しかしながら、ポリ(3−ヘキシルチオフェン)等のポリチオフェン類で形成される有機半導体層は、成膜工程中に曝される大気中の酸素で酸化され易いという難点がある。酸化した有機半導体層を有する有機トランジスタは、オフ電流が上昇してオン/オフ比が小さくなるという問題がある。こうした問題に対し、例えば特許文献1には、ポリ[5,5'−ビス(3−ドデシル−2−チエニル)−2,2'−ジチオフェン]が提案されている。この高分子化合物は、有機溶媒に対して溶解性を有するので、各種の塗布や印刷手段を用いた成膜が可能であると共に、酸化され難く、酸化による問題を防ぐことができるとされているが、素子寿命に関しては実用化レベルには到達していないという難点がある。
【0005】
また、例えば、有機エレクトロルミネッセンスでは、塗布形成による成膜可能な有機半導体材料として、特許文献2〜5にはフェナザシリン誘導体を有機半導体層(電荷輸送層)に用いることが提案されている。しかしながら、有機溶媒に対する溶解性や耐熱性に関しては実用化レベルに到達していないという難点がある。
【特許文献1】特開2003−221434号公報
【特許文献2】特開2000−313739号公報
【特許文献3】特開2001−316457号公報
【特許文献4】特開2002−069161号公報
【特許文献5】特開2002−275249号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
大面積のフレキシブルディスプレイ等に利用可能な有機エレクトロルミネッセンスや、LCDや電子ペーパーのようなディスプレイ等に利用可能な有機トランジスタを実用レベルで形成できる有機半導体材料は、溶媒溶解性を有して容易に塗布液にすることができること、成膜時の環境下で特性が安定していること、常温を含む広い使用温度範囲で安定した電荷移動度を示す膜を形成できることが望ましく、これらの要求性能を満足する有機半導体材料の開発が期待されている。
【0007】
本発明は、上記従来の問題を解決する新しい高分子化合物を提供するものであり、その目的は、成膜時の環境下での安定性に優れると共に、塗布等により容易に成膜できる有機半導体材料を提供することにある。また、本発明の他の目的は、そうした有機半導体材料からなる有機電子デバイスを提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決すべく鋭意検討した結果、高分子化合物が有機溶媒に可溶で凝集性がなく、均質な薄膜形成を行うことが可能であり、該化合物を使用することにより電荷移動度に優れ高耐熱性を有する有機電子デバイスが得られることを見出し、本発明を完成するに至った。
【0009】
すなわち本発明は、以下の[1]〜[10]を提供するものである。
[1]一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物。
【0010】
【化1】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。)
【0011】
[2]前記一般式(1)においてRおよびRが炭素数1〜6の無置換もしくは置換されてもよい一価の直鎖または分岐のアルキル基、または炭素数3〜8の無置換もしくは置換されていてもよい環状のアルキル基である、[1]記載の高分子化合物。
[3]前記一般式(1)においてRおよびRがアリール基、かつRが炭素数2以上の無置換もしくは置換されてもよい一価のアルキル基である、請求項1記載の高分子化合物。
[4]前記一般式(1)においてRおよびRの一方はアリール基であり、他方は炭素数1〜6の無置換もしくは置換されてもよい一価の直鎖または分岐のアルキル基である、[1]記載の高分子化合物。
[5][1]乃至[4]のいずれかに記載の高分子化合物からなる有機半導体材料。
[6][1]乃至[4]のいずれかに記載の高分子化合物を有機溶媒に溶解させた状態で用いることができることを特徴とする有機半導体材料。
[7]有機半導体層を有する有機トランジスタであって、該有機半導体層に[1]乃至[4]のいずれかに記載の高分子化合物を少なくとも1種含有してなる有機トランジスタ。
[8]一対の電極間に、[1]乃至[4]のいずれかに記載の高分子化合物を少なくとも一種含有する層を、少なくとも一層挟持してなる有機エレクトロルミネッセンス。
[9]一対の電極間に有機薄膜層を配置してなる有機太陽電池であって、該有機薄膜層に[1]乃至[4]のいずれかに記載の高分子化合物を少なくとも1種含有してなる有機太陽電池。
【0012】
[10]一般式(2)で表されるフェナザシリン化合物にニッケル触媒を用いて重合させることを特徴とする[1]記載の高分子化合物の製造方法。
【0013】
【化2】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはハロゲン原子を表す。)
【0014】
[11]一般式(2)で表されるフェナザシリン化合物と一般式(3)で表されるフェナザシリン化合物にパラジウム触媒を用いて重合させることを特徴とする[1]記載の高分子化合物の製造方法。
【0015】
【化3】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはハロゲン原子を表す。)
【化4】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはボロン酸基、ボロン酸エステル基、もしくはトリアルキルスタニル基を表す。)
【発明の効果】
【0016】
本発明により、有機溶媒に可溶で凝集性がなく、均質な薄膜形成を行うことが可能な高分子化合物を提供することができる。また、有機電子デバイスに適した高分子化合物、および電荷移動度に優れ高耐熱性を有する有機電子デバイスを提供できる。
【発明を実施するための最良の形態】
【0017】
以下、本発明に関し詳細に説明する。
本発明の高分子化合物は、一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物である。
【0018】
【化5】

【0019】
(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。)
【0020】
一般式(1)において、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基が包含される。
【0021】
、R、R〜Rとしては、水素原子、ハロゲン原子、炭素数1〜20の直鎖、分岐または環状のアルキル基、炭素数1〜20の直鎖、分岐または環状のアルコキシ基、あるいは炭素数4〜20の無置換もしくは置換されてもよいアリール基が挙げられる。
、R、R〜Rは、好ましくは、水素原子、炭素数1〜10の直鎖、分岐または環状のアルキル基、あるいは炭素数4〜20の無置換もしくは置換されてもよいアリール基を表し、より好ましくは炭素数1〜8の直鎖、分岐または環状のアルキル基、あるいは炭素数4〜10の無置換もしくは置換されてもよいアリール基を表す。
【0022】
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
炭素数1〜20の直鎖、分岐または環状のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec-ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、1−メチルペンチル基、4−メチル−2−ペンチル基、2−エチルブチル基、n−ヘプチル基、1−メチルヘキシル基、n−オクチル基、1−メチルヘプチル基、2−エチルヘキシル基、2−プロピルペンチル基、n−ノニル基、2,2−ジメチルヘプチル基、2,6−ジメチル−4−ヘプチル基、3,5,5−トリメチルヘキシル基、n−デシル基、1−エチルオクチル基、n−ウンデシル基、1−メチルデシル基、n−ドデシル基、n−トリデシル基、1−ヘキシルヘプチル基、n−テトラデシル基、n−ペンタデシル基、1−ヘプチルオクチル基、n−ヘキサデシル基、n−ヘプタデシル基、1−オクチルノニル基、n−オクタデシル基、1−ノニルデシル基、シクロヘキシルメチル基、(1−イソプロピルシクロヘキシル)メチル基、2−シクロヘキシルエチル基、ボルネル基、イソボルネル基、1−ノルボルニル基、2−ノルボルナンメチル基、1−ビシクロ〔2.2.2〕オクチル基、1−アダマンチル基、3−ノルアダマンチル基、1−アダマンチルメチル基、シクロブチル基、シクロペンチル基、1−メチルシクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、3−メチルシクロヘキシル基、2−メチルシクロヘキシル基、2,3−ジメチルシクロヘキシル基、2,5−ジメチルシクロヘキシル基、2,6−ジメチルシクロヘキシル基、3,4−ジメチルシクロヘキシル基、3,5−ジメチルシクロヘキシル基、2,4,6−トリメチルシクロヘキシル基、3,3,5−トリメチルシクロヘキシル基、2,6−ジイソプロピルシクロヘキシル基、4−tert−ブチルシクロヘキシル基、3−tert−ブチルシクロヘキシル基、4−フェニルシクロヘキシル基、2−フェニルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基、シクロテトラデシル基、
【0023】
メトキシメチル基、エトキシメチル基、n−ブトキシメチル基、n−ヘキシルオキシメチル基、(2−エチルブチルオキシ)メチル基、n−オクチルオキシメチル基、n−デシルオキシメチル基、2−メトキシエチル基、2−エトキシエチル基、2−n−プロポキシエチル基、2−イソプロポキシエチル基、2−n−ブトキシエチル基、2−n−ペンチルオキシエチル基、2−n−ヘキシルオキシエチル基、2−(2'−エチルブチルオキシ)エチル基、2−n−ヘプチルオキシエチル基、2−n−オクチルオキシエチル基、2−(2'−エチルヘキシルオキシ)エチル基、2−n−デシルオキシエチル基、2−n−ドデシルオキシエチル基、2−n−テトラデシルオキシエチル基、2−シクロヘキシルオキシエチル基、2−メトキシプロピル基、3−メトキシプロピル基、3−エトキシプロピル基、3−n−プロポキシプロピル基、3−イソプロポキシプロピル基、3−(n−ブトキシ)プロピル基、3−(n−ペンチルオキシ)プロピル基、3−(n−ヘキシルオキシ)プロピル基、3−(2'−エチルブトキシ)プロピル基、3−(n−オクチルオキシ)プロピル基、3−(2'−エチルヘキシルオキシ)プロピル基、3−(n−デシルオキシ)プロピル基、3−(n−ドデシルオキシ)プロピル基、3−(n−テトラデシルオキシ)プロピル基、3−シクロヘキシルオキシプロピル基、4−メトキシブチル基、4−エトキシブチル基、4−n−プロポキシブチル基、4−イソプロポキシブチル基、4−n−ブトキシブチル基、4−n−ヘキシルオキシブチル基、4−n−オクチルオキシブチル基、4−n−デシルオキシブチル基、4−n−ドデシルオキシブチル基、5−メトキシペンチル基、5−エトキシペンチル基、5−n−プロポキシペンチル基、6−エトキシヘキシル基、6−イソプロポキシヘキシル基、6−n−ブトキシヘキシル基、6−n−ヘキシルオキシヘキシル基、6−n−デシルオキシヘキシル基、4−メトキシシクロヘキシル基、7−エトキシヘプチル基、7−イソプロポキシヘプチル基、8−メトキシオクチル基、10−メトキシデシル基、10−n−ブトキシデシル基、12−エトキシドデシル基、12−イソプロポキシドデシル基、テトラヒドロフルフリル基、
2−(2'−メトキシエトキシ)エチル基、2−(2'−エトキシエトキシ)エチル基、2−(2'−n−ブトキシエトキシ)エチル基、3−(2'−エトキシエトキシ)プロピル基、2−アリルオキシエチル基、2−(4'−ペンテニルオキシ)エチル基、3−アリルオキシプロピル基、3−(2'−ヘキセニルオキシ)プロピル基、3−(2'−ヘプテニルオキシ)プロピル基、3−(1'−シクロヘキセニルオキシ)プロピル基、4−アリルオキシブチル基、
【0024】
ベンジルオキシメチル基、2−ベンジルオキシエチル基、2−フェネチルオキシエチル基、2−(4'−メチルベンジルオキシ)エチル基、2−(2'−メチルベンジルオキシ)エチル基、2−(4'−フルオロベンジルオキシ)エチル基、2−(4'−クロロベンジルオキシ)エチル基、3−ベンジルオキシプロピル基、3−(4'−メトキシベンジルオキシ)プロピル基、4−ベンジルオキシブチル基、2−(ベンジルオキシメトキシ)エチル基、2−(4'−メチルベンジルオキシメトキシ)エチル基、
フェニルオキシメチル基、4−メチルフェニルオキシメチル基、3−メチルフェニルオキシメチル基、2−メチルフェニルオキシメチル基、4−メトキシフェニルオキシメチル基、4−フルオロフェニルオキシメチル基、4−クロロフェニルオキシメチル基、2−クロロフェニルオキシメチル基、2−フェニルオキシエチル基、2−(4'−メチルフェニルオキシ)エチル基、2−(4'−エチルフェニルオキシ)エチル基、2−(4'−メトキシフェニルオキシ)エチル基、2−(4'−クロロフェニルオキシ)エチル基、2−(4'−ブロモフェニルオキシ)エチル基、2−(1'−ナフチルオキシ)エチル基、2−(2'−ナフチルオキシ)エチル基、3−フェニルオキシプロピル基、3−(2'−ナフチルオキシ)プロピル基、4−フェニルオキシブチル基、4−(2'−エチルフェニルオキシ)ブチル基、5−(4'−tert−ブチルフェニルオキシ)ペンチル基、6−(2'−クロロフェニルオキシ)ヘキシル基、8−フェニルオキシオクチル基、10−フェニルオキシデシル基、10−(3'−クロロフェニルオキシ)デシル基、2−(2'−フェニルオキシエトキシ)エチル基、3−(2'−フェニルオキシエトキシ)プロピル基、4−(2'−フェニルオキシエトキシ)ブチル基、
n−ブチルチオメチル基、n−ヘキシルチオメチル基、2−メチルチオエチル基、2−エチルチオエチル基、2−n−ブチルチオエチル基、2−n−ヘキシルチオエチル基、2−n−オクチルチオエチル基、2−n−デシルチオエチル基、3−メチルチオプロピル基、3−エチルチオプロピル基、3−n−ブチルチオプロピル基、4−エチルチオブチル基、4−n−プロピルチオブチル基、4−n−ブチルチオブチル基、5−エチルチオペンチル基、6−メチルチオヘキシル基、6−エチルチオヘキシル基、6−n−ブチルチオヘキシル基、8−メチルチオオクチル基、2−(2'−メトキシエチルチオ)エチル基、4−(3'−エトキシプロピルチオ)ブチル基、2−(2'−エチルチオエチルチオ)エチル基、2−アリルチオエチル基、2−ベンジルチオエチル基、3−(4'−メチルベンジルチオ)プロピル基、4−ベンジルチオブチル基、2−(2'−ベンジルオキシエチルチオ)エチル基、3−(3'−ベンジルチオプロピルチオ)プロピル基、
2−フェニルチオエチル基、2−(4'−メトキシフェニルチオ)エチル基、2−(2'−フェニルオキシエチルチオ)エチル基、3−(2'−フェニルチオエチルチオ)プロピル基、
【0025】
フルオロメチル基、3−フルオロプロピル基、6−フルオロヘキシル基、8−フルオロオクチル基、ジフルオロメチル基、トリフルオロメチル基、1,1−ジヒドロ−パーフルオロエチル基、1,1−ジヒドロ−パーフルオロ−n−プロピル基、1,1,3−トリヒドロ−パーフルオロ−n−プロピル基、1,1−ジヒドロ−パーフルオロ−n−ブチル基、1,1−ジヒドロ−パーフルオロ−n−ペンチル基、1,1−ジヒドロ−パーフルオロ−n−ヘキシル基、6−フルオロヘキシル基、4−フルオロシクロヘキシル基、1,1−ジヒドロ−パーフルオロ−n−オクチル基、1,1−ジヒドロ−パーフルオロ−n−デシル基、1,1−ジヒドロ−パーフルオロ−n−ドデシル基、1,1−ジヒドロ−パーフルオロ−n−テトラデシル基、1,1−ジヒドロ−パーフルオロ−n−ヘキサデシル基、パーフルオロ−n−ヘキシル基、ジクロロメチル基、2−クロロエチル基、3−クロロプロピル基、4−クロロシクロヘキシル基、7−クロロヘプチル基、8−クロロオクチル基、2,2,2−トリクロロエチル基、
2−ヒドロキシエチル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基、6−ヒドロキシヘキシル基、5−ヒドロキシヘプチル基、8−ヒドロキシオクチル基、10−ヒドロキシデシル基、12−ヒドロキシドデシル基、2−ヒドロキシシクロヘキシル基などの無置換もしくは置換されてもよい直鎖、分岐または環状のアルキル基を挙げることができる。
炭素数1〜20の直鎖、分岐または環状のアルコキシ基としては、上述のアルキル基から誘導される直鎖、分岐または環状のアルコキシ基が挙げられる。
【0026】
炭素数4〜20の無置換もしくは置換されてもよいアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−フェニル−1−ナフチル基、6−フェニル−2−ナフチル基、2−アントラセニル基、9−アントラセニル基、9−メチル−10−アントラセニル基、9−フェニル−10−アントラセニル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基、9−メチル−10−フェナントリル基、9−フェニル−10−フェナントリル基、1−メチル−9−フェナントリル基、1−フェニル−9−フェナントリル基、2−メチル−9−フェナントリル基、2−フェニル−9−フェナントリル基、1,8−ジメチル−9−フェナントリル基、1,8−ジフェニル−9−フェナントリル基、2−クロロ−9−フェナントリル基、2−フルオロ−9−フェナントリル基、2,7−ジクロロ−9−フェナントリル基、2,7−ジメチル−9−フェナントリル基、2,7−ジフェニル−9−フェナントリル基、2,7,9−トリメチル−10−フェナントリル基、2,7,9−トリフェニル−10−フェナントリル基、1,2,3,4−テトラヒドロナフタレン−6−イル基、
1−ピレニル基、2−ピレニル基、1−フェニル−2−ピレニル基、1−メチル−2−ピレニル基、2−フェニル−1−ピレニル基、2−メチル−1−ピレニル基、4,5−ジメチル−1−ピレニル基、6−フェニル−1−ピレニル基、6−メチル−1−ピレニル基、6−tert-ブチル−1−ピレニル基、6−シクロヘキシル−1−ピレニル基、7−フェニル−1−ピレニル基、7−メチル−1−ピレニル基、7−フェニル−2−ピレニル基、7−メチル−2−ピレニル基、7−tert-ブチル−2−ピレニル基、1,8−ジフェニル−2−ピレニル基、1,8−ジメチル−2−ピレニル基、5,9−ジシクロヘキシル−2−ピレニル基、3,6−ジフェニル−1−ピレニル基、3,6−ジメチル−1−ピレニル基、3,6−ジ-tert-ブチル−1−ピレニル基、8−メチル−1−ピレニル基、8-tert-ブチル−1−ピレニル基、8−フェニル−1−ピレニル基、9−フェニル−1−ピレニル基、9−フェニル−2−ピレニル基、9−メチル−2−ピレニル基、10−フェニル−1−ピレニル基、10−メチル−1−ピレニル基、10−フェニル−2−ピレニル基、10−メチル−2−ピレニル基、9−メチル−1−ピレニル基、3,6,8−トリメチル−1−ピレニル基、3,6,8−トリフェニル−1−ピレニル基、3,6−ジメチル−8−フェニル−1−ピレニル基、9,10−ジメチル−1−ピレニル基、9,10−ジフェニル−1−ピレニル基、4,9−ジメチル−1−ピレニル基、4,9−ジフェニル−1−ピレニル基、9,5−ジメチル−2−ピレニル基、4,5,9,10−テトラメチル−2−ピレニル基、2−ペリレニル基、3−ペリレニル基、2−フルオランテニル基、3−フルオランテニル基、7−フルオランテニル基、8−フルオランテニル基、4−キノリニル基、3−キノリニル基、2−キノリニル基、1−フェニル−イソキノリン−3−イル基、2−フェニル−7−ナフチリジニル基、2−フェナントロリニル基、4−ピリジニル基、3−ピリジニル基、2−ピリジニル基、2−フェニル−5−ピリジル基、2−フェニル−4−ピリジル基、2,5−ジフェニル−4−ピリジル基、2−(2'−ピリジル)−5−ピリジル基、2,5−ジ(2'−ピリジル)−4−ピリジル基、2−エチル−6−フェニル−4−ピリジル基、2,3,4−トリフェニル−6−ピリジル基、3−エチル−4−ピリジル基、2−ピリミジニル基、2−フェニル−5−ピリミジニル基、2−(2',6'−ジメチルフェニル)−5−ピリミジニル基、4,5−ジフェニル−2−ピリミジニル基、2−ピリダジニル基、2−ピラジニル基、4,6−ジフェニル−1,3,5−トリアジン−2−イル基、4,6−ジ(2'−ナフチル)−1,3,5−トリアジン−2−イル基、4,6−ジ(1'−ナフチル)−1,3,5−トリアジン−2−イル基、3−フラニル基、2−フラニル基、3−チエニル基、2−チエニル基、2−ベンゾフラニル基、2−ベンゾチオフェニル基、2−オキサゾリル基、2−チアゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−ベンゾイミダゾリル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、2−n−プロピルフェニル基、4−イソプロピルフェニル基、2−イソプロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−sec−ブチルフェニル基、2−sec−ブチルフェニル基、4−tert−ブチルフェニル基、3−tert−ブチルフェニル基、2−tertブチルフェニル基、4−n−ペンチルフェニル基、4−イソペンチルフェニル基、2−ネオペンチルフェニル基、4−tert−ペンチルフェニル基、4−n−ヘキシルフェニル基、3−n−ヘキシルフェニル基、4−(2'−エチルブチル)フェニル基、4−n−ヘプチルフェニル基、4−n−オクチルフェニル基、4−(2'−エチルヘキシル)フェニル基、4−tert−オクチルフェニル基、4−n−デシルフェニル基、4−n−ドデシルフェニル基、4−n−テトラデシルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−(4'−メチルシクロヘキシル)フェニル基、4−(4'−tert−ブチルシクロヘキシル)フェニル基、3−シクロヘキシルフェニル基、2−シクロヘキシルフェニル基、4−エチル−1−ナフチル基、6−n−ブチル−2−ナフチル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジメチルフェニル基、2,4−ジエチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,6−ジエチルフェニル基、2,5−ジイソプロピルフェニル基、2,6−ジイソブチルフェニル基、2,4−ジ−tert−ブチルフェニル基、2,5−ジ−tert−ブチルフェニル基、4,6−ジ−tert−ブチル−2−メチルフェニル基、5−tert−ブチル−2−メチルフェニル基、4−tert−ブチル−2,6−ジメチルフェニル基、
【0027】
4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−エトキシフェニル基、3−エトキシフェニル基、2−エトキシフェニル基、4−n−プロポキシフェニル基、3−n−プロポキシフェニル基、4−イソプロポキシフェニル基、3−イソプロポキシフェニル基、2−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−イソブトキシフェニル基、2−sec−ブトキシフェニル基、4−n−ペンチルオキシフェニル基、4−イソペンチルオキシフェニル基、2−イソペンチルオキシフェニル基、4−ネオペンチルオキシフェニル基、2−ネペンチルオキシフェニル基、4−n−ヘキシルオキシフェニル基、2−(2'−エチルブチルオキシ)フェニル基、4−n−オクチルオキシフェニル基、4−n−デシルオキシフェニル基、4−n−ドデシルオキシフェニル基、4−n−テトラデシルオキシフェニル基、4−シクロヘキシルオキシフェニル基、2−シクロヘキシルオキシフェニル基、2−メトキシ−1−ナフチル基、4−メトキシ−1−ナフチル基、4−n−ブトキシ−1−ナフチル基、5−エトキシ−1−ナフチル基、6−メトキシ−2−ナフチル基、6−エトキシ−2−ナフチル基、6−n−ブトキシ−2−ナフチル基、6−n−ヘキシルオキシ−2−ナフチル基、7−メトキシ−2−ナフチル基、7−n−ブトキシ−2−ナフチル基、2−メチル−4−メトキシフェニル基、2−メチル−5−メトキシフェニル基、3−メチル−5−メトキシフェニル基、3−エチル−5−メトキシフェニル基、2−メトキシ−4−メチルフェニル基、3−メトキシ−4−メチルフェニル基、2,4−ジメトキシフェニル基、2,5−ジメトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3,5−ジエトキシフェニル基、3,5−ジ−n−ブトキシフェニル基、2−メトキシ−4−エトキシフェニル基、2−メトキシ−6−エトキシフェニル基、3,4,5−トリメトキシフェニル基、2−フェニルオキシフェニル基、3−フェニルオキシフェニル基、4−フェニルオキシフェニル基、4−フェニルフェニル基、3−フェニルフェニル基、2−フェニルフェニル基、2,6−ジフェニルフェニル基、3,5−ジフェニルフェニル基、2,4−ジフェニルフェニル基、2,3−ジフェニルフェニル基、2,5−ジフェニルフェニル基、3,4−ジフェニルフェニル基、2,4,6−トリフェニルフェニル基、3,4,5−トリフェニルフェニル基、2,4,5−トリフェニルフェニル基、2−(2'−ピリジル)フェニル基、3−(2'−ピリジル)フェニル基、4−(2'−ピリジル)フェニル基、4−(4'−メチルフェニル)フェニル基、4−(3'−メチルフェニル)フェニル基、4−(4'−メトキシフェニル)フェニル基、4−(4'−n−ブトキシフェニル)フェニル基、2−(2'−メトキシフェニル)フェニル基、4−(4'−クロロフェニル)フェニル基、3−メチル−4−フェニルフェニル基、2−エチル−4−フェニルフェニル基、3−フルオロ−4−フェニルフェニル基、3−メトキシ−4−フェニルフェニル基、2−(1'−ナフチル)フェニル基、2−(2'−ナフチル)フェニル基、3−(1'−ナフチル)フェニル基、3−(2'−ナフチル)フェニル基、4−(1'−ナフチル)フェニル基、4−(2'−ナフチル)フェニル基、4−(2'−ナフチル)−1−ナフチル基、2−フェニル−1−ナフチル基、1−フェニル−2−ナフチル基、4−(1'−ナフチル)−1−ナフチル基、6−(2'−ナフチル)−2−ナフチル基、6−(1'−ナフチル)−2−ナフチル基、6−N,N−ジフェニルアミノ−2−ナフチル基、4−N,N−ジフェニルアミノ−1−ナフチル基、4−シアノフェニル基、3−シアノフェニル基、4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、4−クロロフェニル基、3−クロロフェニル基、2−クロロフェニル基、4−ブロモフェニル基、3−ブロモフェニル基、2−ブロモフェニル基、4−クロロ−1−ナフチル基、4−クロロ−2−ナフチル基、6−ブロモ−2−ナフチル基、2,3−ジフルオロフェニル基、2,5−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,3−ジクロロフェニル基、2,4−ジクロロフェニル基、2,5−ジクロロフェニル基、3,4−ジクロロフェニル基、3,5−ジクロロフェニル基、2,5−ジブロモフェニル基、2,4,6−トリクロロフェニル基、2,4−ジクロロ−1−ナフチル基、1,6−ジクロロ−2−ナフチル基、2−フルオロ−4−メチルフェニル基、2−フルオロ−5−メチルフェニル基、3−フルオロ−2−メチルフェニル基、3−フルオロ−4−メチルフェニル基、2−メチル−4−フルオロフェニル基、2−メチル−5−フルオロフェニル基、3−メチル−4−フルオロフェニル基、2−クロロ−4−メチルフェニル基、2−クロロ−5−メチルフェニル基、2−クロロ−6−メチルフェニル基、2−メチル−3−クロロフェニル基、2−メチル−4−クロロフェニル基、3−メチル−4−クロロフェニル基、2−クロロ−4,6−ジメチルフェニル基、2−メトキシ−4−フルオロフェニル基、2−フルオロ−4−メトキシフェニル基、2−フルオロ−4−エトキシフェニル基、2−フルオロ−6−メトキシフェニル基、3−フルオロ−4−エトキシフェニル基、3−クロロ−4−メトキシフェニル基、2−メトキシ−5−クロロフェニル基、3−メトキシ−6−クロロフェニル基、5−クロロ−2,4−ジメトキシフェニル基、3−N,N−ジフェニルアミノフェニル基、4−N,N−ジフェニルアミノフェニル基、9,9−ジメチル−9H−フルオレン−2−イル基、9,9−ジエチル−9H−フルオレン−2−イル基、9,9−ジ−n−ヘキシル−9H−フルオレン−2−イル基、9,9−ジ−n−オクチル−9H−フルオレン−2−イル基、9,9−ジフェニル−9H−フルオレン−2−イル基、9,9−ジシクロヘキシル−9H−フルオレン−2−イル基、9,9−ジベンジル−9H−フルオレン−2−イル基、7−N,N−ジフェニルアミノ−9,9−ジメチル−9H−フルオレン−2−イル基、ジベンゾフラン−2−イル基、ジベンゾフラン−4−イル基、ジベンゾフラン−3−イル基、ジベンゾフラン−2−イル基、ジベンゾチオフェン−4−イル基、ジベンゾチオフェン−3−イル基、ジベンゾチオフェン−2−イル基などを挙げることができる。
【0028】
本発明の高分子化合物は、プロセス上または有機電子デバイスなどの素子の可動時に発生する熱に対して高い耐熱性が要求される。この耐熱性の観点から、一般式(1)において、RおよびRは、炭素数1〜6の無置換もしくは置換されてもよい一価のアルキル基がよく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、1−メチルペンチル基、4−メチル−2−ペンチル基、3,3−ジメチルブチル基、2−エチルブチル基、シクロブチル基、シクロペンチル基、4−メチルシクロペンチル基、シクロヘキシル基、シクロオクチル基、メトキシメチル基、エトキシメチル基、n−ブトキシメチル基、などの直鎖、分岐または環状のアルキル基が挙げられる。
また、RおよびRは互いに結合して環を形成していてもよく、RとRが結合して環を形成する場合、炭素数3〜8の無置換もしくは置換されてもよい環状のアルキル基を形成することが好ましい。
【0029】
あるいは、本発明の高分子化合物は、有機電子デバイスにおいて、高い電荷移動度が要求される。一般的に主鎖のπ共役長が長いほど、この電荷移動度は高くなる。そこで、この電荷移動度の観点から、一般式(1)において、RおよびRは、アリール基がよく、例えば、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基、2−フルオロ−9−フェナントリル基、1−ビフェニレンイル基、2−ビフェニレンイル基、1−ピレニル基、2−ピレニル基、4−ピレニル基、2−フルオレニル基、5−アセナフチレニル基、3−フルオランテニル基、1−トリフェニレニル基、2−トリフェニレニル基、1−ナフタセニル基、2−ナフタセニル基、9−ナフタセニル基、3−ペリレニル基、4−キノリル基、2−キノリル基、4−ピリジル基、3−ピリジル基、2−ピリジル基、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基、3−ピリダジニル基、4−ピリダジニル基、2−ピラジニル基、3−フリル基、2−フリル基、2−ベンゾフリル基、4−ジベンゾフラニル基、2−ジベンゾフラニル基、3−チエニル基、2−チエニル基、ジベンゾチオフェン−4−イル基、ジベンゾチオフェン−2−イル基、2−オキサゾリル基、2−チアゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−ベンゾイミダゾリル基、カルバゾール−3−イル基、2−フェニルフェニル基、3−フェニルフェニル基、4−フェニルフェニル基、p−ターフェニル−4−イル基、p−ターフェニル−3−イル基、p−ターフェニル−2−イル基、m− ターフェニル−4−イル基、m−ターフェニル−3−イル基などの置換または未置換のアリール基が挙げられる。さらに、一般式(1)において、RおよびRがアリール基の場合には、Rは、炭素数2以上の無置換もしくは置換されてもよい一価のアルキル基がよく、好ましくは、炭素数2〜20の無置換もしくは置換されてもよい一価のアルキル基がよい。このRとしては、R、R、R〜Rの具体例として挙げた、炭素数2〜20の直鎖、分岐または環状のアルキル基を挙げることができる。
【0030】
次に、一般式(1)において、Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基が包含される。一価のアルキル基は、特に制限はないが、未置換または置換された直鎖状、分岐鎖状または環状の一価のアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、1−メチルペンチル基、4−メチル−2−ペンチル基、3,3−ジメチルブチル基、2−エチルブチル基、n−ヘプチル基、1−メチルヘキシル基、シクロヘキシルメチル基、n−オクチル基、tert−オクチル基、1−メチルヘプチル基、2−エチルヘキシル基、2−プロピルペンチル基、n−ノニル基、2,2−ジメチルヘプチル基、2,6−ジメチル−4−ヘプチル基、3,5,5−トリメチルヘキシル基、n−デシル基、n−ウンデシル基、1−メチルデシル基、n−ドデシル基、n−トリデシル基、1−ヘキシルヘプチル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−エイコシル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、4−tert−ブチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。
の一価のアルキル基上の置換基としては、炭素数1〜20の直鎖、分岐または環状のアルコキシ基、炭素数7〜20のアラルキル基が挙げられる。
炭素数1〜20の直鎖、分岐または環状のアルコキシ基としては、R、R、R〜Rの具体例として挙げた炭素数1〜20の直鎖、分岐または環状のアルキル基から誘導される直鎖、分岐または環状のアルコキシ基を挙げることができる。
炭素数7〜20のアラルキル基としては、例えば、ベンジル基、α−メチルベンジル基、α−エチルベンジル基、フェネチル基、α−メチルフェネチル基、β−メチルフェネチル基、α,α−ジメチルベンジル基、α,α−ジメチルフェネチル基、4−メチルフェネチル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−エチルベンジル基、2−エチルベンジル基、4−イソプロピルベンジル基、4−tert−ブチルベンジル基、2−tert−ブチルベンジル基、4−tert−ペンチルベンジル基、4−シクロヘキシルベンジル基、4−n−オクチルベンジル基、4−tert−オクチルベンジル基、4−アリルベンジル基、4−ベンジルベンジル基、4−フェネチルベンジル基、4−フェニルベンジル基、4−(4'−メチルフェニル)ベンジル基、4−メトキシベンジル基、2−メトキシベンジル基、2−エトキシベンジル基、4−n−ブトキシベンジル基、4−n−ヘプチルオキシベンジル基、4−n−デシルオキシベンジル基、4−n−テトラデシルオキシベンジル基、4−n−ヘプタデシルオキシベンジル基、3,4−ジメトキシベンジル基、4−メトキシメチルベンジル基、4−イソブトキシメチルベンジル基、4−アリルオキシベンジル基、4−ビニルオキシメチルベンジル基、4−ベンジルオキシベンジル基、4−フェネチルオキシベンジル基、4−フェニルオキシベンジル基、3−フェニルオキシベンジル基、
4−ヒドロキシベンジル基、3−ヒドロキシベンジル基、2−ヒドロキシベンジル基、4−ヒドロキシ−3−メトキシベンジル基、4−フルオロベンジル基、2−フルオロベンジル基、4−クロロベンジル基、3−クロロベンジル基、2−クロロベンジル基、3,4−ジクロロベンジル基、2−フルフリル基、ジフェニルメチル基、1−ナフチルメチル基、2−ナフチルメチル基などのアラルキル基を挙げることができる。
ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除くことが好ましい。
【0031】
また、一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物の数平均分子量は、特に限定するものではないが、ポリスチレン換算で、1000〜1000000であり、好ましくは3000〜500000である。より好ましくは、4000〜200000である。
【0032】
また、一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物は、末端官能基を置換または未置換の炭素環式芳香族基、二置換アミノ基、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルキル基を有するアルキルオキシ基、カルボキシル基、アルコキシカルボニル基、ヒドロキシル基などで置換することによる末端処理をされていても構わない。
【0033】
本発明の一般式(1)で表される高分子化合物の具体例としては、例えば、以下に例示するが、本発明はこれらの具体例に限定されるものではない。
【0034】
【表1】

【0035】
【表2】

【0036】
【表3】

【0037】
【表4】

【0038】
【表5】

【0039】
【表6】

【0040】
【表7】

【0041】
【表8】

【0042】
【表9】

【0043】
【表10】

【0044】
次に、本発明の一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物の製造方法について説明する。
一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物は、例えば、一般式(2)で表されるフェナザシリン化合物にニッケル触媒を用いて重合させることにより製造することができる。
【0045】
【化6】

【0046】
(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはハロゲン原子を表す。)
【0047】
一般式(2)において、R、R、R〜Rは、それぞれ、上述の一般式(1)におけるR、R、R〜Rと同じである。
【0048】
次に、一般式(2)において、Rはそれぞれ、上述の一般式(1)におけるRと同じである。
また、一般式(2)において、Xとしては、ハロゲン原子を表す。Xのハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0049】
また、一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物は、例えば、上記一般式(2)で表されるフェナザシリン化合物と一般式(3)で表されるフェナザシリン化合物にパラジウム触媒を用いて重合させることにより製造することができる。
【0050】
【化7】

【0051】
(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはボロン酸基、ボロン酸エステル基、もしくはトリアルキルスタニル基を表す。)
【0052】
一般式(3)において、R、R、R〜Rは、それぞれ、上述の一般式(1)におけるR、R、R〜Rと同じである。
【0053】
次に、一般式(3)において、Rはそれぞれ、上述の一般式(1)におけるRと同じである。
また、一般式(3)において、Xとしては、ボロン酸基、ボロン酸エステル基、もしくはトリアルキルスタニル基を表す。
【0054】
本発明の一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物は、有機半導体材料として用いることができる。
有機半導体材料としては、有機エレクトロルミネッセンス材料、有機トランジスタ材料、有機太陽電池材料に好適である。
【0055】
また、本発明の高分子化合物を有機溶媒に溶解させた状態で用いることができる。
有機溶媒としては、ヘキサン、オクタン、デカン、トルエン、キシレン、エチルベンゼン、1−メチルナフタレンなどの炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル、乳酸エチルなどのエステル系溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、含フッ素アルコールなどのアルコール系溶媒、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、アニソールなどのエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシドなどの極性溶媒などを用いることができる。
これらの有機溶媒は単独で使用してもよく、また複数併用してもよい。
【0056】
有機電子デバイスにおいて、有機半導体材料には高い耐熱性が要求される。この有機半導体材料の耐熱性を示す指標としてガラス転移温度が挙げられる。ガラス転移温度は、RおよびRのアルキル鎖長が短いほど、高くなる傾向がある。そのため、一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物において、RおよびRのアルキル基の炭素数が少ない方が耐熱性に優れている。
また、有機電子デバイスにおいて、有機半導体材料には高い電荷移動度が要求される。この有機半導体材料において、一般的に主鎖のπ共役長が長いほど、電荷移動度は高くなる。そのため、一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物において、RまたはRをアリール基とし、主鎖のπ共役長を長くする方が電荷移動度に優れている。
さらに、有機電子デバイスにおいて、有機半導体材料には優れた溶解性が要求される。一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物において、上記のR〜Rが、長鎖または分岐鎖である方が、一般的に溶解性に優れている。
【0057】
上記のガラス転移温度は、DSC(示差走査熱量測定)やTMA(熱機械分析)などの公知の技術を用いて評価可能であるが、DSCの方法を用いて評価した。
また、上記の電荷移動度は、FET法(電界トランジスタ)やTime-of-flight法、SCLC(空間電荷制限電流法)などの公知の技術を用いて評価可能であるが、FET法の方法を用いて評価した。
【0058】
本発明により、有機溶媒に可溶で凝集性がなく、均質な薄膜形成を行うことが可能な高分子化合物が得られる。また、有機電子デバイスに適した高分子化合物、および電荷移動度に優れ高耐熱性を有する有機電子デバイスが得られる。
【0059】
次に本発明の有機トランジスタについて説明する。
本発明の有機トランジスタは、一対の電極間に、本発明の一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物を少なくとも一種含有する層を、少なくとも一層挟持してなるものである。
【0060】
本発明の有機トランジスタの実施形態について、図面を参照しながら説明する。図1は本発明の有機トランジスタの一形態を示す模式的断面図である。
この有機トランジスタの形態においては、基板11上にゲート電極21が設けられ、そのゲート電極上にゲート絶縁層31が積層されており、その上に所定の間隔で形成されたソース電極61およびドレイン電極41が形成されており、さらにその上に有機半導体層51が積層されている(ボトムゲート・ボトムコンタクト構造)。
【0061】
図2に示した有機トランジスタの形態においては、基板12上にゲート電極22が設けられ、そのゲート電極上にゲート絶縁層32が積層されており、その上に有機半導体層52が積層されており、さらにその上に、所定の間隔でソース電極62およびドレイン電極42が形成されている(ボトムゲート・トップコンタクト構造)。
【0062】
また、図3に示した有機トランジスタの形態においては、基板13の上に、所定の間隔でソース電極63およびドレイン電極43が形成されており、その上に有機半導体層53が積層されており、その上にゲート絶縁層33が積層されており、さらにその上にゲート電極23が設けられている(トップゲート・ボトムコンタクト構造)。
【0063】
図4に示した有機トランジスタの形態においては、基板14の上に、有機半導体層54が積層されており、その上に、所定の間隔でソース電極64およびドレイン電極44が形成されており、その上にゲート絶縁層34が積層されており、さらにその上にゲート電極24が設けられている(トップゲート・トップコンタクト構造)。
【0064】
このような構成を有するトランジスタでは、有機半導体層がチャネル領域を形成しており、ゲート電極に印加される電圧でソース電極とドレイン電極の間に流れる電流が制御されることによってオン/オフ動作する。
【0065】
一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物を含有する有機半導体層はドーピング処理を施しても良い。ここでドーピングとは、電子受容性分子(アクセプター)または電子供与性分子(ドナー)をドーパントとして該薄膜に導入することを意味する。従って、ドーピングが施された薄膜は、本発明の高分子化合物とドーパントを含有する薄膜である。本発明に用いるドーパントとしてアクセプター、ドナーのいずれも使用可能である。
【0066】
本発明におけるドナー性ドーパントとしては、有機半導体層の有機化合物分子に電子を供与する役割を果たすものならばどのようなものでも用いることが出来る。特に好適な例としては、Li、Na、K、Rb、Csなどのアルカリ金属、Ca、Sr、Baなどのアルカリ土類金属、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Ybなどの希土類金属、アンモニウムイオン、R4+、R4As+、R3+、アセチルコリンなどが挙げられる。
【0067】
本発明におけるアクセプター性ドーパントとしては、有機半導体層の有機化合物分子から電子を取り去る役割を果たすものならばどのようなものでも用いることが出来る。特に好適な例として、Cl2、Br2、I2、ICl、ICl3、IBr、IFなどのハロゲン、PF5、AsF5、SbF5、BF3、BC13、BBr3、SO3などのルイス酸、HF、HCl、HNO3、H2SO4、HClO4、FSO3H、ClSO3H、CF3SO3Hなどのプロトン酸、酢酸、蟻酸、アミノ酸などの有機酸、FeCl3、FeOCl、TiCl4、ZrCl4、HfCl4、NbF5、NbCl5、TaCl5、MoCl5、WF5、WCl6、UF6、LnCl3(Ln=La、Ce、Nd、Pr、などのランタノイドとY)などの遷移金属化合物、Cl-、Br-、I-、ClO4-、PF6-、AsF5-、SbF6-、BF4-、スルホン酸アニオンなどの電解質アニオンなどが挙げられる。
【0068】
これらのドーパントのドーピングの方法としては、予め有機半導体の薄膜を作製しておき、ドーパントを後で導入する方法、有機半導体の薄膜作製時にドーパントを導入する方法のいずれも使用可能である。前者の方法のドーピングとして、ガス状態のドーパントを用いる気相ドーピング、溶液あるいは液体のドーパントを該薄膜に接触させてドーピングする液相ドーピング、固体状態のドーパントを該薄膜に接触させてドーパントを拡散ドーピングする固相ドーピングの方法をあげることができる。また液相ドーピングにおいては電解を施すことによってドーピングの効率を調整することができる。後者の方法では、有機半導体化合物とドーパントの混合溶液あるいは分散液を同時に塗布、乾燥してもよい。他の方法として、電気化学的ドーピング、光開始ドーピング等の化学的ドーピングおよびイオン注入法等の物理的ドーピングの何れも使用可能である。
【0069】
有機薄膜の形成方法としては、特に限定されることはなく、従来公知の一般的な薄膜形成方法を用いることが可能である。具体的には、真空蒸着、スパッタリング、プラズマ、イオン化蒸着、イオンプレーティング、クラスターイオンビーム等の乾式成膜法やスピンコート、ディップコート、フローコーティング、キャスト、バーコート、ロールコート、インクジェット等の溶液塗布法のいずれかの方法を適用することができる。本有機トランジスタに用いる、本発明の高分子化合物を含有する有機半導体層は、溶媒に溶かした溶液のディップコート、スピンコート、キャスト、バーコート、ロールコート等の塗布法が好まれる。
【0070】
本発明における有機半導体層の膜厚としては特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎるとトランジスタの構造によってはチャネル長が長くなる場合や、高い印加電圧が必要となる場合があり、その場合、駆動速度やオン/オフ比の低下を招く。従って、一般的に数nm以上、数十μm以下の範囲に設定することが好ましく、より好ましくは、5nm以上、1μm以下である。
【0071】
また、本発明の有機トランジスタに使用する基板としては、特に限定するものではないが、いかなる物を用いても良い。一般に好適に用いられる物は、石英などのガラスやシリコンウェハーの他、プラスチック基板なども用いることが可能である。さらには、これらを複合基板も用いることができ、一層構造でも、多層構造の形態でもよい。プラスチック基板としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなる基板等が挙げられる。
【0072】
本発明の有機トランジスタにおいて、ソース電極、ドレイン電極及びゲート電極に夫々用いることが可能な材料としては、導電性材料であれば特に限定されず、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛(IZO)、酸化モリブデン、金、銀、白金、銅、インジウム、アルミニウム、マグネシウム、ニッケル、クロム、鉄、錫、タンタル、パラジウム、テルル、イリジウム、ルテニウム、ゲルマニウム、タングステン、リチウム、ベリリウム、ナトリウム、カリウム、カルシウム、亜鉛、マグネシウム/インジウム合金、マグネシウム/銅合金、マグネシウム/銀合金、マグネシウム/アルミニウム合金、アルミニウム/リチウム合金、アルミニウム/スカンジウム/リチウム合金、ナトリウム/カリウム合金等の金属や合金の他、フッ素ドープ酸化亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペーストおよびカーボンペーストなどが用いられる。特に、白金、金、銀、銅、アルミニウム、インジウム、ITOおよび炭素が好ましい。また、ドーピング等で導電率を向上させた公知の導電性ポリマー、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の錯体なども好適に用いられる。ソース電極、ドレイン電極は、上に挙げた中でも有機薄膜層との接触面において電気抵抗が少ないものが好ましい。
【0073】
本発明の有機トランジスタにおける電極の形成方法としては、上記を原料として蒸着やスパッタリング等の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によるレジストを用いてエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導電性微粒子分散液を直接インクジェットによりパターニングしてもよいし、塗工膜からリソグラフやレーザーアブレーションなどにより形成してもよい。さらに導電性ポリマーや導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法も用いることができる。
【0074】
本発明の有機トランジスタにおけるゲート絶縁層である絶縁体層に用いる材料としては種々の絶縁物を用いることができるが、特に、比誘電率の高い無機酸化物あるいは有機化合物が好ましい。無機酸化物としては、酸化ケイ素、窒化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、ペントオキサイドタンタル、ジオキサイドチタン、トリオキサイドイットリウムなどが挙げられる。それらのうち好ましいのは、酸化ケイ素、窒化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。
【0075】
無機酸化物の形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法、印刷やインクジェットなどのパターニングによる方法などのウェットプロセスが挙げられ、材料に応じて使用できる。
【0076】
ゲート絶縁層に用いる有機化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、ポリフッ化ビニリデン(PVF)およびシアノエチルプルラン等を用いることもできる。有機化合物の形成法としては、前記ウェットプロセスが好ましい。
【0077】
本発明の有機エレクトロルミネッセンスの実施形態について説明する。
本発明の有機エレクトロルミネッセンスは、一対の電極間に、本発明の一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物を少なくとも一種含有する層を、少なくとも一層挟持してなるものである。
【0078】
有機エレクトロルミネッセンスは、通常、一対の電極間に一層または多層の有機薄膜で構成されている。一層型素子の場合、一対の電極間に発光層を設けている。発光層は、少なくとも一種の発光材料を含有し、それに加えて陽極から注入したホールまたは陰極から注入した電子を発光材料まで輸送させるためにホール注入・輸送材料または電子注入・輸送材料を含有しても良い。多層型素子は、(A)陽極/ホール注入・輸送層/発光層/陰極、(B)陽極/発光層/電子注入・輸送層/陰極、(C)陽極/ホール注入・輸送層/発光層/電子注入・輸送層/陰極の多層構成で積層した有機電界発光素子がある。さらには、発光層と電子注入・輸送層の間にホール阻止層を積層した構成である(D)陽極/ホール注入・輸送層/発光層/ホール阻止層/電子注入・輸送層/陰極とすることもできる。
【0079】
本発明の有機エレクトロルミネッセンスにおいては、これらの素子構成に限るものではなく、それぞれの型の素子において、ホール注入・輸送層、発光層、電子注入・輸送層を複数層設けることができる。また、それぞれの型の素子において、ホール注入・輸送層と発光層との間に、ホール注入・輸送材料と発光材料の混合層および/または発光層と電子注入・輸送層との間に、発光材料と電子注入・輸送材料の混合層を設けることもできる。
【0080】
本発明の高分子化合物は、どの素子構成においても使用することが出来る。本発明の高分子化合物は、ホール・輸送層においても、ホール・輸送材料として使用できる。ホール・輸送材料は、陰極から有機層への電子注入機能、および注入した電子を輸送し発光層に注入する機能を有しているので、ホール・輸送層が二層以上の場合でも、いずれのホール・輸送層に使用することができる。
【0081】
本発明の高分子化合物により形成される薄膜は非晶質性があるので、薄膜にした場合の長期間の保存や素子を駆動させた場合の発光寿命等においても有利である。また、本発明の高分子化合物は、金属電極に対する密着性も良好であり、薄膜のイオン化ポテンシャルも低いことから、陽極からのホール注入に有利であるので、ホール・輸送層を二層以上にした場合、本発明の高分子化合物をITO電極(陽極)側のホール・輸送層に使用した方がさらに有利である。
【0082】
ここで、ホール注入・輸送層、発光層、または電子注入・輸送層は、それぞれ二層以上で形成されても良い。
【0083】
ホール注入・輸送材料としては、陽極からのホールを注入する機能を持ち、発光層または発光材料に対してホールを注入する機能を有し、発光層で生成した励起子の電子注入・輸送層または電子注入・輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物が挙げられる。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、ポリチオフェンやポリアニリン等の導電性ポリマーがあるが、これらに限定されるものではない。ホール注入・輸送材料は単独で使用してもよく、あるいは複数併用してもよい。
【0084】
本発明の有機エレクトロルミネッセンスにおいて使用できるホール注入・輸送材料の中で、さらに効果的なホール注入・輸送材料は、芳香族三級アミン誘導体またはフタロシアニン誘導体である。具体的には、芳香族三級アミン誘導体としては、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−1,1'−ビフェニル−4,4'−ジアミン(TPD)、4,4'−ビス[N−(1−ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)、N,N,N',N'−(4−メチルフェニル)−1,1'−フェニル−4,4'−ジアミン、N,N,N',N'−(4−メチルフェニル)−1,1'−ビフェニル−4,4'−ジアミン、N,N'−ジフェニル−N,N'−ジナフチル−1,1'−ビフェニル−4,4'−ジアミン、N,N'−(メチルフェニル)−N,N'−(4−n−ブチルフェニル)−フェナントレン−9,10−ジアミン、N,N−ビス(4−ジ−4−トリルアミノフェニル)−4−フェニル−シクロヘキサン等、またはこれらの芳香族三級アミン骨格を有したオリゴマーまたはポリマー等があるが、これらに限定されるものではない。
【0085】
フタロシアニン(Pc)誘導体としては、H2Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc−O−GaPc等のフタロシアニン誘導体およびナフタロシアニン誘導体等があるが、これらに限定されるものではない。
【0086】
本発明に係る高分子化合物をホール注入・輸送層に用いた場合、使用できる電子注入・輸送材料としては、陰極からの電子を注入する機能を持ち、発光層または発光材料に対して電子を注入する機能を有し、発光層で生成した励起子のホール注入・輸送層またはホール注入・輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物が挙げられる。
【0087】
具体的には、キノリン金属錯体、オキサジアゾール、ベンゾチアゾール金属錯体、ベンゾオキサゾール金属錯体、ベンゾイミダゾール金属錯体、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサジアゾール、チアジアゾール、テトラゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体等が挙げられる。電子注入・輸送材料は単独で使用してもよく、あるいは複数併用してもよい。
【0088】
本発明の有機エレクトロルミネッセンスにおいて、さらに効果的な電子注入・輸送材料は、金属錯体化合物である。中でも、例えば、一般式(a)〜一般式(c)で示される有機アルミニウム錯体は好適である。
(Q)−Al (a)
(式中、Qは置換または未置換の8−キノリノラート配位子を表す)
(Q)−Al−O−L (b)
(式中、Qは置換8−キノリノラート配位子を表し、O−Lはフェノラート配位子であり、Lはフェニル部分を含む炭素数6〜24の炭化水素基を表す)
(Q)−Al−O−Al−(Q) (c)
(式中、Qは置換8−キノリノラート配位子を表す)
【0089】
置換または未置換の8−キノリノラート配位子を有する有機アルミニウム錯体の具体例としては、例えば、トリス(8−キノリノラート)アルミニウム、トリス(4−メチル−8−キノリノラート)アルミニウム、トリス(5−メチル−8−キノリノラート)アルミニウム、トリス(3,4−ジメチル−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(フェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,3−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,4−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジ−tert−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,5,6−テトラメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−ナフトラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2
,4−ジメチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジ−tert−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−8−キノリノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2,4−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウムなどを挙げることができる。もちろん、これらの有機金属錯体は、単独で使用してもよく、あるいは複数併用してもよい。
【0090】
本発明の有機エレクトロルミネッセンスに使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、トリフェニルアミン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミンピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン等およびそれらの誘導体があるが、これらに限定されるものではない。
【0091】
本発明の有機エレクトロルミネッセンスに使用できる発光材料として、燐光(三重項発光)性の化合物が挙げられる。具体的には、トリス(2−フェニルピリミジル)イリジウム錯体、トリス〔2−(2'−フルオロフェニル)ピリジル〕イリジウム錯体、ビス(2−フェニルピリジル)アセチルアセトナトイリジウム錯体、ビス〔2−(2',4'−ジフルオロフェニル)ピリジル〕アセチルアセトナトイリジウム錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23Hポルフィリン白金錯体等を挙げることができる。
【0092】
有機エレクトロルミネッセンスの陽極に使用される導電性材料は、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、酸化インジウム錫合金(ITO)、酸化錫(NESA)等の酸化金属、さらにはポリチオフェンやポリピロール等の公知の導電性ポリマー、例えばポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の錯体等、が用いられる。これらの導電性材料は、単独で使用しても良く、あるいは複数併用してもよい。
【0093】
陽極は一層構造であってもよく、あるいは多層構造であってもよい。
【0094】
陽極のシート電気抵抗は、好ましくは、数百Ω/□以下、より好ましくは、5Ω/□以上、50Ω/□以下程度に設定する。
【0095】
陽極の厚みは、使用する導電性材料にもよるが、一般的には、5nm以上、1000nm以下程度、より好ましくは10nm以上、500nm以下程度に設定する。
【0096】
陰極に使用される導電性材料は、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、フッ化リチウム、ルテニウム、マンガン等およびそれらの合金が用いられる。合金としては、リチウム/インジウム、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、加熱の温度、雰囲気、真空度により制御され適切な比率が選択される。これらの導電性材料は、単独で使用しても良く、あるいは複数併用してもよい。
【0097】
陰極は一層構造であってもよく、あるいは多層構造であってもよい。
【0098】
陰極のシート電気抵抗は、数百Ω/□以下に設定することが好ましい。
【0099】
陰極の厚みは、使用する導電性材料にもよるが、一般的には、5nm以上、1000nm以下程度、より好ましくは10nm以上、500nm以下程度に設定する。
【0100】
本発明に係わる有機エレクトロルミネッセンスの電極(陽極、陰極)の形成方法は、特に限定されることはなく、従来公知の一般的な薄膜形成方法を用いることが可能である。具体的には、真空蒸着、スパッタリング、プラズマ、イオン化蒸着、イオンプレーティング、クラスターイオンビーム等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング、キャスト、バーコート、インクジェット等の溶液塗布法のいずれかの方法を適用することができる。
【0101】
有機エレクトロルミネッセンスでは、効率良く発光させるために、少なくとも一方は素子の発光波長領域において充分透明であることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性を確保するように設定する。発光面の電極は、光透過率を50%以上、好ましくは70%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明であれば限定されるものではないが、例示すると、ガラス基板、ポリエチレン、ポリエーテルサルフォン、ポリプロピレン等の透明性ポリマーがあげられる。
【0102】
有機エレクトロルミネッセンスは、多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。また、必要があれば、発光材料、ドーピング材料、キャリア注入を行うホール注入・輸送材料や電子注入・輸送材料を二種類以上組み合わせて使用することも出来る。また、ホール注入・輸送層、発光層、電子注入・輸送層は、それぞれ二層以上の層構成により形成されても良く、ホールまたは電子が効率よく電極から注入され、層中で輸送される素子構造が選択される。
【0103】
本発明に係わる有機エレクトロルミネッセンスの各層(ホール注入・輸送層、発光層、電子注入・輸送層)の形成方法は、特に限定されることはなく、従来公知の一般的な薄膜形成方法を用いることが可能である。具体的には、真空蒸着、スパッタリング、プラズマ、イオン化蒸着、イオンプレーティング、クラスターイオンビーム等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング、キャスト、バーコート、インクジェット等の溶液塗布法のいずれかの方法を適用することができる。
【0104】
膜厚は特に限定されるものではないが、各層は適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。一般には、好ましくは1nm以上、1μm以下程度であり、より好ましくは10nm以上、0.2μm以下程度に設定する。
【0105】
本発明の高分子化合物を含有する層が正孔注入輸送層である場合、正孔注入輸送層の形成方法としては、溶液塗布法を使用することは好ましく、溶液塗布法としては、例えばスピンコート法、キャスト法、マイクログラビアコート法、グラビアコート法、バーコート法、ワイアーバーコート法、デイップコート法、ロールコート法、スプレーコート法、ラングミュア・ブロジェット法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法が挙げられる。
【0106】
また、発光層の形成方法としては、真空蒸着法、イオン化蒸着法または溶液塗布法を使用することができる。発光層が、本発明の高分子化合物を含有する場合または発光機能を有する高分子化合物を含有する場合には、発光層は、好ましくは、溶液塗布法を使用して形成する。発光層が、発光機能を有する化合物を含有する場合には、真空蒸着法、イオン化蒸着法または溶液塗布法を使用して形成することができる。さらに、電子注入輸送層の形成方法としては、真空蒸着法、イオン化蒸着法または溶液塗布法を使用することができる。
【0107】
溶液塗布法を用いて各層を形成する場合、各層を形成する材料あるいはその材料とバインダー樹脂を溶媒に溶解させるか、あるいは分散させて塗布液とする。ホール注入・輸送層、発光層、電子注入・輸送層の各層に使用しうるバインダー樹脂としては、例えば、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性ポリマー、ポリビニルカルバゾール(PVK)、ポリシラン等の光導電性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン等の導電性ポリマーを挙げることができる。バインダー樹脂は、単独で使用してもよく、あるいは複数併用してもよい。
【0108】
溶液塗布法を用いて各層を形成する場合、各層を形成する材料あるいはその材料とバインダー樹脂を適当な有機溶媒(例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、エチルベンゼン、1−メチルナフタレンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、例えば、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル系溶媒、例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶媒、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチルー2−ピロリドン、1−メチルー2−イミダゾリジノン、ジメチルスルフォキサイドなどの極性溶媒)および/または水に溶解、または分散させて塗布液とし、各種の塗布法により薄膜を形成することができる。
【0109】
なお、分散させる方法としては、特に限定するものではないが、例えば、ボールミル、サンドミル、ペイントシェーカー、アトライター、ホモジナイザー等を用いて微粒子状に分散することができる。
【0110】
塗布液の濃度に関しては特に限定するものではなく、実施する塗布法により所望の厚みを形成するに適した濃度範囲に設定することができる。一般には、0.1重量%以上、50重量%以下程度、好ましくは1重量%以上、30重量%以下程度の溶液濃度である。なお、バインダー樹脂を使用する場合、その使用量に関しては特に制限するものではないが、一般には、各層を形成する材料に対して(一層型素子を形成する場合には、各成分の総量に対して)5重量%以上、99.9重量%以下程度、好ましくは10重量%以上、99.9重量%以下程度、より好ましくは15重量%以上、90重量%以下程度に設定する。
【0111】
作製した素子に対して、酸素や水分との接触を防止する目的で、保護層(封止層)を設けることが好ましく、また、素子不活性物質中(例えば、パラフィン、流動パラフィン、シリコンオイル、フルオロカーボン油、ゼオライト含有フルオロカーボン油など)に封入して保護することができる。
【0112】
保護層に使用する材料として、例えば、有機高分子材料(例えば、フッ素化樹脂、エポキシ樹脂、シリコーン樹脂、エポキシシリコーン樹脂、ポリスチレン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリパラキシレン、ポリエチレン、ポリフェニレンオキシド)、無機材料(例えば、ダイヤモンド薄膜、アモルファスシリカ、電気絶縁性ガラス、金属酸化物、金属窒化物、金属炭素化物、金属硫化物)、さらには光硬化性樹脂などを挙げることができる。また、保護層に使用する材料は、単独で使用してもよく、あるいは複数併用してもよい。保護層は、一層構造であってもよく、あるいは多層構造であってもよい。
【0113】
本発明の有機エレクトロルミネッセンスは、通常、直流駆動型の素子として使用することができるが、交流駆動型の素子としても使用することができる。また、本発明の有機電界発光素子は、セグメント型、単純マトリック駆動型等のパッシブ駆動型であってもよく、TFT(薄膜トランジスタ)型、MIM(メタル−インスレーター−メタル)型等のアクティブ駆動型であってもよい。駆動電圧は通常、2〜30Vである。本発明の有機電界発光素子は、パネル型光源(例えば、時計、液晶パネル等のバックライト)、各種の発光素子(例えば、LED等の発光素子の代替)、各種の表示素子〔例えば、情報表示素子(パソコンモニター、携帯電話・携帯端末用表示素子)〕、各種の標識、各種のセンサーなどに使用することができる。
【0114】
本発明の有機太陽電池の実施形態について説明する。
本発明の有機太陽電池は、一対の電極間に、本発明の一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物を少なくとも一種含有する層を、少なくとも一層挟持してなるものである。
本発明の有機太陽電池は、通常、一対の電極間に一層または多層の有機薄膜で構成されている。一層型素子の場合には、一対の電極間に活性層を設けている。ここで活性層とは、少なくとも有機p型半導体と有機n型半導体とが混合して形成されている。多層型素子は、(A)電極/有機p型半導体層/活性層/電極、(B)電極/活性層/有機n型半導体層/電極、(C)電極/有機p型半導体層/活性層/有機n型半導体層/電極の多層構成で積層した有機太陽電池がある。ここで、有機p型半導体層、または有機n型半導体層は、それぞれ二層以上で形成されていても良い。
【0115】
本発明の高分子化合物は、どの素子構成においても使用することが出来る。本発明の高分子化合物は、活性層もしくは有機p型半導体層のいずれの層においても、ホール輸送材料として使用できる。本発明のホール輸送材料は、活性層から有機p型半導体層へのホール注入機能、および注入したホールを輸送し電極に注入する機能を有しているので、有機p型半導体層が二層以上の場合でも、いずれの有機n型およびp型半導体層に使用することができる。
【0116】
本発明に係る化合物を活性層に用いた場合、使用できる有機p型半導体としては、活性層からのホールを輸送する機能を持ち、電極に対してホールを注入する機能を有する化合物が挙げられる。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール(PVK)、ポリシラン、ポリチオフェンやポリアニリン等の導電性ポリマーがあるが、これらに限定されるものではない。有機p型半導体は単独で使用してもよく、あるいは複数併用してもよい。
【0117】
有機n型半導体としては、活性層からの電子を輸送する機能を持ち、電極に対して電子を注入する機能を有する化合物が挙げられる。具体的には、キノリン金属錯体、ベンゾチアゾール金属錯体、ベンゾオキサゾール金属錯体、ベンゾイミダゾール金属錯体、2,4,7−トリニトロフルオレノン、アントラキノジメタン、ジフェノキノン、ナフトキノン、アントラキノン、スチルベンキノン、チオピランジオキシド、オキサジアゾール、チアジアゾール、テトラゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン、フラーレン、シロール等とそれらの誘導体があるが、これらに限定されるものではない。有機n型半導体は単独で使用してもよく、あるいは複数併用してもよい。
【0118】
本発明の有機太陽電池における有機半導体層の形成方法は、特に限定されることはなく、従来公知の一般的な薄膜形成方法を用いることが可能である。具体的には、真空蒸着、スパッタリング、プラズマ、イオン化蒸着、イオンプレーティング、クラスターイオンビーム等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング、キャスト、バーコート、インクジェット等の溶液塗布法のいずれかの方法を適用することができる。
【0119】
本発明の有機太陽電池における有機半導体層の膜厚としては特に制限されないが、一般に膜厚が薄すぎると光吸収効率が低下し、逆に厚すぎると活性層で生成したキャリアが電極に輸送される前に失活する場合があり、その場合、変換効率が低下する結果を招く。従って、通常は数nm以上、1μm以下の範囲に膜厚を設定することが好ましい。
【0120】
本発明の有機太陽電池における有機薄膜の形成方法としては、特に限定されることはなく、従来公知の一般的な薄膜形成方法を用いることが可能である。具体的には、真空蒸着、スパッタリング、プラズマ、イオン化蒸着、イオンプレーティング、クラスターイオンビーム等の乾式成膜法やスピンコート、ディップコート、フローコーティング、キャスト、バーコート、ロールコート、インクジェット等の溶液塗布法のいずれかの方法を適用することができる。本有機太陽電池に用いる、本発明の高分子化合物を含有する有機半導体層は、溶媒に溶かした溶液のディップコート、スピンコート、キャスト、バーコート、ロールコート等の塗布法が好まれる。
【0121】
溶液塗布法を用いて各層を形成する場合、各層を形成する材料あるいはその材料とバインダー樹脂を溶媒に溶解させるか、あるいは分散させて塗布液とする。有機p型半導体層、活性層、有機n型半導体層の各層に使用しうるバインダー樹脂としては、例えば、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性ポリマー、ポリビニルカルバゾール、ポリシラン等の光導電性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン等の導電性ポリマーを挙げることができる。バインダー樹脂は、単独で使用してもよく、あるいは複数併用してもよい。
【0122】
溶液塗布法を用いて各層を形成する場合、各層を形成する材料あるいはその材料とバインダー樹脂を適当な有機溶媒(例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、エチルベンゼン、1−メチルナフタレンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、例えば、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル系溶媒、例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶媒、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチルー2−ピロリドン、1−メチルー2−イミダゾリジノン、ジメチルスルフォキサイドなどの極性溶媒)および/または水に溶解、または分散させて塗布液とし、各種の塗布法により薄膜を形成することができる。
【0123】
なお、分散させる方法としては、特に限定するものではないが、例えば、ボールミル、サンドミル、ペイントシェーカー、アトライター、ホモジナイザー等を用いて微粒子状に分散することができる。
【0124】
本発明における電極に用いることが可能な材料としては、仕事関数の大きな電極材料と仕事関数の小さな電極材層を組み合わせて用いる。仕事関数の大きな電極材層と仕事関数の小さな電極材層を組み合わせることにより、有機薄膜に内蔵電界を与えることができる。仕事関数の大きな電極材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、酸化インジウム錫合金(ITO)、酸化錫(NESA)等の酸化金属、さらにはポリチオフェンやポリピロール等の公知の導電性ポリマー、例えばポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の錯体等が代表例として挙げられるが、これらに限定されるものではない。これらの電極材料は、単独で使用しても良く、あるいは複数併用してもよい。
【0125】
仕事関数の小さな電極材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、フッ化リチウム、ルテニウム、マンガン等およびそれらの合金が用いられる。合金としては、リチウム/インジウム、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、加熱の温度、雰囲気、真空度により制御され適切な比率が選択される。これらの電極材料は、単独で使用しても良く、あるいは複数併用してもよい。
【0126】
電極の膜厚は、使用する導電性材料にもよるが、通常1nm以上、500nm以下、好ましくは10nm以上、200nm以下である。膜厚は薄すぎると電極のシート抵抗が大きくなりすぎ発生した光電荷を十分に外部回路へ伝達できなくなり、厚すぎると照射光の透過率が悪くなるので変換効率が低下する。
【実施例】
【0127】
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
(実施例1)
【0128】
【化8】

【0129】
窒素気流下にて、ビス(1,5−シクロオクタジエン)ニッケル(2.19g、7.98mmol)、1,5−シクロオクタジエン(1mL)、および2,2'−ビピリジル(1.25g、7.98mmol)をトルエン(60mL)に懸濁し、60℃に昇温した後、1時間攪拌した。次いで、2,8−ジブロモ−5,10−ジヒドロ−10,10−ジ−n−ヘキシル−5−メチルフェナザシリン(3.00g、5.58mmol)を加えた後、60℃で14時間攪拌した。更に、ブロモベンゼン(175mg、1.10mmol)を添加し、反応物を3.5時間攪拌した後、反応物をセライト濾過し、濾液を減圧濃縮することで、無色透明油状物(30g)を得た。この無色透明油状物をメタノールに排出し、析出物を濾取し、白色固体(28g)を得た。この白色固体を、2M塩酸(200mL)、メタノール(200mL)、ヘキサン(200mL)の順に洗浄し、70℃で減圧乾燥して、ポリ(5,10−ジヒドロ−10,10−ジ−n−ヘキシル−5−メチルフェナザシリン)1.83gを白色固体として得た。
分子量:36600
本実施例において、上記高分子化合物のガラス転移温度Tgは、DSCの方法を用いて評価した。昇温速度を10℃/minで測定したところTg=130.1℃の値を得た。本実施例のガラス転移温度は、従来の化合物より高かった。
【0130】
(実施例2)
パターン形成した厚さ150nmのITO透明電極を有するガラス基板(スパッター成膜品;シート抵抗15Ω)を、中性洗剤、セミコクリーン(フルウチ化学製)、超純水、アセトン、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。次いで、PEDOT/PSS(式4)をスピンコート法により65nmの厚みで成膜し、ホットプレート上で減圧乾燥(200度、1時間)して、第一の正孔注入輸送層を形成した。次に、実施例1で合成した高分子化合物のトルエン溶液(1.5重量%)をスピンコート法により50nmの厚みで成膜し、ホットプレート上で窒素雰囲気下にて加熱処理を行い(180度、1時間)、第二の正孔注入輸送層を形成した。
【0131】
【化9】

【0132】
次に、トルエンにて第二の正孔注入輸送層をリンス処理した後に、ポリフルオレン(式5)のキシレン溶液(1.2重量%)をスピンコート法により60nmの厚みで成膜し、ホットプレート上で減圧乾燥(140度、30分)して、発光層を形成した。次に、ガラス基板を蒸着装置の基板ホルダーに固定し、発光層の上に、フッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.2nm/秒で、0.5nmの膜厚で製膜した後、アルミニウム(Al)をタングステンボートにより加熱して、蒸着速度2.0nm/secで、膜厚100nmのアルミニウム層を形成して陰極を完成させた。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この有機電界発光素子においてITOを陽極、LiF/Alを陰極として、直流電圧を印加してガラス基板を通して発光を観察した。輝度はトプコン輝度計BM−8にて測定した。
【0133】
【化10】

【0134】
作製した有機電界発光素子に直流電圧を印加し、乾燥雰囲気下、10mA/cmの定電流密度で連続駆動させた。初期には、5.0V、輝度350cd/cmの青色の発光が確認された。初期輝度500cd/cmから200時間の連続駆動を行ったところ、輝度の低下率は12%であった。
【0135】
(実施例3)
ゲート電極としての抵抗率0.02Ω・cmのシリコン基板に、厚さ200nmの熱酸化膜(SiO)を形成した。ここで、シリコン基板自体がゲート電極となり、シリコン基板表面に形成されたSiO層がゲート絶縁層となる。この上に、実施例1で合成した化合物のジクロロエタン溶液を用いて、スピンコート法により、厚さ50nmの有機半導体層を形成した。さらに、この上に、マスクを用いて、金を蒸着してソース電極およびドレイン電極を形成した。尚、ソース電極およびドレイン電極の厚みは40nmであり、チャネル幅は5mm、チャネル長は20μmであった。
以上のように作製した有機トランジスタは、p型のトランジスタ素子としての特性を示した。有機トランジスタの電流−電圧(I−V)特性の飽和領域から、電荷移動度を求めたところ、7.7×10−2(cm/Vs)の値が得られた。さらに、ドレインバイアス−50Vとし、ゲートバイアス−50Vおよび0Vにした時のドレイン電流値を測定し、電流のオン/オフ比を求めたところ、 2.8×10の値が得られた。本実施例の電荷移動度は、従来の化合物より優れていた。
【産業上の利用可能性】
【0136】
本発明の高分子化合物は、有機溶媒に可溶で凝集性がなく、均質な薄膜形成を行なうことが可能であり、該化合物を用いることにより電荷移動度に優れ高耐熱性を有する有機電子デバイスが得られる。
本発明の高分子化合物を用いた有機トランジスタは、高い電荷移動度、大きな電流オン/オフ比を有し、かつ保存安定性に優れており、液晶表示素子、有機電界発光素子、電子ペーパー、各種センサーなどに使用することができる。
【図面の簡単な説明】
【0137】
【図1】本発明の有機トランジスタの模式的断面図である。
【図2】本発明の有機トランジスタの模式的断面図である。
【図3】本発明の有機トランジスタの模式的断面図である。
【図4】本発明の有機トランジスタの模式的断面図である。
【符号の説明】
【0138】
11:基板
21:ゲート電極
31:ゲート絶縁層
41:ドレイン電極
51:有機半導体層
61:ソース電極

12:基板
22:ゲート電極
32:ゲート絶縁層
42:ドレイン電極
52:有機半導体層
62:ソース電極

13:基板
23:ゲート電極
33:ゲート絶縁層
43:ドレイン電極
53:有機半導体層
63:ソース電極

14:基板
24:ゲート電極
34:ゲート絶縁層
44:ドレイン電極
54:有機半導体層
64:ソース電極

【特許請求の範囲】
【請求項1】
一般式(1)で表される繰り返し単位を高分子鎖中に少なくとも一つ有する高分子化合物。
【化1】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。)
【請求項2】
前記一般式(1)においてRおよびRが炭素数1〜6の無置換もしくは置換されてもよい一価の直鎖または分岐のアルキル基、または炭素数3〜8の無置換もしくは置換されていてもよい環状のアルキル基である、請求項1記載の高分子化合物。
【請求項3】
前記一般式(1)においてRおよびRがアリール基、かつRが炭素数2以上の無置換もしくは置換されてもよい一価のアルキル基である、請求項1記載の高分子化合物。
【請求項4】
前記一般式(1)においてRおよびRの一方はアリール基であり、他方は炭素数1〜6の無置換もしくは置換されてもよい一価の直鎖または分岐のアルキル基である、請求項1記載の高分子化合物。
【請求項5】
請求項1乃至4のいずれかに記載の高分子化合物からなる有機半導体材料。
【請求項6】
請求項1乃至4のいずれかに記載の高分子化合物を有機溶媒に溶解させた状態で用いることができることを特徴とする有機半導体材料。
【請求項7】
有機半導体層を有する有機トランジスタであって、該有機半導体層に請求項1乃至4のいずれかに記載の高分子化合物を少なくとも1種含有してなる有機トランジスタ。
【請求項8】
一対の電極間に、請求項1乃至4のいずれかに記載の高分子化合物を少なくとも一種含有する層を、少なくとも一層挟持してなる有機エレクトロルミネッセンス。
【請求項9】
一対の電極間に有機薄膜層を配置してなる有機太陽電池であって、該有機薄膜層に請求項1乃至4に記載の高分子化合物を少なくとも1種含有してなる有機太陽電池。
【請求項10】
一般式(2)で表されるフェナザシリン化合物にニッケル触媒を用いて重合させることを特徴とする請求項1記載の高分子化合物の製造方法。
【化2】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはハロゲン原子を表す。)
【請求項11】
一般式(2)で表されるフェナザシリン化合物と一般式(3)で表されるフェナザシリン化合物にパラジウム触媒を用いて重合させることを特徴とする請求項1記載の高分子化合物の製造方法。
【化3】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはハロゲン原子を表す。)
【化4】

(式中、R、R、R〜Rは、各々独立して水素原子もしくは互いに同一であっても異なっていてもよい置換基(ただし、スルホ基、カルボキシル基、ホスホリル基及びヒドロキシル基を除く)を示す。RとRは互いに結合して環を形成してもよい。Rは炭素数1以上の無置換もしくは置換されてもよい一価のアルキル基を示す。ただし、Rで表されるアルキル基上の置換基としてアミノ基及びアリール基を除く。Xはボロン酸基、ボロン酸エステル基、もしくはトリアルキルスタニル基を表す。)

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−111830(P2010−111830A)
【公開日】平成22年5月20日(2010.5.20)
【国際特許分類】
【出願番号】特願2008−287932(P2008−287932)
【出願日】平成20年11月10日(2008.11.10)
【出願人】(000179904)山本化成株式会社 (70)
【Fターム(参考)】