説明

ハイブリッド車両の制御装置

【課題】車両全体としてのエネルギー効率を向上させる。
【解決手段】ハイブリッド車両1の制御装置10は、自車両の位置を検出する現在位置算出部38と、バッテリ16の充電が可能な充電設備の設置位置情報を有する地図データを記憶する地図データ記憶部34と、自車両の現在位置から目的地までの経路情報を取得する経路算出部39と、バッテリ16の残容量を検出する残容量検出部41と、経路情報に基づき各モータ12,14の動力により自車両の現在位置から目的地まで走行した場合の電力消費量を算出し、電力消費量が残容量よりも大きく、かつ、目的地に充電設備が設置されている場合に、目的地に到達した時点で残容量が零となるようにして、内燃機関11および各モータ12,14の運転を制御する出力算出部42とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハイブリッド車両の制御装置に関する。
【背景技術】
【0002】
従来、例えば、車載バッテリの残容量に応じた航続距離が目的地までの距離よりも短い場合には、充電ステーションを経由して目的地に向う誘導経路を設定する電気自動車の経路探索装置(例えば、特許文献1参照)が知られている。
また、従来、例えば車載端末から発信される車載バッテリの残容量の情報を受信した場合に、給電スタンドや着脱可能バッテリの販売店などを案内する情報を電気走行車に送信する管理センターを備える電気自動車のバッテリ管理システム(例えば、特許文献2参照)が知られている。
また、従来、例えば車載バッテリを充電する発電機および該発電機を駆動する内燃機関と、車載バッテリから給電される走行用モータとを備え、車載バッテリの残容量により目的地まで到達出来ない場合に、到達可能な充電施設を表示したり、内燃機関の運転が許容される地域で内燃機関を駆動して発電機の発電により車載バッテリを充電する電気自動車用ナビゲーションシステム(例えば、特許文献3参照)が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−170293号公報
【特許文献2】特開2000−102103号公報
【特許文献3】特開平8−240435号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記従来技術に係る電気自動車において、目的地までの経路の途中に存在する給電施設で車載バッテリの充電を行なう場合には、目的地に到達するのに要する時間が長くなってしまうという問題が生じる。
また、上記従来技術に係る電気自動車において、車載バッテリを充電する発電機を内燃機関により駆動する構成では、強制的に車載バッテリを満充電まで充電したり、走行時の発電を継続することになる。つまり、目的地に給電施設が存在しているにもかかわらずに、常に車載バッテリにより走行可能であるように残容量の余裕分の確保が必要となり、内燃機関の運転および車載バッテリの充電が過剰に必要となることで、内燃機関の運転に伴う燃料消費量が嵩むという問題が生じる。
【0005】
本発明は上記事情に鑑みてなされたもので、車両全体としてのエネルギー効率を向上させることが可能なハイブリッド車両の制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決して係る目的を達成するために、本発明の第1態様に係るハイブリッド車両の制御装置は、車両の動力源としての内燃機関(例えば、実施の形態での内燃機関11)および発電電動機(例えば、実施の形態でのフロントモータ12、リアモータ14)と、前記発電電動機と電気エネルギーの授受を行なう蓄電器(例えば、実施の形態でのバッテリ16)と、家庭用コンセントから前記蓄電器に充電を行なうプラグイン手段(例えば、実施の形態での充電器16a)とを備えるハイブリッド車両の制御装置であって、自車両の位置を検出する自車位置検出手段(例えば、実施の形態での現在位置算出部38)と、目的地を設定する目的地設定手段(例えば、実施の形態での経路算出部39)と、前記プラグイン手段による前記蓄電器の充電が可能な充電設備の設置位置情報を有する地図情報を記憶する記憶手段(例えば、実施の形態での地図データ記憶部34)と、前記自車両の位置から前記目的地までの経路情報を取得する経路情報取得手段(例えば、実施の形態での経路算出部39が兼ねる)と、前記蓄電器の残容量を検出する残容量検出手段(例えば、実施の形態での残容量検出部41)と、前記経路情報に基づき、前記発電電動機の動力により前記自車両の位置から前記目的地まで走行した場合の電力消費量を算出する電力消費量算出手段(例えば、実施の形態での出力算出部42)と、前記電力消費量が前記残容量よりも大きく、かつ、前記目的地に前記充電設備が設置されている場合に、前記目的地に到達した時点で前記残容量が零となるようにして、前記内燃機関および前記発電電動機の運転を制御する制御手段(例えば、実施の形態での出力算出部42が兼ねる)とを備える。
【0007】
さらに、本発明の第2態様に係るハイブリッド車両の制御装置では、前記制御手段は、前記自車両の位置から前記目的地までの経路を複数の区間に区分し、各前記区間毎に前記内燃機関の動力により走行した場合の燃料消費量を算出し、前記燃料消費量が大きい前記区間の動力を前記発電電動機とする。
【発明の効果】
【0008】
本発明の第1態様に係るハイブリッド車両の制御装置によれば、充電設備が設置されている目的地に到達した時点で蓄電器の残容量が零となるようにして、内燃機関および発電電動機の運転を制御することにより、内燃機関での燃料消費量を低減することができる。
しかも、目的地においては、蓄電器の残容量が零の状態から充電を行なうことができ、蓄電器を長寿命化することができると共に、車両の再始動時に発電電動機の動力を用いることで、内燃機関での燃料消費量を、より一層、低減することができる。
また、目的地が通勤時の勤務先や帰宅時の自宅などの場合には、蓄電器の満充電に必要とされる充電時間よりも長時間の駐車時間が確保される可能性が高く、蓄電器の満充電が容易に可能となる。
【0009】
さらに、本発明の第2態様に係るハイブリッド車両の制御装置によれば、自車両の位置から目的地までの経路を発電電動機の動力のみで走行することが出来ない場合であっても、燃料消費量が大きい区間の動力を発電電動機とし、内燃機関の運転効率が高い区間の動力を内燃機関として、経路上での発電電動機と内燃機関との運転区間の配分を設定する。これにより、経路走行時の車両全体としてのエネルギー効率を向上させることができる。
【図面の簡単な説明】
【0010】
【図1】本発明の実施形態に係るハイブリッド車両の制御装置の構成図である。
【図2】本発明の実施形態に係るハイブリッド車両の制御装置の動作を示すフローチャートである。
【発明を実施するための形態】
【0011】
以下、本発明の一実施形態に係るハイブリッド車両の制御装置ついて添付図面を参照しながら説明する。
この発明の実施形態に係るハイブリッド車両1は、例えば図1に示すように、内燃機関(E)11と、フロントモータ(FMG)12と、トランスミッション(T/M)13とを直列に直結した前輪駆動系と、リアモータ(RMG)14を有する後輪駆動系とを備えている。
前輪駆動系では、内燃機関11およびフロントモータ12の両方の駆動力は、トランスミッション13およびディファレンシャル(FD)を介して左右の前輪に配分されて伝達される。また、後輪駆動系では、リアモータ14の駆動力は、左右の後輪Wr,Wr間で駆動力を配分するディファレンシャル(RD)を介して後輪に伝達される。
また、ハイブリッド車両1の減速時に車輪側から各モータ12,14側に駆動力が伝達されると、各モータ12,14は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。さらに、ハイブリッド車両1の運転状態に応じて、フロントモータ12は内燃機関11の出力によって発電機として駆動され、発電エネルギーを発生する。
【0012】
各モータ12,14は駆動および発電を制御するパワードライブユニット(PDU)15に接続されている。
パワードライブユニット15は、例えばトランジスタのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するPWM(パルス幅変調)インバータを備えて構成されている。
【0013】
パワードライブユニット15には、各モータ12,14と電力の授受を行うバッテリ16が接続されている。
バッテリ16は、家庭用コンセントからバッテリ16を充電するための充電器16aを備えている。そして、バッテリ16の充電電流および放電電流と、端子間電圧と、温度とを検出して、各検出結果の信号を出力するバッテリセンサ16bを備えている。
【0014】
このハイブリッド車両1の制御装置10は、例えば、ナビゲーションシステム21と、処理装置22と、バッテリECU23と、モータECU24と、エンジンECU25とを備えて構成されている。
なお、バッテリECU23は、例えばバッテリ16とパワードライブユニット15との間の接続状態などの制御を行なう。
また、モータECU24は、パワードライブユニット15を介して各モータ12,14の動作を制御する。
また、エンジンECU25は、内燃機関11の動作を制御する。
【0015】
ナビゲーションシステム21は、例えば、測位信号受信機31と、車両状態センサ32と、交通情報受信機33と、地図データ記憶部34と、入力装置35と、モニタ36と、スピーカ37と、処理装置22に具備される現在位置算出部38および経路算出部39とを備えて構成されている。
【0016】
測位信号受信機31は、例えば人工衛星を利用して車両の位置を測定するためのGPS(Global Positioning System)信号などの測位信号を受信する。
車両状態センサ32は、例えば、自車両の速度(車速)を検出する車速センサと、車体に作用する加速度を検知する加速度センサと、車体の姿勢や進行方向を検知するジャイロセンサと、ヨーレート(車両重心の上下方向軸回りの回転角速度)を検知するヨーレートセンサとなどを備えて構成され、自車両の各種の車両情報の検出結果の信号を出力する。
交通情報受信機33は、例えばFM多重放送や路上などに配置されたビーコン装置から発信される光信号および電波信号などを受信して、VICS(Vehicle Information and Communication System)情報などの交通情報を取得する。
【0017】
地図データ記憶部34は、地図データを記憶している。地図データは、例えば、地形図のデータと、各種の施設および街区および湖沼などに対応したポリゴンのデータと、各ポリゴンに対応する名称などの文字のデータと、各種の記号のデータと、道路データと、線路データとなどを備えて構成されている。
各種の施設としては、少なくとも、バッテリ16を充電器16aを介して充電可能な充電設備を有する施設を備え、この施設の位置の情報(設置位置情報)はポリゴンのデータに備えられている。
また、道路データは、道路の接続状態および形状などの情報であって、例えばノード(つまり、道路形状を把握するための座標点)および各ノード間を結ぶ線であるリンクと、各リンクの距離と、道路の種別および幅員および交差角度および勾配および形状などのデータを備えて構成されている。
【0018】
また、処理装置22は、例えば、現在位置算出部38と、経路算出部39と、残容量検出部41と、出力算出部42とを備えて構成されている。
【0019】
現在位置算出部38は、例えばGPS信号などの測位信号によって、あるいは、自車両のヨーレートおよび車速などの検出信号に基づく自律航法の算出処理によって、自車両の現在位置を算出する。
経路算出部39は、例えば入力装置35に対する操作者の入力操作などに応じて目的地を設定し、この目的地と、自車両の現在位置と、地図データ記憶部34に記憶された地図データとに基づき、自車両の現在位置から目的地までの経路探索を実行する。そして、算出した経路に係る道路の状態および交通情報などの情報を取得する。
【0020】
残容量検出部41は、例えば電流積算法などによりバッテリ16の残容量SOCを検出する。この電流積算法では、バッテリ16の充電電流および放電電流を所定期間毎に積算して積算充電量および積算放電量を算出し、これらの積算充電量および積算放電量を初期状態あるいは充放電開始直前の残容量に加算または減算することで残容量SOCを算出する。そして、例えばバッテリ16の温度によって変化する内部抵抗などに対する所定の補正処理や端子間電圧に応じた所定の補正処理を行なう。
【0021】
出力算出部42は、経路算出部39により算出された経路と、この経路での道路の状態(勾配など)および交通状態(渋滞など)などの情報とに基づき、各モータ12,14の動力により自車両の現在位置から目的地まで走行した場合の電力消費量(全工程走行エネルギーPcy)を算出する。
そして、バッテリ16の残容量SOCが全工程走行エネルギーPcy以上である場合には、経路の全工程を各モータ12,14の動力により走行することを指示する指令信号を出力する。
また、バッテリ16の残容量SOCが全工程走行エネルギーPcyよりも小さい場合には、バッテリ16を充電可能な充電設備を備える施設を有する目的地に到達した時点で残容量SOCが零となるようにして、内燃機関11および各モータ12,14の運転を制御する。この場合、出力算出部42は、燃料消費量が大きい区間の動力を各モータ12,14とし、内燃機関11の運転効率が高い区間の動力を内燃機関11として、経路上での各モータ12,14と内燃機関11との運転区間の配分を設定する。
【0022】
例えば、出力算出部42は、残容量SOCが全工程走行エネルギーPcyよりも小さい場合に、例えば下記表1に示すように、経路算出部39により算出された経路を複数の区間(例えば、区間1,…,区間nなど)に区分し、各区間毎に、内燃機関11の動力により走行した場合の燃料消費量(例えば、区間燃料消費量A1,…,An)と各モータ12,14の動力により走行した場合の電力消費量(例えば、区間走行エネルギーE1,…,En)とを算出する。
そして、区間燃料消費量が大きい区間の順に区間走行エネルギーを加算し、この加算により得られる加算エネルギーが残容量SOC以下の範囲で最大となるときの加算エネルギーに寄与した区間を抽出する。そして、抽出した区間を各モータ12,14の動力により走行するモータ走行区間として設定し、加算エネルギーに寄与しなかった他の区間を内燃機関11の動力により走行するエンジン走行区間として設定する。
【0023】
【表1】

【0024】
なお、出力算出部42は、経路を複数の区間に区分する際に、例えば道路データのノードなどを基準として区間を設定するが、これに限定されず、例えば適宜の領域や距離や走行時間や走行時の時間帯や道路の種別(一般道路、高速道路など)や交通状態(渋滞など)や走行状態(市街地走行、郊外走行など)などを基準として区間を設定してもよい。
【0025】
本実施の形態によるハイブリッド車両1の制御装置10は上記構成を備えており、次に、このハイブリッド車両1の制御装置10の動作、特に、車両の現在位置から目的地までの経路上での各モータ12,14と内燃機関11との運転区間の配分を設定する処理について説明する。
なお、以下に説明する処理は、所定時間間隔毎に繰り返し実行され、各処理の実行時における目的地までの経路に対して、各種の情報を更新しつつ演算を行なう。
【0026】
先ず、例えば図3に示すステップS01においては、目的地が設定されているか否かを判定する。
この判定結果が「NO」の場合には、エンドに進む。
一方、この判定結果が「YES」の場合には、ステップS02に進む。
次に、ステップS02においては、目的地にバッテリ16を充電器16aを介して充電可能な充電設備を有する施設が存在するか否かを判定する。
この判定結果が「NO」の場合には、エンドに進む。
一方、この判定結果が「YES」の場合には、ステップS03に進む。
【0027】
次に、ステップS03においては、経路上での各モータ12,14と内燃機関11との運転区間の配分の実行を許可する操作者の操作入力が有るか否かを判定する。
この判定結果が「NO」の場合には、エンドに進む。
一方、この判定結果が「YES」の場合には、ステップS04に進む。
次に、ステップS04においては、バッテリ16の残容量SOCを算出する。
次に、ステップS05においては、現在位置から目的地までの経路を算出し、この経路に係る交通情報と取得すると共に、自車両の車両状態の情報を取得する。
【0028】
次に、ステップS06においては、算出した経路と、この経路での道路の状態(勾配など)および交通状態(渋滞など)などの情報とに基づき、各モータ12,14の動力により自車両の現在位置から目的地まで走行した場合の電力消費量(全工程走行エネルギーPcy)を算出する。
【0029】
次に、ステップS07においては、バッテリ16の残容量SOCが全工程走行エネルギーPcy以上であるか否かを判定する。
この判定結果が「YES」の場合には、ステップS08に進み、このステップS08においては、経路の全工程を各モータ12,14の動力により走行することを指示して、エンドに進む。
一方、この判定結果が「NO」の場合には、ステップS09に進む。
【0030】
次に、ステップS09においては、算出した経路を複数の区間に区分し、各区間毎に、内燃機関11の動力により走行した場合の燃料消費量(区間燃料消費量)と各モータ12,14の動力により走行した場合の電力消費量(区間走行エネルギー)とを算出する。
次に、ステップS10においては、区間燃料消費量が大きい区間の順に区間走行エネルギーを加算し、この加算により得られる加算エネルギーが残容量SOC以下の範囲で最大となるときの加算エネルギーに寄与した区間を抽出する。そして、抽出した区間を各モータ12,14の動力により走行するモータ走行区間として設定し、加算エネルギーに寄与しなかった他の区間を内燃機関11の動力により走行するエンジン走行区間として設定して、エンドに進む。
【0031】
上述したように、本実施の形態によるハイブリッド車両1の制御装置10によれば、充電設備が設置されている目的地に到達した時点でバッテリ16の残容量SOCが零となるようにして、内燃機関11および各モータ12,14の運転を制御することにより、内燃機関11での燃料消費量を低減することができる。
しかも、目的地においては、バッテリ16の残容量SOCが零の状態から充電を行なうことができ、バッテリ16を長寿命化することができると共に、車両の再始動時に各モータ12,14の動力を用いることで、内燃機関11での燃料消費量を、より一層、低減することができる。
また、目的地が通勤時の勤務先や帰宅時の自宅などの場合には、バッテリ16の満充電に必要とされる充電時間よりも長時間の駐車時間が確保される可能性が高く、バッテリ16の満充電が容易に可能となる。
【0032】
さらに、自車両の現在位置から目的地までの全経路を各モータ12,14の動力のみで走行することが出来ない場合であっても、燃料消費量が大きい区間の動力を各モータ12,14とし、内燃機関11の運転効率が高い区間の動力を内燃機関11として、経路上での各モータ12,14と内燃機関11との運転区間の配分を設定する。これにより、経路走行時の車両全体としてのエネルギー効率を向上させることができる。
【0033】
なお、上述した実施の形態において、ハイブリッド車両1は、前輪駆動系と後輪駆動系とに各モータ12,14を備えるとしたが、これに限定されず、走行駆動源として内燃機関11とモータとを備える各種のハイブリッド車両であってもよい。
【符号の説明】
【0034】
11 内燃機関
12 フロントモータ(発電電動機)
14 リアモータ(発電電動機)
16 バッテリ(蓄電器)
16a 充電器(プラグイン手段)
34 地図データ記憶部(記憶手段)
38 現在位置算出部(自車位置検出手段)
39 経路算出部(目的地設定手段、経路情報取得手段)
41 残容量検出部(残容量検出手段)
42 出力算出部(電力消費量算出手段、制御手段)

【特許請求の範囲】
【請求項1】
車両の動力源としての内燃機関および発電電動機と、前記発電電動機と電気エネルギーの授受を行なう蓄電器と、家庭用コンセントから前記蓄電器に充電を行なうプラグイン手段とを備えるハイブリッド車両の制御装置であって、
自車両の位置を検出する自車位置検出手段と、
目的地を設定する目的地設定手段と、
前記プラグイン手段による前記蓄電器の充電が可能な充電設備の設置位置情報を有する地図情報を記憶する記憶手段と、
前記自車両の位置から前記目的地までの経路情報を取得する経路情報取得手段と、
前記蓄電器の残容量を検出する残容量検出手段と、
前記経路情報に基づき、前記発電電動機の動力により前記自車両の位置から前記目的地まで走行した場合の電力消費量を算出する電力消費量算出手段と、
前記電力消費量が前記残容量よりも大きく、かつ、前記目的地に前記充電設備が設置されている場合に、前記目的地に到達した時点で前記残容量が零となるようにして、前記内燃機関および前記発電電動機の運転を制御する制御手段と
を備えることを特徴とするハイブリッド車両の制御装置。
【請求項2】
前記制御手段は、前記自車両の位置から前記目的地までの経路を複数の区間に区分し、各前記区間毎に前記内燃機関の動力により走行した場合の燃料消費量を算出し、前記燃料消費量が大きい前記区間の動力を前記発電電動機とすることを特徴とする請求項1に記載のハイブリッド車両の制御装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−274687(P2010−274687A)
【公開日】平成22年12月9日(2010.12.9)
【国際特許分類】
【出願番号】特願2009−126536(P2009−126536)
【出願日】平成21年5月26日(2009.5.26)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.VICS
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】