説明

ブレーキ装置

【課題】ブレーキ装置の電源電圧が低下した際に、そのフェールセーフ制御を効果的かつ低コストに実現する。
【解決手段】ブレーキECU200は、通常の制動制御状態においては開閉弁28,30を閉弁させつつモータ40,42を駆動し、調整弁46〜54の開度を調整することで、ポンプ32,36からマスタシリンダ14への作動液の供給を遮断しつつ、ポンプ32〜38から吐出された作動液のホイールシリンダ20への供給量を調整する。一方、ブレーキECU200は、電源電圧が開閉弁28,30の最低作動電圧よりも低い低電圧状態となった場合にもモータ40,42を駆動し、ポンプ32,36から吐出された作動液の一部がマスタシリンダ14へ供給されることを許容する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両の車輪に付与される制動力を制御するブレーキ制御に関する。
【背景技術】
【0002】
従来より、ブレーキペダルの操作量に応じた液圧を液圧回路内に発生させ、各車輪のホイールシリンダにその液圧を供給することにより制動力を付与するブレーキ装置が知られている(例えば特許文献1参照)。液圧源と各ホイールシリンダとの間には、液圧源から作動液を汲み出すポンプのほか、液圧供給時に開弁される増圧弁、液圧解放時に開弁される減圧弁、液圧の供給経路を切り替えるときに開閉される切替弁等の各種電磁弁が設けられている。ブレーキ装置は、これらの電磁弁を開閉制御することによってホイールシリンダへのブレーキフルードの給排量を調整し、その液圧を制御して各車輪に適切な制動力を付与している。これらポンプや電磁弁を含むブレーキ装置の各アクチュエータは、車両に搭載された電子制御装置(以下、「ECU」という)によりその駆動回路に制御指令が出力されることにより駆動制御される。
【0003】
このようなブレーキ装置は、ブレーキペダルの操作により生成された液圧をそのままホイールシリンダに伝達するのではなく、ブレーキペダルの操作量に基づいて演算される要求制動力が得られるよう電子制御により各アクチュエータを駆動するいわゆるブレーキバイワイヤ方式の制動制御を実行する。したがって、各アクチュエータを正常に駆動させるために電源電圧が安定に維持されることが重要である一方、電源電圧が低下した場合の高いフェールセーフ性も求められる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−174221号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、各アクチュエータにはそれを駆動させるための最低作動電圧が個別に設定されている。アクチュエータの種類によって最低作動電圧が異なるため、電源電圧が低下した場合には最低作動電圧の高いものから順に作動を停止することになるが、それによって電源電圧の急激な低下も抑制される。フェイルセーフの観点からは、必要最低限の制動力を確保するために重要なアクチュエータほど長い作動を確保することが望ましく、そのような優先順位に基づいて各アクチュエータの最低作動電圧が割り振られるようシステム設計がなされるのがよい。一方、電源電圧低下時にこのようなフェールセーフ制御を実行するうえでも、その制動応答性および安定性に優れるのが望ましく、またそれを簡易な構成で低コストに実現するのが望ましい。
【0006】
そこで、本発明の一つの目的は、ブレーキ装置の電源電圧が低下した際に、そのフェールセーフ制御を効果的かつ低コストに実現することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明のある態様のブレーキ装置は、モータを駆動することにより制動力を発生させるブレーキ装置において、作動液を貯留するリザーバと、複数の車輪の各々に設けられた複数のホイールシリンダと、運転者により操作されるブレーキペダルと、ブレーキペダルの操作状態を検出する操作状態検出手段と、作動液を導入出可能な液圧室と、ブレーキペダルの踏み込み操作に応じて液圧室内の作動液を加圧または減圧する方向に摺動するピストンとを含むマスタシリンダと、複数のホイールシリンダのそれぞれとリザーバとを接続する第1系統の流路と、特定のホイールシリンダとマスタシリンダとを接続するとともに第1系統の流路との合流部を有する第2系統の流路とを含み、各ホイールシリンダへ作動液を供給するための流路を構成する液圧回路と、第1系統の流路におけるリザーバと合流部との間に設けられ、リザーバからホイールシリンダへ供給する作動液の液圧を昇圧させるためにモータによって駆動されるポンプと、第2系統の流路におけるマスタシリンダと合流部との間に設けられ、モータよりも高い最低作動電圧が設定され、その開閉により第2系統の流路における作動液の流通を許容または遮断する開閉弁と、複数のホイールシリンダとポンプとの間にそれぞれ設けられ、開閉弁よりも低い最低作動電圧が設定され、第1系統の流路を介してホイールシリンダへ供給される作動液の流量を調整するためにそれぞれ開閉される複数の調整弁と、操作状態検出手段の検出情報に応じて、モータ、開閉弁および調整弁を含むアクチュエータへの通電制御を実行することにより、ホイールシリンダへ供給する作動液の液圧を制御する制御部と、を備える。
【0008】
制御部は、通常の制動制御状態においては開閉弁を閉弁させつつモータを駆動し、調整弁の開度を調整することで、ポンプからマスタシリンダへの作動液の供給を遮断しつつ、ポンプから吐出された作動液のホイールシリンダへの供給量を調整する一方、電源電圧が開閉弁の最低作動電圧よりも低い所定の低電圧状態となった場合にモータを駆動し、ポンプから吐出された作動液のマスタシリンダへの供給を許容する。
【0009】
この態様によれば、第1系統の流路にはポンプ駆動により加圧された液圧を供給しうる動力液圧源が実現される一方、第2系統の流路にはブレーキペダルの踏み込み操作に応じてマスタシリンダにて加圧された液圧を供給しうるマニュアル液圧源が実現される。電源電圧が開閉弁の最低作動電圧よりも低い低電圧状態になると、開閉弁が開状態となり、第2系統の流路が開放される。この結果、ポンプからマスタシリンダへ作動液が供給され、ブレーキペダルの操作に上乗せする形でマスタシリンダが加圧される。その結果、マスタシリンダにて昇圧された作動液が第2系統の流路に接続された特定のホイールシリンダに供給され、そのホイールシリンダを介した制動力が確保される。
【0010】
また、電源電圧が開閉弁の最低作動電圧よりも低くても、調整弁の最低作動電圧よりも高ければ、ポンプ駆動による液圧が他のホイールシリンダにも供給されるため、開閉弁が作動しなくとも双方のホイールシリンダの液圧が確保され、制動力が確保される。その後、電源電圧が調整弁の最低作動電圧より低くなると、ポンプ駆動による他のホイールシリンダに対応する車輪側の制動力は期待し難くなるが、依然として特定のホイールシリンダに対応する車輪側の制動力は確保される。さらに、電源電圧がモータの最低作動電圧より低くなると、ポンプ自体の作動が停止してしまうことになるが、その場合であってもブレーキペダルが踏み込まれている限り、マスタシリンダ圧が第2の系統を介して特定のホイールシリンダ側に供給されるため、最低限の制動力は確保される。
【0011】
すなわち、この態様によれば、電源電圧が低下するにつれて、開閉弁、調整弁、モータ(つまりポンプ)の順に作動が停止されることになるが、その段階において動力液圧源およびマニュアル液圧源による双方の車輪の制動、動力液圧源およびマニュアル液圧源による特定のホイールシリンダに対応する車輪の制動、マニュアル液圧源による特定のホイールシリンダに対応する車輪の制動といったように、制動状態が徐々に遷移する。すなわち、電源電圧の低下に応じて制動力が低下するものの、その制動機能を極力高く維持することができる。その結果、電源電圧が低下してもブレーキペダルが踏み込まれた場合には、応答性がよく、かつ十分な液圧をホイールシリンダに供給することができる。しかも、その制動状態の遷移が電圧低下に応じた成り行きにより自律的に行われるため、複雑な構成や制御を伴うことなく簡易に実現することができる。
【0012】
具体的には、マスタシリンダは、内部に液圧室として第1液圧室および第2液圧室が形成されるハウジングと、ハウジング内に摺動可能に設けられ、一端側にてブレーキペダルの操作力を受ける第1ピストンと、ハウジング内に摺動可能に設けられ、一端側にて第1ピストンとの間に第1液圧室を形成する一方、他端側にてハウジングとの間に第2液圧室を形成する第2ピストンとを備えてもよい。また、特定のホイールシリンダとして第1ホイールシリンダと第2ホイールシリンダとが設けられてもよい。そして、低電圧状態となってモータが駆動された場合に、ポンプから吐出された作動液が第1ホイールシリンダに供給されるとともに、その一方のホイールシリンダと第2系統の流路を介してつながるマスタシリンダの一方の液圧室に供給され、それによってマスタシリンダの他方の液圧室にて高められた作動液が第2ホイールシリンダに供給されてもよい。
【0013】
ここで、低電圧状態においては、特定のホイールシリンダの一方に対応するポンプのみが駆動されてもよいし、特定のホイールシリンダのそれぞれに対応する双方のポンプが駆動されてもよい。この態様によれば、低電圧状態においてモータが駆動された場合、そのポンプに対応する側のホイールシリンダの液圧が直接高められる一方、マスタシリンダ圧が高められることで、そのポンプに対応しない側のホイールシリンダの液圧も間接的に高められる。特定のホイールシリンダの双方のポンプが駆動される場合には、その双方のポンプにより相乗的にマスタシリンダ圧が高められ、その反力によってホイールシリンダの液圧もより速やかに高められるようになる。
また、複数のホイールシリンダのそれぞれに対してポンプが設けられてもよい。そして、各ポンプが設けられる流路にそれぞれ並列に接続され、各ポンプの前後をつなぐ複数の環流通路が設けられてもよい。複数の調整弁は、対応する環流通路にそれぞれ設けられてもよい。そして、特定のホイールシリンダに対応する特定の調整弁と環流通路において直列に設けられ、開閉弁よりも低く調整弁よりも高い最低作動電圧が設定され、その作動時に環流通路における作動液の流通を許容する連通弁が設けられてもよい。その場合、特定のホイールシリンダに対応しない環流通路には連通弁が設けられていなくてもよい。
この態様によれば、電源電圧が低下して連通弁の機能が停止すると、特定の調整弁が設けられた環流通路における作動液の流通が遮断される。このため、特定の調整弁が機能していてもその環流通路を流れる作動液の流量を制御することができず、その特定の調整弁は実質的に機能しなくなる。しかし、他の調整弁が設けられた環流通路には連通弁が設けられていないので、その調整弁が機能する限り、その環流通路を流れる作動液の流量を制御することができる。すなわち、一方の車輪側について調整弁による液圧調整ができなくなっても、他方の車輪側については調整弁による液圧調整が可能であるため、電源電圧の低下による制動性能の低下を抑制することができる。
【0014】
ホイールシリンダの液圧であるホイールシリンダ圧を検出する液圧センサを備えてもよい。制御部は、通常の制動制御状態においては、ブレーキペダルの操作量に応じてホイールシリンダ圧の目標液圧を設定し、その目標液圧と液圧センサにより検出されたホイールシリンダ圧との偏差に基づきフィードバック制御を実行する一方、低電圧状態となってモータが駆動された場合には、ブレーキペダルの操作量に応じて演算されるホイールシリンダ圧の目標液圧を、モータの駆動によるマスタシリンダ圧の上昇分を加味して補正し、その補正後の目標液圧にしたがって制動制御を実行してもよい。
【0015】
ここで、制御部は、低電圧状態となってモータが駆動された場合であって、液圧センサの検出情報が正常に取得できる場合には、補正後の目標液圧にしたがってフィードバック制御を実行してもよい。また、制御部は、低電圧状態となってモータが駆動された場合であって、液圧センサの検出情報が正常に取得できない場合には、補正後の目標液圧にしたがってフィードフォワード制御を実行してもよい。
【0016】
この態様によれば、制御部は、通常の制動制御状態においてはホイールシリンダ圧に基づくフィードバック制御を実行し、そのホイールシリンダ圧が目標液圧に収束するように制御する。一方、上述のように低電圧状態となってモータが駆動された場合、ホイールシリンダ圧の目標液圧について、モータの駆動によるマスタシリンダ圧の上昇分を加味した補正が行われる。すなわち、上述のようにマスタシリンダ圧の上昇分がホイールシリンダに作用する場合、ブレーキペダルの操作量に対するホイールシリンダ圧の上昇勾配が通常の制動制御の場合よりも大きくなると考えられる。つまり、ブレーキペダルの操作量に対して通常の制動制御状態と同様の目標液圧を設定すると、必要以上にホイールシリンダ圧が高まることが想定される。そこで、この態様では、目標液圧に対してマスタシリンダ圧の上昇分を加味した補正を行い、ブレーキペダルの操作量に対して適度なホイールシリンダ圧ひいては制動力が得られるようにする。制御部は、液圧センサの検出情報が正常に取得できる場合には、その補正後の目標液圧にしたがってフィードバック制御を実行すればよい。
【0017】
また、その電圧低下等の要因によって、制御部が液圧センサの検出情報を正常に取得できない場合も想定される。ここで、「正常に取得できない」とは、複数のホイールシリンダのそれぞれに対応する全ての液圧センサ、またはその一部の液圧センサからの検出信号が途絶えたような場合が含まれうる。このような場合、制御部は、ホイールシリンダ圧のフィードバック制御を実行することができなくなる。このため、制御部は、液圧センサの検出情報が正常に取得できない場合には、補正後の目標液圧にしたがってフィードフォワード制御を実行してもよい。
【0018】
ここで、通常の制動制御状態におけるブレーキペダルの操作量とホイールシリンダ圧の目標液圧との対応関係や、その制御に必要なモータの駆動量については予め把握されている。このため、通常の制動制御状態と低電圧状態とで同様にモータを駆動したときのホイールシリンダ圧の変化の差を加味することで、低電圧状態において必要なモータの駆動量を設定することができる。通常の制動制御状態と低電圧状態とは、同様にモータを駆動したときのマスタシリンダ圧の上昇量が異なり、一方、ホイールシリンダ圧はマスタシリンダ圧に比例することから、そのマスタシリンダ圧の上昇分を加味することで低電圧状態における適度なモータの駆動量を設定することができる。そこで、この態様ではそのモータの駆動によるマスタシリンダ圧の上昇分を加味してホイールシリンダ圧の目標値(目標液圧)を補正し、その補正後の目標液圧にしたがって制動制御を実行する。これにより、低電圧状態においても運転者に特に違和感を与えることなく制動制御を実行できる。
【0019】
より具体的には、制御部は、ブレーキペダルの操作量とホイールシリンダ圧との対応関係を定める制御マップと、ブレーキペダルの操作量とマスタシリンダの液圧であるマスタシリンダ圧との対応関係を定める補正用マップとを保持し、その補正用マップとして、通常の制動制御状態における対応関係を定める通常マップと、低電圧状態となってモータが駆動された状態における対応関係を定める特定マップとを含んでもよい。制御部は、通常の制動制御状態においては、ブレーキペダルの操作量に応じて制御マップを参照してホイールシリンダ圧の目標液圧を設定し、その目標液圧と液圧センサにより検出されたホイールシリンダ圧との偏差に基づきフィードバック制御を実行してよい。また、制御部は、低電圧状態となってモータが駆動された場合には、ブレーキペダルの操作量に応じて通常マップおよび特定マップを参照し、その特定マップから取得されるマスタシリンダ圧とその通常マップから取得されるマスタシリンダ圧との差分に対応するホイールシリンダ圧を、制御マップから取得される目標液圧から差し引いた液圧を補正後の目標液圧として設定し、その補正後の目標液圧にしたがって制動制御を実行してもよい。
【0020】
ここで、制御部は、低電圧状態となってモータが駆動された場合であって、液圧センサの検出情報が正常に取得できる場合には、補正後の目標液圧にしたがってフィードバック制御を実行してもよい。また、制御部は、低電圧状態となってモータが駆動された場合であって、液圧センサの検出情報が正常に取得できない場合には、補正後の目標液圧にしたがってフィードフォワード制御を実行してもよい。
【0021】
この態様では、ブレーキペダルの操作量とホイールシリンダ圧との対応関係、ブレーキペダルの操作量とマスタシリンダの液圧であるマスタシリンダ圧との対応関係がそれぞれマップ化されており、後者の対応関係については、通常の制動制御状態および低電圧状態のそれぞれについてマップ化されている。制御部は、各マップを参照することで逐一細かい演算処理を行う必要がなくなり、状態に応じた上述の制動制御を効率よく実行することができる。特定マップは、ブレーキペダルの操作量に対するマスタシリンダ圧の上昇勾配が通常マップよりも大きくなるように設定されたものでよい。
【0022】
制御部は、低電圧状態となったときに、特定のホイールシリンダでない他のホイールシリンダの液圧が、対応する車輪のロックを回避可能な予め定める許容液圧以下であることを条件にモータを駆動してもよい。すなわち、ホイールシリンダ圧の実液圧が取得可能である場合には、このような構成によってポンプ駆動に一定の制限を設けることで、他のホイールシリンダ側の車輪のロックの発生を確実に防止しつつ、上述した低電圧状態での制動制御の性能を確保することができる。
【0023】
車両の車速を検出する車速検出手段を備えてもよい。制御部は、低電圧状態となったときに、車速が予め定める許容速度以下であることを条件にモータを駆動してもよい。「許容速度」は、車両の挙動安定性を確保可能な速度として予め設定される。すなわち、高車速の状態でポンプ駆動すると、制動力の高まりによっては車両の挙動が不安定となる可能性がある。そこで、車速が予め定める許容速度を超える場合にはポンプ駆動に一定の制限を設けることで、車両の挙動安定性を確保することができる。なお、その場合には、低電圧状態において動力液圧源による制動はなされないが、ブレーキペダルが踏み込まれている限りマニュアル液圧源による制動は行われるため、制動力を確保することはできる。
【発明の効果】
【0024】
本発明によれば、ブレーキ装置の電源電圧が低下した際に、そのフェールセーフ制御を効果的かつ低コストに実現することができる。
【図面の簡単な説明】
【0025】
【図1】実施形態に係るブレーキ装置をその液圧回路を中心に示す系統図である。
【図2】マスタシリンダの構成を表す部分断面図である。
【図3】ブレーキECUおよびその周辺の主要部の電気的構成を概略的に示す図である。
【図4】液圧回路を構成する各アクチュエータの作動電圧を示す模式図である。
【図5】通常の制動制御状態を示す図である。
【図6】低電圧状態となった場合の制動制御の過程を表す図である。
【図7】低電圧時制動制御におけるマスタシリンダの動作を表す図である。
【図8】低電圧状態となった場合の制動制御の過程を表す図である。
【図9】低電圧状態となった場合の制動制御の過程を表す図である。
【図10】制動制御において用いられる制御マップの概要を示す図である。
【図11】制動制御において用いられる制御マップの概要を示す図である。
【図12】制動制御処理の具体的な流れを示すフローチャートである。
【発明を実施するための形態】
【0026】
以下、図面を参照しつつ、本発明を実施するための形態(以下「実施形態」という)について説明する。
図1は、実施形態に係るブレーキ装置をその液圧回路を中心に示す系統図である。本実施形態では、右前輪と左後輪とをつなぐ系統と、左前輪と右後輪とをつなぐ系統を備えるいわゆるX配管型の液圧回路が採用されている。
【0027】
ブレーキ装置10は、ブレーキペダル12、マスタシリンダ14、液圧アクチュエータ16、ホイールシリンダ20FL、20FR、20RL、20RR(以下、適宜総称して「ホイールシリンダ20」という)を備える。ブレーキ装置10は、また、各部の動作を制御する制御部(ブレーキ制御装置)としてのブレーキECU200を備えている。ブレーキ装置10は、作動液としてのブレーキフルードを液圧回路を介して各車輪のホイールシリンダ20へ供給し、その液圧(以下、「ホイールシリンダ圧」という)を調整して各車輪に制動力を付与する。ブレーキペダル12にはストロークセンサ22(「操作状態検出手段」に該当する)が設けられている。マスタシリンダ14にはリザーバタンク24が接続されており、マスタシリンダ14の一方の出力ポートには開閉弁26を介してストロークシミュレータ25が接続されている。
【0028】
運転者によってブレーキペダル12が踏み込まれると、ブレーキペダル12の操作量としてのペダルストロークがストロークセンサ22に入力され、ペダルストロークに応じた検出信号がストロークセンサ22から出力される。この検出信号はブレーキECU200に入力され、ブレーキECU200でブレーキペダル12のペダルストロークが検出される。なお、ここではブレーキペダル12の操作量を検出するための操作状態検出手段としてストロークセンサ22を例に挙げているが、ブレーキペダル12に加えられる踏力を検知する踏力センサ等であってもよい。
【0029】
ブレーキペダル12には、ペダルストロークをマスタシリンダ14に伝達するプッシュロッド15等が接続されており、このプッシュロッド15等が押されることでマスタシリンダ14の液圧室であるプライマリ室14aおよびセカンダリ室14bに液圧(以下、「マスタシリンダ圧」という)が発生する。なお、マスタシリンダ14の構成および動作の詳細については後述する。マスタシリンダ14のプライマリ室14aとセカンダリ室14bには、それぞれ液圧アクチュエータ16に向けて延びる管路B、管路Aが連結されている。
【0030】
リザーバタンク24は、ブレーキペダル12が初期位置のときに、プライマリ室14aおよびセカンダリ室14bのそれぞれと図示しない通路を介して接続され、マスタシリンダ14内にブレーキフルードを供給したり、マスタシリンダ14内の余剰ブレーキフルードを貯留する。リザーバタンク24には、液圧アクチュエータ16に向けて延びる管路C、管路Dが連結されている。
【0031】
ストロークシミュレータ25は、管路Aにつながる管路Eに接続されており、セカンダリ室14b内のブレーキフルードを導入する。管路Eには開閉弁26が設けられている。開閉弁26は、非通電時に閉状態にあり、運転者によるブレーキペダル12の操作が検出された際に開状態に切り換えられる常閉型電磁弁である。ストロークシミュレータ25は、運転者によるブレーキペダル12の操作力に応じた反力を創出する。
【0032】
液圧アクチュエータ16には、マスタシリンダ14のセカンダリ室14bと右前輪FRに対応するホイールシリンダ20FRを接続するように、管路Aに連結された管路Fが設けられている。管路Fには、開閉弁28が設けられている。開閉弁28は、非通電時には開状態(連通状態)、通電時には閉状態(遮断状態)となる常開型電磁弁であり、開閉弁28によって管路Fの連通・遮断状態が制御され、これにより管路A、Fを介したホイールシリンダ20FRへのブレーキフルードの供給が制御される。
【0033】
また、液圧アクチュエータ16には、マスタシリンダ14のプライマリ室14aと左前輪FLに対応するホイールシリンダ20FLを接続するように、管路Bに連結された管路Gが備えられている。管路Gには、開閉弁30が備えられている。開閉弁30は、非通電時には開状態、通電時には閉状態となる常開型電磁弁であり、開閉弁30によって管路Gの連通・遮断状態が制御され、これにより管路B、Gを介したホイールシリンダ20FLへのブレーキフルードの供給が制御される。
【0034】
また、液圧アクチュエータ16には、リザーバタンク24から延設された管路Cに接続された管路Hと、管路Dに接続された管路Iが設けられている。管路Hは、管路H1とH2に分岐して、それぞれホイールシリンダ20FR、20RLに接続されている。また、管路Iは、管路I3とI4に分岐して、それぞれホイールシリンダ20FL、20RRに接続されている。ホイールシリンダ20FLおよびホイールシリンダ20FRは、それぞれ左前輪FL、右前輪FRに対応している。ホイールシリンダ20RLおよびホイールシリンダ20RRは、それぞれ左後輪RL、右後輪RRに対応している。
【0035】
各管路H1、H2、I3、I4には、それぞれポンプ32、34、36、38が設けられている。ポンプ32〜38は、例えば静寂性に優れたトロコイドポンプにより構成され、それぞれホイールシリンダ20FR、20RL、20FL、20RRに接続されている。ポンプ32およびポンプ34は第1モータ40により駆動され、ポンプ36およびポンプ38は第2モータ42により駆動される。本実施形態では、これら4つのポンプ32〜38が動力液圧源として機能する。ポンプ32〜38は、第1モータ40または第2モータ42の回転数に応じた流量のブレーキフルードを各ホイールシリンダ20へ供給する。
【0036】
また、液圧アクチュエータ16には、ポンプ32〜38のそれぞれに並列的に管路J1、J2、J3、J4が設けられている。これらの管路J1、J2、J3、J4は、「環流通路」として機能する。管路J1には、連通弁44および液圧調整弁46が直列的に配設されている。連通弁44がポンプ32の吸入ポート側(管路J1におけるブレーキフルードの流動方向下流側)に、液圧調整弁46がポンプ32の吐出ポート側(管路J1におけるブレーキフルードの流動方向上流側)にそれぞれ位置するように配置されている。つまり、連通弁44によってリザーバタンク24と液圧調整弁46との間の連通・遮断を制御できる構成とされている。連通弁44は、非通電時には閉状態、通電時には開状態となる常閉型電磁弁である。液圧調整弁46は、非通電時には開状態、通電時には閉状態となり、通電制御により弁開度が調整される常開型のリニア弁である。管路J2には、液圧調整弁48が備えられている。液圧調整弁48は、液圧調整弁46と同様に常開型のリニア弁である。
【0037】
管路J3には、連通弁50および液圧調整弁52が直列的に配設されている。連通弁50がポンプ36の吸入ポート側(管路J3におけるブレーキフルードの流動方向下流側)に、液圧調整弁52がポンプ36の吐出ポート側(管路J3におけるブレーキフルードの流動方向上流側)にそれぞれ位置するように配置されている。つまり、連通弁50によってリザーバタンク24と液圧調整弁52との間の連通・遮断を制御できる構成とされている。連通弁50は、非通電時には閉状態、通電時には開状態となる常閉型電磁弁であり、液圧調整弁52は、非通電時には開状態、通電時には閉状態で、通電制御により弁の開度が調整される常開型のリニア弁である。液圧調整弁52は、通電制御により開度が調整されて、ホイールシリンダ20FLのブレーキフルード量を調整する。管路J4には、液圧調整弁54が備えられている。液圧調整弁54は、液圧調整弁52と同様に常開型のリニア弁である。
【0038】
そして、管路H1,H2,I3,I4における各ポンプ32〜38と各ホイールシリンダ20FR、20RL、20FL、20RRとの間には、液圧センサ62、64、66、68が配置されており、各ホイールシリンダ20FR、20RL、20FL、20RRにおける液圧を検出可能に構成されている。また、管路F、Gにおける開閉弁28、30よりも上流側(マスタシリンダ14側)にも液圧センサ70、72が配置されており、マスタシリンダ14のプライマリ室14aとセカンダリ室14bに発生しているマスタシリンダ圧を検出可能に構成されている。さらに、ホイールシリンダ20FRを加圧するためのポンプ32の吐出ポートおよびホイールシリンダ20FLを加圧するためのポンプ36の吐出ポートには、それぞれ、逆止弁74、76が設けられている。逆止弁74、76は、それぞれホイールシリンダ20FR、20FL側からポンプ32、36側へのブレーキフルードの逆流を禁止する。
【0039】
以上のように構成されたブレーキ装置10において、管路C、管路H、管路H1、管路H2を通じてリザーバタンク24とホイールシリンダ20FR、20RLをつなぐ回路と、ポンプ32、34に並列的に接続された管路J1、J2の回路とを含む液圧回路と、管路A、管路Fを通じてセカンダリ室14bとホイールシリンダ20FRをつなぐ液圧回路とが、第1配管系統を構成している。また、管路D、管路I、管路I3、管路I4を通じてリザーバタンク24とホイールシリンダ20FL、20RRをつなぐ回路と、ポンプ36、38に並列的に接続された管路J3、J4の回路とを含む液圧回路と、管路B、管路Gを通じてプライマリ室14aとホイールシリンダ20FLをつなぐ液圧回路とが、第2配管系統を構成している。
【0040】
そして、ストロークセンサ22や各液圧センサ62〜68の検出信号がブレーキECU200に入力され、これら各検出信号から求められるペダルストロークやホイールシリンダの液圧(ホイールシリンダ圧)およびマスタシリンダ圧に基づいて、開閉弁26、開閉弁28,30、連通弁44,50、および液圧調整弁46,48,52,54や、第1モータ40、第2モータ42を駆動するための制御信号がブレーキECU200から出力されるようになっている。
【0041】
ブレーキ装置10では、ホイールシリンダ20FR、20RLと、ホイールシリンダ20FL、20RRとが、それぞれ別々の管路C,Hもしくは管路D,Iにて接続されている。そのため、ホイールシリンダ20FR、20RL、20FL、20RRとリザーバタンク24とが一本の管路で接続されている場合と比べて、より多くのブレーキフルードを各ホイールシリンダ20FR、20RL、20FL、20RRに供給することが可能となる。また、一方の管路が故障しても、他方の管路を介して当該他方の管路に連結されたホイールシリンダにブレーキフルードを供給できる。その結果、ブレーキ装置10の信頼性が向上する。
【0042】
このようなブレーキ装置10において、通常時にブレーキペダル12が踏み込まれ、ストロークセンサ22の検出信号がブレーキECU200に入力されると、ブレーキECU200は各電磁弁26〜30、44〜54や、第1モータ40、第2モータ42を制御して、次のような状態にする。すなわち、開閉弁28および開閉弁30への通電は共にオンされ、連通弁44および連通弁50への通電も共にオンされる。これにより、開閉弁28および開閉弁30は遮断状態、連通弁44および連通弁50は連通状態とされる。
【0043】
また、液圧調整弁46〜54は、通電電流値に応じて弁の開度が調整される。開閉弁26は、通電がオンされる。このため、管路A、Eを通じて、ストロークシミュレータ25がセカンダリ室14bと連通状態となり、ブレーキペダル12が踏み込まれたときに、セカンダリ室14b内のブレーキフルードがストロークシミュレータ25に移動することになる。したがって、マスタシリンダ圧が高圧になることでブレーキペダル12に対して硬い板を踏み込むような感覚が発生することなく、ブレーキペダル12を踏み込めるようになっている。
【0044】
さらに、第1モータ40および第2モータ42への通電が共にオンされ、ポンプ32〜38から電磁弁を介さないでホイールシリンダ20へのブレーキフルードの吐出が行われる。すなわち、ポンプ32〜38によるポンプ動作が行われると、各ホイールシリンダ20に対してブレーキフルードが供給される。
【0045】
このとき、ブレーキECU200により第1モータ40および第2モータ42のモータ回転数が制御されることで、ホイールシリンダ20へのブレーキフルードの供給量が制御される。このとき、開閉弁28および開閉弁30が遮断状態とされているため、ポンプ32〜38の下流側の液圧、つまり各ホイールシリンダ20へのブレーキフルードの供給量が増加する。そして、連通弁44および連通弁50が連通状態とされ、かつ、液圧調整弁46〜54の開度がそれぞれ制御されているため、開度に応じてブレーキフルードが排出され、各ホイールシリンダ20の液圧が調整される。
【0046】
ブレーキECU200は、各液圧センサ62〜68の検出信号に基づいて各ホイールシリンダ20に供給されている液圧をモニタリングし、液圧調整弁46〜54への通電電流値(デューティ比)を制御することで、各ホイールシリンダ20の液圧が所望の値となるようにする。これにより、ブレーキペダル12のペダルストロークに応じた制動力が発生させられる。
【0047】
図2は、マスタシリンダの構成を表す部分断面図である。
マスタシリンダ14は、有底筒状のハウジング80内に、第1ピストン82、第2ピストン84を摺動自在に収容して構成されている。ハウジング80の底部側に第2ピストン84が配置され、開口部側に第1ピストン82が配置されている。第1ピストン82の第2ピストン84と反対側の端部には、ブレーキペダル12に連結されたプッシュロッド15が接続されている。そして、第1ピストン82と第2ピストン84との間にプライマリ室14a(第1液圧室)が形成され、第2ピストン84とハウジング80の底部との間にセカンダリ室14b(第2液圧室)が形成されている。また、第1ピストン82と第2ピストン84との間には、両者を離間させる方向(つまり、第1液圧室を拡大する方向)に付勢する第1スプリング86が介装されている。第2ピストン84とハウジング80の底部との間には、その底部から第2ピストン84を離間させる方向(つまり、第2液圧室を拡大する方向)に付勢する第2スプリング88が設けられている。ハウジング80のプライマリ室14aに対応する側部には第1出力ポート90が設けられ、管路Bに連通している。一方、ハウジング80のセカンダリ室14bに対応する側部には第2出力ポート92が設けられ、管路Aに連通している。
【0048】
第1ピストン82の一端側および他端側の外周面には第1カップリング94、第2カップリング96がそれぞれ嵌着されている。これら第1カップリング94および第2カップリング96は、ゴムなどの弾性材料により形成されたシール部材である。第1カップリング94と第2カップリング96との間には、第1大気圧室98が形成されている。第1大気圧室98は、ハウジング80の側部に設けられた第1入力ポート100を介してリザーバタンク24に連通している。
【0049】
ハウジング80の第1入力ポート100よりもやや前方位置には、その直径方向に架け渡されるようにストッパピン102が設けられ、第1ピストン82の長手方向中央部に形成された所定の幅および長さを有するスリット103に挿通されている。第1ピストン82のスリット103よりも前方(図の左側)には、その軸線に沿って延びる弁孔104が設けられ、長尺状の弁体106が挿通されている。弁体106の前端は拡径されて弁部108を形成している。一方、弁孔104と弁部108との間には弁座部材110が配設されている。そして、弁部108が弁座部材110に着脱することにより、弁孔104(つまり第1の弁)を開閉可能に構成されている。すなわち、第1大気圧室98とプライマリ室14aとは弁孔104およびスリット103を介して連通されており、その連通路が第1の弁の開閉により開放または遮断される。それにより、プライマリ室14aとリザーバタンク24との間のブレーキフルードの流通が許容または遮断される。弁体106は、スプリング112によって閉弁方向に付勢されているため、第1ピストン82が前方に位置していれば第1の弁を閉状態に保つ。一方、図示のように第1ピストン82が後方に後退した状態では、弁体106がストッパピン102に係止されてその変位が阻止されるため、弁体106が第1ピストン82のボディに対して相対的に前方へ変位し、第1の弁が開状態とされる。
【0050】
同様に、第2ピストン84の一端側および他端側の外周面には第1カップリング114、第2カップリング116がそれぞれ嵌着されている。これら第1カップリング114および第2カップリング116は、ゴムなどの弾性材料により形成されたシール部材である。第1カップリング114と第2カップリング116との間には、第2大気圧室118が形成されている。第2大気圧室118は、ハウジング80の側部に設けられた第2入力ポート120を介してリザーバタンク24に連通している。
【0051】
ハウジング80の第2入力ポート120よりもやや前方位置には、その直径方向に架け渡されるようにストッパピン122が設けられ、第2ピストン84の長手方向中央部に形成された所定の幅および長さを有するスリット123に挿通されている。第2ピストン84のスリット123よりも前方(図の左側)には、その軸線に沿って延びる弁孔124が設けられ、長尺状の弁体126が挿通されている。弁体126の前端は拡径されて弁部128を形成している。一方、弁孔124と弁部128との間には弁座部材130が配設されている。そして、弁部128が弁座部材130に着脱することにより、弁孔124(つまり第2の弁)を開閉可能に構成されている。すなわち、第2大気圧室118とセカンダリ室14bとは弁孔124およびスリット123を介して連通されており、その連通路が第2の弁の開閉により開放または遮断される。それにより、セカンダリ室14bとリザーバタンク24との間のブレーキフルードの流通が許容または遮断される。弁体126は、スプリング132によって閉弁方向に付勢されているため、第2ピストン84が前方に位置していれば第2の弁を閉状態に保つ。一方、図示のように第2ピストン84が後方に後退した状態では、弁体126がストッパピン122(「規制部材」に該当する)に係止されてその変位が阻止されるため、弁体126が第2ピストン84のボディに対して相対的に前方へ変位し、第2の弁が開状態とされる。
【0052】
以上のように構成されたマスタシリンダ14は、ブレーキペダル12が踏まれて第1ピストン82が前方(ハウジング80の底部側)へ進出すると、プライマリ室14aにマスタシリンダ圧が発生する。また、このとき第2ピストン84も前後の力がバランスするように変位するため、セカンダリ室14bにもマスタシリンダ圧が発生する。このとき、開閉弁26が開弁されていれば、ストロークシミュレータ25においてそのマスタシリンダ圧に対抗するペダル反力が創出される。
【0053】
図3は、ブレーキECUおよびその周辺の主要部の電気的構成を概略的に示す図である。ブレーキECU200は、CPU150を含むマイクロコンピュータを中心に構成されており、CPUの他に各種プログラムを記憶するROM、データを一時的に記憶するRAM、入出力ポートおよび通信ポート等を備える。ブレーキECU200は、エンジンを制御するエンジンECU(図示せず)などの他の制御部と通信可能であり、必要な車両制御状態を取得する。ブレーキECU200には、ストロークセンサ22、液圧センサ62〜72等の各種センサや、ストップランプスイッチ等の各種スイッチの出力信号が入力される。CPU150は、各種センサ・スイッチから入力IC152を介して入力された信号や通信により取得した車両制御情報に基づいて目標制動力および制御指令値を演算する。そして、CPU150は、出力IC154を介して液圧アクチュエータ16を構成する各電磁弁等へ制御指令を出力する。CPU150は、また、通信ポートを介して第1EDU156および第2EDU158に接続されている。ここで、第1EDU156は第1モータ40の駆動回路を含むモータドライバであり、第2EDU158は第2モータ42の駆動回路を含むモータドライバである。本実施形態では、第1モータ40および第2モータ42として3相交流にて駆動されるブラシレスモータが採用されている。これらのモータは、ブレーキECU200からの制御信号に基づいて回転駆動される。なお、ブラシレスモータの構造およびモータドライバの構成そのものは公知であるため、その詳細な説明については省略する。
【0054】
次に、本実施形態における制動制御について説明する。図4は、液圧回路を構成する各アクチュエータの作動電圧を示す模式図である。
本実施形態においては、何らかの要因により電源電圧が低下した場合であっても、フェイルセーフとして必要最低限の制動力を効率的に確保するために、重要なアクチュエータほど長く作動を維持できるよう各アクチュエータの最低作動電圧が割り振られている。すなわち、図示の例では、最低作動電圧の高いものから開閉弁28,30、連通弁44,50、液圧調整弁46,52、モータ40,42となるように設定されている。ちなみに、ストップランプスイッチ(「STPSW」と表記している)などの各種スイッチの最低作動電圧は、これらのアクチュエータの最低作動電圧よりも相当低くなっている。
【0055】
本実施形態では、電源電圧が開閉弁28,30の最低作動電圧を下回る低電圧状態となった場合、通常の制動制御状態とは異なる制動制御モードへ移行される。すなわち、ブレーキECU200は、電源電圧を監視し、その値が開閉弁28,30の最低作動電圧V2(例えば8V)を下回ると、通常制動制御から低電圧時制動制御へ移行させ、開閉弁28,30が開放された状態でモータ40,42を駆動する。そして、ブレーキペダル12の踏み込みによるによるマニュアル液圧源による液圧(マスタシリンダ圧)と、ポンプ32〜38の駆動による動力液圧源による液圧とを利用し、各ホイールシリンダ20の液圧(ホイールシリンダ圧)を昇圧する。すなわち、マニュアル液圧源による液圧と動力液圧源による液圧とにより制動力が確保される。一方、電源電圧がモータ40,42の最低作動電圧V1(例えば6.8V)をも下回ると、動力液圧源による昇圧が得られないことから、マニュアル液圧源による液圧により最低限の制動力が確保される。
【0056】
図5は、通常の制動制御状態を示す図である。図6〜図9は、低電圧状態となった場合の制動制御の過程を表す図である。図中の矢印は、ブレーキフルードの流れを示している。図7は、低電圧時制動制御におけるマスタシリンダの動作を表す図である。
電源電圧が十分に維持され、液圧アクチュエータ16の各要素が正常動作可能な通常の制動制御状態においては、図5に示すように、上述したブレーキバイワイヤによる制動制御が実行される。すなわち、開閉弁28,30への通電は共にオンされ、連通弁44,50への通電も共にオンされるとともに、第1モータ40および第2モータ42への通電が共にオンされてポンプ32〜38が駆動される。これにより、開閉弁28,30は遮断状態、連通弁44,50は連通状態とされ、液圧調整弁46〜54の開度に応じた液圧調整がなされる。ブレーキECU200は、ブレーキペダル12が踏み込まれると、ストロークセンサ22により検出されるブレーキペダル12の踏み込み量に応じて各ホイールシリンダ20の目標液圧を演算する。ブレーキECU200は、その目標液圧と液圧センサ62〜68により検出された液圧(実液圧)との偏差に応じて、第1モータ40および第2モータ42の回転数を制御し、また液圧調整弁46〜54の開度を調整することにより、実液圧が目標液圧へ近づくようフィードバック制御を行う。
【0057】
このとき、開閉弁28,30が閉状態にあるため、ブレーキペダル12の踏み込みによるマスタシリンダ14の液圧上昇は直接ホイールシリンダ20には伝えられず、ブレーキペダル12のペダルストロークに応じた液圧が、ポンプ32〜38等による動力液圧源によって供給される。一方、このとき、ブレーキペダル12の操作力に応じてストロークシミュレータ25による反力が創出されるため、運転者のフィーリングに合った制動力が得られるようになる。
【0058】
このような状況において、何らかの要因で電源電圧が低下して開閉弁28,30の最低作動電圧を下回ると、両開閉弁が開弁されてしまう。なお、本実施形態では開閉弁26も同程度の最低作動電圧が設定されているため、開閉弁26は閉弁されてしまう。このため、図6に示すように、マスタシリンダ14とポンプ32とをつなぐ流路(管路Aおよび管路F)が連通し、またマスタシリンダ14とポンプ36とをつなぐ流路(管路Bおよび管路G)が連通する。その結果、ポンプ36から吐出されたブレーキフルードが左前輪のホイールシリンダ20FLに供給される一方、そのブレーキフルードの一部が管路Gおよび管路Bを介してマスタシリンダ14のプライマリ室14aに導入される。同様に、ポンプ32から吐出されたブレーキフルードが右前輪のホイールシリンダ20FRに供給される一方、そのブレーキフルードの一部が管路Fおよび管路Aを介してマスタシリンダ14のセカンダリ室14bに導入される。その結果、マスタシリンダ圧が上昇し、その反力によって右前輪のホイールシリンダ20FRおよび左前輪のホイールシリンダ20FLも上昇する。一方、マスタシリンダ圧の上昇により、ブレーキペダル12に対して大きな反力が作用するようになる。
【0059】
このときの圧力上昇メカニズムは以下の通りである。すなわち、低電圧状態においてブレーキペダル12が図2に示した状態から踏み込まれると、図7に示すように、プッシュロッド15を介して第1ピストン82が前方に押されるため、弁体106がストッパピン102から離脱し、スプリング112の付勢力により第1の弁が閉状態となる。このとき、第1スプリング86の付勢力が増大し、第2ピストン84が前方に押されるため、弁体126がストッパピン122から離脱し、スプリング132の付勢力により第2の弁も閉状態となる。その結果、プライマリ室14aおよびセカンダリ室14bの各液圧室とリザーバタンク24との連通状態が遮断され、各液圧室の液圧(つまりマスタシリンダ圧)が上昇する。さらに、ポンプ36の駆動によりブレーキフルードが管路Bを介してプライマリ室14aへ導入されるため、プライマリ室14aの液圧がさらに上昇する。この追加の液圧によりセカンダリ室14bの液圧も上昇する。同様に、ポンプ32の駆動によりブレーキフルードが管路Aを介してセカンダリ室14bへ導入されるため、セカンダリ室14bの液圧がさらに上昇する。この追加の液圧によりプライマリ室14aの液圧も上昇する。その結果、マスタシリンダ圧が上昇し、その液圧がホイールシリンダ20FRおよびホイールシリンダ20FLにも作用するようになる。
【0060】
このような低電圧状態となってからさらに電源電圧が低下すると、連通弁44,50が作動を停止して閉状態となる。このように連通弁44,50が閉弁状態になると、液圧調整弁46,52の制御が可能であってもその制御は実質的に機能しない。このとき、前輪側のホイールシリンダ20FR,20FLには、ポンプ32の駆動による液圧と、ブレーキペダル12の操作によるマスタシリンダ14からの液圧が作用してその液圧調整が行われるようになる。一方、後輪側には連通弁が設けられていないため、液圧調整弁48,54の制御が機能し、後輪側のホイールシリンダ20RL,20RRの液圧調整が続行される。つまり、一方の車輪(前輪)側について液圧調整弁による液圧調整ができなくなっても、他方の車輪(後輪)側については液圧調整弁による液圧調整が可能であるため、電源電圧の低下による制動性能の低下を抑制することができる。
そして、さらに電源電圧が低下すると、液圧調整弁46〜54が作動を停止して開状態となる。図8に示すように、この場合もポンプ36から吐出されたブレーキフルードの一部が管路Gに導かれるが、連通弁50が閉状態にあるためリザーバタンク24には戻されず、マスタシリンダ14に導入される。同様に、ポンプ32から吐出されたブレーキフルードの一部が管路Fに導かれるが、連通弁44が閉状態にあるためリザーバタンク24には戻されず、マスタシリンダ14に導入される。その結果、上述のように前輪側のホイールシリンダ圧が高められる。一方、液圧調整弁54が開状態となるため、ポンプ38から吐出されたブレーキフルードは管路J4を介してリザーバタンク24に戻されるか、またはポンプ38に再び吸引されて循環状態となる。同様に、液圧調整弁48が開状態となるため、ポンプ34から吐出されたブレーキフルードは管路J2を介してリザーバタンク24に戻されるか、またはポンプ34に再び吸引されて循環状態となる。このため、後輪側のホイールシリンダについては十分な制動力が付与されないことになる。つまり、この場合には、前輪側の制動により車両が停止されるようになる。
【0061】
そして、さらに電源電圧が低下すると、第1モータ40および第2モータ42が作動を停止する。このため、図9に示すように、動力液圧源からは液圧供給が行われず、ブレーキペダル12の踏み込みに応じたマスタシリンダ圧が前輪側のホイールシリンダに供給されることになる。つまり、ここまで電源電圧が低下すると、マニュアル液圧源による制動力のみが残ることになる。言い換えれば、電源電圧が相当低下しても、最低限の制動力は確保される。
【0062】
このように、本実施形態では、電源電圧が低下するにつれて、開閉弁28,30、連通弁44,50、液圧調整弁46〜54、モータ40,42(つまりポンプ32〜38)の順に作動が停止されることになるが、その段階において動力液圧源およびマニュアル液圧源による前輪および後輪の制動、動力液圧源およびマニュアル液圧源による前輪の制動、マニュアル液圧源による前輪の制動といったように、制動状態が徐々に遷移する。すなわち、電源電圧の低下に応じて制動力は低下していくものの、その制動機能を維持しつつ制動状態を遷移させている。その結果、電源電圧が低下しても、ブレーキペダル12が踏み込まれた場合の制動応答性を確保することができる。しかも、その制動状態の遷移が電圧低下に応じた成り行きにより自律的に行われるため、複雑な構成や制御を伴うことなく簡易に実現することができる。
【0063】
一方、上述のように低電圧状態であってモータ40,42が駆動されている場合、ブレーキペダル12の踏み込み量に対する前輪側のホイールシリンダ圧の上昇勾配が通常の制動制御状態よりも大きくなるため、通常の制動制御状態と同様に制御すると、前輪については想定よりも大きな制動力がかかり好ましくない。そこで、本実施形態ではこのような低電圧状態となった場合に、各ホイールシリンダの目標液圧を補正して適度な制動力を付与可能な制御を実行する。
【0064】
図10および図11は、制動制御において用いられる制御マップの概要を示す図である。図10は通常の制動制御状態における制御パラメータの対応関係を示し、図11は低電圧状態における制御パラメータの対応関係を示している。各図において、(A)はペダルストロークとホイールシリンダ圧(「W/C圧」と表記)との関係を示し、(B)はマスタシリンダ圧(「M/C圧」と表記)とホイールシリンダ圧との関係を示し、(C)はペダルストロークとマスタシリンダ圧との関係を示している。
【0065】
ブレーキECU200は、通常の制動制御状態においては図10(A)に示す制御マップを用いてフィードバック制御を実行する。この制御マップは、運転者の制動要求に沿った目標制動力を実現するためのペダルストロークとホイールシリンダ圧との対応関係を予め定めたものである。ブレーキECU200は、ブレーキペダル12が踏み込まれると、基本的に同図の制御マップを参照してホイールシリンダ圧の目標値を取得し、その目標液圧が実現されるようフィードバック制御を実行する。
【0066】
一方、この同図(A)に示す制御マップは、同図(B)に示すマスタシリンダ圧とホイールシリンダ圧との関係、および同図(C)に示すペダルストロークとマスタシリンダ圧との関係に基づいて設定されている。すなわち、ブレーキバイワイヤによる制御においては、ブレーキペダル12の踏み込み操作と発生する制動力の大きさとが整合するよう、同図(B)に示すようにマスタシリンダ圧とホイールシリンダ圧とが比例関係にあることを前提とする。したがって、同図(A)に示すペダルストロークとホイールシリンダ圧との関係は、同図(C)に示すペダルストロークとマスタシリンダ圧との関係に対応するものとなる。本実施形態ではこの点に着目し、低電圧状態におけるホイールシリンダ圧の目標値を、上記圧力上昇メカニズムによるマスタシリンダ圧の上昇を加味して設定する。
【0067】
すなわち、上述のように、低電圧状態では開閉弁28,30が開弁する結果、マスタシリンダ圧が上昇するとともに、その反力が前輪側のホイールシリンダに作用するため、ブレーキペダル12の踏み込み量に対して前輪側のホイールシリンダ圧が想定よりも高くなる。これは、図11(C)と図10(C)の対比で分かるように、低電圧状態においてはペダルストロークに対するマスタシリンダ圧の上昇勾配が大きくなるからと考えられる。そこで、本実施形態では、ペダルストロークとホイールシリンダ圧の目標値との対応関係について、その上昇勾配を補正した図11(A)に示す制御マップを参照するようにする。すなわち、同じペダルストロークであってもホイールシリンダ圧が通常の制動制御状態よりも高くなると考え、その上昇分を差し引いた液圧を目標液圧として設定する。それにより、運転者は、低電圧状態においても通常の制動制御状態と同様の感覚でブレーキ操作を行えるようになる。言い換えれば、低電圧状態において運転者が通常の制動制御状態と同様の感覚でブレーキ操作をしても、その感覚に見合った制動力が得られるようになる。
【0068】
図12は、制動制御処理の具体的な流れを示すフローチャートである。この制御処理は、ブレーキペダル12の踏み込みがなれてから所定周期にて繰り返し実行される。
ブレーキペダル12が踏み込まれると、ブレーキECU200は、低電圧状態か否かを判定する。この判定は、電源電圧が図4に示した状態判定電圧(最低作動電圧)V2を下回っているか否かにより判定する。このとき、低電圧状態であると判定されると(S10のY)、車速が予め定める許容速度以下であり(S20のY)、ホイールシリンダ圧が予め定める許容液圧以下であれば(S30のY)、上述した低電圧時制御を実行する(S40)。すなわち、上述のように制御マップを補正したうえでフィードバック制御を実行し、ホイールシリンダ圧が目標液圧となるよう制御する。
【0069】
ただし、ブレーキECU200は、例えば複数のホイールシリンダ20のそれぞれに対応する全ての液圧センサ62〜68、またはその一部の液圧センサからの検出信号が途絶えるなど、液圧センサの検出情報が正常に取得できない場合には、第1モータ40および第2モータ42が作動する限り、補正後の目標液圧にしたがってフィードフォワード制御を実行する。このフィードフォワード制御は、図11(A)の制御マップを利用し、ペダルストロークに応じたホイールシリンダ圧を決定し、そのホイールシリンダ圧が得られるようモータ40,42や作動可能な電磁弁を制御することにより行うことができる。仮にストロークセンサ22からの検出情報が得られず、ペダルストロークが判定できない場合には、図11(B)および(C)の制御マップを利用し、液圧センサ70,72により検出されるマスタシリンダ圧に基づいてフィードフォワード制御を実行することができる。
【0070】
なお、ここで低電圧時制御の実行に車速による制限を設けたのは、高車速の状態でポンプ駆動すると、制動力の高まりによっては車両の挙動が不安定となる可能性があるからである。また、低電圧時制御の実行にホイールシリンダ圧による制限を設けたのは、後輪のロックの発生を確実に防止しつつ、上述した低電圧状態での制動制御の性能を確保するためである。
【0071】
したがって、車速が許容速度を上回る場合(S20のN)、ホイールシリンダ圧が許容液圧を上回る場合は(S30のN)、いずれも上述した低電圧時制御は実行せず、処理を終了する。ただし、この場合には開閉弁28,30は開状態にあり、ブレーキペダル12の踏み込み操作に応じたマニュアルの制動力は付与されるため、必要な制動力を確保することはできる。一方、低電圧状態でなければ(S10のN)、通常の制動制御を実行する(S50)。
【0072】
本発明は上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を各実施形態に対して加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうる。
【符号の説明】
【0073】
10 ブレーキ装置、 12 ブレーキペダル、 14 マスタシリンダ、 16 液圧アクチュエータ、 20 ホイールシリンダ、 22 ストロークセンサ、 24 リザーバタンク、 28,30 開閉弁、 32,34,36,38 ポンプ、 40 第1モータ、 42 第2モータ、 44 連通弁、 46,48 液圧調整弁、 50 連通弁、 52,54 液圧調整弁、 62,70 液圧センサ、 80 ハウジング、 82 第1ピストン、 84 第2ピストン、 150 CPU、 152 入力IC、 154 出力IC、 156 第1EDU、 158 第2EDU、 200 ブレーキECU。

【特許請求の範囲】
【請求項1】
モータを駆動することにより制動力を発生させるブレーキ装置において、
作動液を貯留するリザーバと、
複数の車輪の各々に設けられた複数のホイールシリンダと、
運転者により操作されるブレーキペダルと、
前記ブレーキペダルの操作状態を検出する操作状態検出手段と、
作動液を導入出可能な液圧室と、前記ブレーキペダルの踏み込み操作に応じて前記液圧室内の作動液を加圧または減圧する方向に摺動するピストンとを含むマスタシリンダと、
前記複数のホイールシリンダのそれぞれと前記リザーバとを接続する第1系統の流路と、特定のホイールシリンダと前記マスタシリンダとを接続するとともに前記第1系統の流路との合流部を有する第2系統の流路とを含み、各ホイールシリンダへ作動液を供給するための流路を構成する液圧回路と、
前記第1系統の流路における前記リザーバと前記合流部との間に設けられ、前記リザーバから前記ホイールシリンダへ供給する作動液の液圧を昇圧させるために前記モータによって駆動されるポンプと、
前記第2系統の流路における前記マスタシリンダと前記合流部との間に設けられ、前記モータよりも高い最低作動電圧が設定され、その開閉により前記第2系統の流路における作動液の流通を許容または遮断する開閉弁と、
前記複数のホイールシリンダと前記ポンプとの間にそれぞれ設けられ、前記開閉弁よりも低い最低作動電圧が設定され、前記第1系統の流路を介して前記ホイールシリンダへ供給される作動液の流量を調整するためにそれぞれ開閉される複数の調整弁と、
前記操作状態検出手段の検出情報に応じて、前記モータ、前記開閉弁および前記調整弁を含むアクチュエータへの通電制御を実行することにより、前記ホイールシリンダへ供給する作動液の液圧を制御する制御部と、
を備え、
前記制御部は、通常の制動制御状態においては前記開閉弁を閉弁させつつ前記モータを駆動し、前記調整弁の開度を調整することで、前記ポンプから前記マスタシリンダへの作動液の供給を遮断しつつ、前記ポンプから吐出された作動液の前記ホイールシリンダへの供給量を調整する一方、電源電圧が前記開閉弁の最低作動電圧よりも低い所定の低電圧状態となった場合に前記モータを駆動し、前記ポンプから吐出された作動液の前記マスタシリンダへの供給を許容することを特徴とするブレーキ装置。
【請求項2】
前記マスタシリンダは、内部に前記液圧室として第1液圧室および第2液圧室が形成されるハウジングと、前記ハウジング内に摺動可能に設けられ、一端側にて前記ブレーキペダルの操作力を受ける第1ピストンと、前記ハウジング内に摺動可能に設けられ、一端側にて前記第1ピストンとの間に前記第1液圧室を形成する一方、他端側にて前記ハウジングとの間に前記第2液圧室を形成する第2ピストンとを備え、
前記特定のホイールシリンダとして第1ホイールシリンダと第2ホイールシリンダとが設けられ、
前記低電圧状態となって前記モータが駆動された場合に、前記ポンプから吐出された作動液が前記第1ホイールシリンダに供給されるとともに、前記第1ホイールシリンダと前記第2系統の流路を介してつながる前記マスタシリンダの一方の液圧室に供給され、それによって前記マスタシリンダの他方の液圧室にて高められた作動液が前記第2ホイールシリンダに供給されることを特徴とする請求項1に記載のブレーキ装置。
【請求項3】
前記複数のホイールシリンダのそれぞれに対して前記ポンプが設けられ、
各ポンプが設けられる流路にそれぞれ並列に接続され、各ポンプの前後をつなぐ複数の環流通路が設けられ、
前記複数の調整弁が、対応する環流通路にそれぞれ設けられ、
前記特定のホイールシリンダに対応する特定の調整弁と前記環流通路において直列に設けられ、前記開閉弁よりも低く前記調整弁よりも高い最低作動電圧が設定され、その作動時に前記環流通路における作動液の流通を許容する連通弁が設けられ、
前記特定のホイールシリンダに対応しない環流通路には前記連通弁が設けられていないことを特徴とする請求項1または2に記載のブレーキ装置。
【請求項4】
前記ホイールシリンダの液圧であるホイールシリンダ圧を検出する液圧センサを備え、
前記制御部は、通常の制動制御状態においては、前記ブレーキペダルの操作量に応じて前記ホイールシリンダ圧の目標液圧を設定し、その目標液圧と前記液圧センサにより検出されたホイールシリンダ圧との偏差に基づきフィードバック制御を実行する一方、前記低電圧状態となって前記モータが駆動された場合には、前記ブレーキペダルの操作量に応じて演算されるホイールシリンダ圧の目標液圧を、前記モータの駆動によるマスタシリンダ圧の上昇分を加味して補正し、その補正後の目標液圧にしたがって制動制御を実行することを特徴とする請求項1〜3のいずれかに記載のブレーキ装置。
【請求項5】
前記制御部は、
前記ブレーキペダルの操作量と前記ホイールシリンダ圧との対応関係を定める制御マップと、前記ブレーキペダルの操作量と前記マスタシリンダの液圧であるマスタシリンダ圧との対応関係を定める補正用マップとを保持し、前記補正用マップとして、通常の制動制御状態における前記対応関係を定める通常マップと、前記低電圧状態となって前記モータが駆動された状態における前記対応関係を定める特定マップとを含み、
通常の制動制御状態においては、前記ブレーキペダルの操作量に応じて前記制御マップを参照して前記ホイールシリンダ圧の目標液圧を設定し、その目標液圧と前記液圧センサにより検出されたホイールシリンダ圧との偏差に基づきフィードバック制御を実行し、
前記低電圧状態となって前記モータが駆動された場合には、前記ブレーキペダルの操作量に応じて前記通常マップおよび前記特定マップを参照し、その特定マップから取得されるマスタシリンダ圧とその通常マップから取得されるマスタシリンダ圧との差分に対応するホイールシリンダ圧を、前記制御マップから取得される目標液圧から差し引いた液圧を前記補正後の目標液圧として設定し、その補正後の目標液圧にしたがって制動制御を実行することを特徴とする請求項4に記載のブレーキ装置。
【請求項6】
前記特定マップは、前記ブレーキペダルの操作量に対する前記マスタシリンダ圧の上昇勾配が前記通常マップよりも大きくなるように設定されていることを特徴とする請求項5に記載のブレーキ装置。
【請求項7】
前記制御部は、前記低電圧状態となったときに、前記特定のホイールシリンダでない他のホイールシリンダの液圧が、対応する車輪のロックを回避可能な予め定める許容液圧以下であることを条件に前記モータを駆動することを特徴とする請求項1〜6のいずれかに記載のブレーキ装置。
【請求項8】
車両の車速を検出する車速検出手段を備え、
前記制御部は、前記低電圧状態となったときに、車速が予め定める許容速度以下であることを条件に前記モータを駆動することを特徴とする請求項1〜7のいずれかに記載のブレーキ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2011−189905(P2011−189905A)
【公開日】平成23年9月29日(2011.9.29)
【国際特許分類】
【出願番号】特願2010−59845(P2010−59845)
【出願日】平成22年3月16日(2010.3.16)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(301065892)株式会社アドヴィックス (1,291)
【Fターム(参考)】