説明

プリプレグ及びその製造方法とこれを用いたプリント配線板

【課題】本発明は、熱伝導性に優れ、安価で加工性に優れ、多層形成時の配線埋め込み性を満足するプリプレグおよび基板を提供することを目的とするものである。
【解決手段】プリプレグ1は芯材3と、この芯材3に含浸されたコンポジット材4とからなり、コンポジット材4は半硬化状態の樹脂体6とその樹脂体中に分散された無機フィラー5とからなり、コンポジット材4のプリプレグ1中の割合が55体積%以上95体積%以下であり、かつ、コンポジット材中の無機フィラー5の割合が35体積%以上65体積%以下であり、前記無機フィラーが、酸化マグネシウム等の無機フィラーとであって、そのメディアン径が1μm以上10μm以下、BET比表面積が0.1m/g以上2.0m/g以下であり、かつ、湿潤分散剤を1種類以上含んでいること、さらに望ましくは有機珪素化合物を1種類以上含んでいることで、熱伝導性と加工性を高める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱対策が要求されるパワー系半導体等の各種電子部品を高密度に実装する際に用いられるプリプレグ及びその製造方法とこれを用いたプリント配線板に関するものである。
【背景技術】
【0002】
従来、電子部品実装用のプリント配線板としては、複数枚積層、一体化し、ガラスエポキシ樹脂からなるプリプレグと銅箔とからなる部材を硬化したものが用いられている。
【0003】
機器の小型化、高性能化に伴い、電子部品の発熱が課題となることも多く、新たな熱対策として、放熱性(あるいは熱伝導性)を有するプリント配線板が求められる。
【0004】
プリプレグおよび硬化後のプリント配線板における熱伝導率を高めるために、無機フィラーを高密度に添加することが提案されている。
【0005】
たとえば、窒素化ホウ素、窒素化炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナなどの窒素化物、酸化チタン、酸化炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナなどの酸化物などの無機フィラーを使用する例などが挙げられる(特許文献1:特開昭60−136298号公報)。
【0006】
一般に、無機フィラーの高充填化では、プリプレグ製造時の樹脂と無機フィラーからなるコンポジット材の粘度の増加や、溶剤によるワニス化を行ったとき、無機フィラーの分散性の低下や、沈降物の発生が懸念され、含浸塗布後にフィラーの偏在などがおこり、反りや半田耐熱特性などの課題が考えられる。そのために、高充填時下においては、フィラーの分散性を向上させるために、湿潤分散剤や有機珪素化合物の添加の作用が知られている(特許文献2:特開2001−96668号公報)。
【0007】
無機フィラーに関しては、前述の窒素化物は値段的に高価であり、無機フィラーの充填量を増加させると、プリプレグ及びこれを用いたプリント配線板が非常に高価になってしまう。また、酸化チタンや酸化炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナなどの金属酸化物においては、その酸化物の硬度が硬く、プリント配線板作成時の機械加工性に劣る。
【0008】
そこで、無機フィラーに、値段的にも安価であり、加工性に優れ、高い熱伝導性を有するフィラーとして酸化マグネシウムを用いることが考えられる。
【0009】
しかしながら、値段的に安価な酸化マグネシウムは一般的に軽焼マグネシアと呼ばれ、サブミクロンから数μmの1次粒子が凝集した形状で粒子が形成しているため、表面積が非常に大きく、BET比表面積が高い値となってしまっているため、高い充填量の配合が困難になっている。そのため、国際公開第2005/033214号のように、酸化マグネシウムの形状性を向上させることにより、より高い流動性を得ることが提案されている(特許文献3:国際公開第2005/033214号)。しかしながら、これらの発明においては、粒子の吸量や流動係数は改善されてはいるものの、粒子径そのものに制限は生じている。
【0010】
しかしながら、複数層に銅箔による配線パターンが形成されたプリント配線板においては、その実装密度を向上させるため、内層においても少なくともその一面以上に銅箔パターン形状が加工された積層体上を設けており、さらには、配線密度の向上のためには、プリプレグの膜厚を規定して層数の確保の実施や、それに加えて配線パターンのLine/Spaceそのものも、より緻密な設計が必要とされている。
【0011】
さらには、熱対策を行なう配線板においては、内層銅箔によって熱伝導性を向上させるため、70μmなどの厚銅箔を設けるなどの使用が存在している。
【0012】
このような、内層銅箔配線パターン形状が加工された積層体上に、プリプレグをセットして、上層にさらに銅箔による配線パターンを形成する際に、無機フィラーを一定量にいれて、かつ、プリプレグにおけるコンポジット材の量が制限が生じる系においては、コンポジット材の流動性の低下により、銅箔配線パターン近傍に空隙が生じるなどして白化するなどの現象が生じてしまう。
【0013】
そのため、熱伝導率に優れる複数層に銅箔による配線パターンが形成されたプリント配線板を形成するには、プリプレグの厚みが制限された中で、厚みのある内層銅箔パターンの埋め込み性を、配線パターン性を低下させることなく行なうことが、プリプレグ製造時のワニス化粘度の増加や、無機フィラーの分散性の低下や、沈降物の発生、含浸塗布後にフィラーの偏在などに加えて、必要な課題となっている。
【0014】
なお、この出願に関する先行技術文献情報としては、例えば、特許文献1〜3が知られている。
【先行技術文献】
【特許文献】
【0015】
【特許文献1】特開昭60−136298号公報
【特許文献2】特開2001−96668号公報
【特許文献3】国際公開第2005/033214号
【発明の概要】
【発明が解決しようとする課題】
【0016】
このように従来のプリント配線板の場合、プリント配線板の熱伝導率を上げようと無機フィラーの充填量を増加させると、プリプレグ作成上の問題やさらには値段の増加や加工性の低下が生じており、さらには、プリント配線板の配線埋め込み性の低下が生じてくる。
【0017】
そこで本発明はプリプレグを構成すると無機フィラーと添加剤に着目し、さらには、構成樹脂および基材材料との組成に注目し、プリント配線板の熱伝導率を高めながらも、上記課題を克服した特性を保てるプリプレグおよびプリント配線板を提供することを目的とする。
【課題を解決するための手段】
【0018】
硬化後の熱伝導率が0.5W/(mK)以上30W/(mK)以下となるプリプレグであって、このプリプレグは芯材と、この芯材に含浸されたコンポジット材とからなり、
コンポジット材は半硬化状態の樹脂体とその樹脂体中に分散された無機フィラーと1種類以上の湿潤分散材とからなり、前記コンポジット材のプリプレグ中の割合が55体積%以上95体積%以下であり、かつ、コンポジット材中の無機フィラーの割合が35体積%以上65体積%以下であり、前記無機フィラーが、酸化マグネシウムと炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナ、窒化アルミ、窒化ホウ素、炭化ケイ素、窒化ケイ素、シリカ、酸化亜鉛、酸化チタン、酸化錫、炭素、ジルコン珪酸塩から選ばれた少なくとも1種類以上からなる無機フィラーとからなり、かつ前記無機フィラーのメディアン径が1μm以上10μm以下であり、BET比表面積が0.1m/g以上2m/g以下であることで課題を解決する。
【発明の効果】
【0019】
本発明のプリプレグ及び、その製造方法とこれを用いたプリント配線板によれば、熱伝導性に優れ、配線埋め込み性を解決した安価でかつ加工性に優れたプリプレグおよびプリント配線板を得ることが可能となり、そして、本発明のプリプレグを用いて作製したプリント配線板を用いることで、電子部品などを高密度実装する事ができ、液晶やプラズマTV、各種電子機器の小型化、高性能化が可能になる。
【図面の簡単な説明】
【0020】
【図1】本発明の実施の形態におけるプリプレグの断面図および拡大断面図
【図2】本発明の実施の形態におけるプリプレグの製造工程の一例を示す図
【図3】本発明の実施の形態における多層プリント配線板の製造工程を示す断面図
【図4】本発明の実施の形態における多層プリント配線板の製造工程を示す断面図
【発明を実施するための形態】
【0021】
(実施の形態1)
以下、本発明の実施の形態1として、プリプレグについて説明する。
【0022】
図1(A)は、実施の形態におけるプリプレグの断面図である。
【0023】
図1(A)に示すように、実施の形態で説明するプリプレグ1は芯材3と、この芯材3に含浸させた半硬化樹脂体6であるコンポジット材4から構成したものである。そして芯材3の開口部(矢印7で示した部分)や、芯材3の表面は、コンポジット材4で覆われている(あるいは充填されている)。
【0024】
次に、開口部の構造について詳細に説明する。図1(B)は、本発明の実施の形態におけるプリプレグの開口部の拡大断面図である。図1(B)に示すように、コンポジット材4は、半硬化樹脂体6中に無機フィラー5が分散されている。
【0025】
ここで実施の形態では、芯材3に、積極的に開口部を形成し、この開口部に図1(A)に示すように、半硬化樹脂体6を充填することで、プリプレグ1の厚み方向での熱伝導性を高めることになる。
【0026】
芯材3の厚みは、10μm以上300μm以下が望ましい。芯材3の厚みが10μm未満の場合、プリプレグ1(あるいはプリプレグ1を硬化してなるプリント配線板)の機械強度(例えば引張り強度等)に影響を与える可能性がある。芯材3の厚みが300μmを越えた場合、プリプレグ1の厚みが増加してしまうため、取り扱い性(例えば、捲回しにくい等)に影響を与える場合がある。
【0027】
また芯材3に織布を用いた場合、図1(A)において、矢印7は、芯材繊維2が織られてなる芯材3の開口部(この開口部はバスケットホール部と呼ばれることもある)を示している。また芯材3に不織布を用いた場合、矢印7は、芯材繊維2が結合して得られる芯材3のうち、繊維の存在していない空間を開口部として示している。ここで開口率とは、芯材を投影した場合における、芯繊維の存在していない開口部の、全体に対する面積割合を百分率(単位は%)で表示したものである。
【0028】
なお芯材3における開口率は、50%以下が良い。特に25%以上50%以下が望ましい。開口率が25%未満の場合、プリプレグ1の厚み方向の熱伝導性(つまり開口部を介した熱伝導)に影響を与える場合がある。また開口率が50%を超えた場合、プリプレグ1の引張り強度に影響を与える可能性がある。
【0029】
更にプリプレグ1をXY方向に縮みにくくすることで、プリプレグ1をZ方向(厚み方向)に伸びにくくすることができる。この結果、プリント配線板のZ方向の信頼性(例えば、スルーホール部分の接続信頼性)を高める効果が得られる。これはZ方向の熱膨張が抑えられるためである。
【0030】
また芯材3の、開口率を高めることで、プリプレグ1のレーザーやドリルによるビア孔の加工性を高める効果も得られる。
【0031】
本発明では、芯材としては80μm厚みのガラスクロスを使用し、薄手使用としては、40μm厚みのガラスクロスを使用した。
【0032】
なおプリプレグ1の厚みは、20μm以上500μm以下が望ましい。プリプレグ1の厚みが20μm未満の場合、プリプレグ1(あるいはプリプレグ1を硬化してなるプリント配線板)の機械強度(例えば引張り強度等)に影響を与える可能性がある。また厚みが500μmを超えた場合、取り扱い性(例えば、捲回しにくい等)に影響を与える場合がある。
【0033】
(実施の形態2)
次に実施の形態2として、図2を用いて、プリプレグ1の製造方法の一例について説明する。図2は、プリプレグ1の製造方法の一例を断面で説明する模式図である。図2において、8はロールであり、プリプレグの製造設備の一部を模式的に示すものである。9はコンポジット材ワニス、10は槽である。槽10の中にはコンポジット材4を形成する部材、つまり、樹脂体6と無機フィラー5を、所定の溶剤(例えばメチルエチルケトン、アルコール類、シクロペンタノン等:本実施例ではメチルエチルケトンを使用)に溶解・混合した状態でセットしている。
【0034】
そして図2に示すように、芯材3を、ロール8にセットし、矢印7aに示す方向に送り、槽10にセットしたコンポジット材ワニス9を含浸させる。そしてロール8を、矢印7bに回しながら、芯材3に含浸させたコンポジット材ワニス9の含浸量を調整する。そして乾燥機等(図示していない)の中を矢印7cのように流して、含浸させたコンポジット材ワニス9から溶剤成分を除去する。更に加熱等によりコンポジット材に含まれる樹脂成分を半硬化状態(本硬化の前の状態、いわゆるBステージ状態)とすることで、プリプレグ1を、連続的に作製する。なおプリプレグ1の製造方法はこれに限定されるものではない。
【0035】
また、芯材繊維2に対して、シランカップリング剤、リン酸エステル、スルホン酸エステル、カルボン酸エステルなどの表面処理剤で表面処理を行うことで、芯材繊維2と無機フィラー5が表面処理剤を介して結合力を有することでプリプレグ1の熱伝導性と機械強度を両立する事ができる。
【0036】
ここで、コンポジット材ワニス9の粘度が高いと塗布性が低下し、プリプレグの表面性の低下を招き、最終プリント配線板形成時に密着不良などの要因になりうる。特に、無機フィラー5の割合が多い場合は、無機フィラーの性状の影響をうけ、大幅に粘度特性が変化し、結果、プリプレグおよびプリント配線板の生産性に大きな影響を与える。
【0037】
(実施の形態3)
次に実施の形態3として、プリプレグ1を用いて、熱伝導性の高いプリント配線基板を作製する方法について説明する。
【0038】
図3(A)(B)は、共にプリプレグ1の表面に銅箔を固定(あるいは一体化)する方法の一例を説明する断面図である。
【0039】
まず図3(A)に示すように、半硬化コンポジット材4と、これを含浸させた芯材3と、からなるプリプレグ1の一面以上に銅箔12をセットする。そして、プレス11を、矢印7に示すように動かし、プリプレグ1の一面以上に銅箔12を貼り付ける。なお図3(A)(B)において、プレス11にセットする金型等は図示していない。そしてこれら部材を所定温度、加圧一体化する。その後、図3(B)に示すようにプレス11を矢印7の方向に引き離す。こうして銅箔12をプリプレグ1の一面以上に固定し、積層体14とする。このようにして接着剤等を用いずに銅箔12をプリプレグ1の上に固定することで、出来上がった積層体14の高熱伝導化を実現する。
【0040】
次に積層体14の一面以上に固定した銅箔12を所定形状にパターニングする。なお
パターニングの工程(フォトレジストの塗布、露光、現像、銅箔12のエッチング、フ
ォトレジストの除去工程等)は図示していない。
【0041】
次に図4(A)〜(C)を用いて、積層体14を積層し、4層のプリント配線板を作成する様子を説明する。
【0042】
図4(A)〜(C)は、共に多層(例えば4層)プリント配線板を作成する様子を断面で説明する模式図である。
【0043】
まず図4(A)に示すように、少なくともその一面以上に、銅箔12を所定パターン形状に加工した銅箔パターン13を設けた積層体14を用意する。そしてこの積層体14を挟むように、プリプレグ1をセットする。更にプリプレグ1の外側に、銅箔12をセットする。なお市販の銅箔12を用いる場合、その粗面側をプリプレグ1側にセットすることで、銅箔12とプリプレグ1との接着力(アンカー効果)を高められる。そしてこの状態でプレス装置(図示していない)を用いて、これら部材を加圧、加熱、一体化する。このプレス時に加熱することで、プリプレグ1に含まれる半硬化コンポジット材4が軟化し、プリプレグ1上に固定した銅箔12のパターンの埋め込み(あるいはパターンによる段差の埋め込み)や、銅箔12との密着力を高める効果が得られる。また接着剤を用いることなく、銅箔12を固定する効果も得られる。こうして積層体14を作成する。
【0044】
次にこの積層体14の所定位置に孔15を形成し、図4(B)の状態とする。図4(B)において、孔15はドリルやレーザー等(共に図示していない)で形成したものである。
【0045】
その後、孔15の内壁等に銅めっきを行い、図4(C)の状態とする。図4(C)に示すように、銅めっき部16によって、内層や表層に形成した銅箔12の間の層間接続を行う。次にソルダーレジスト(図示していない)等を形成することで、プリント配線板17を完成させる。
【0046】
ここで、ガラス芯材3へのコンポジット材4の含浸量によって、プリプレグ1中のコンポジット材4の分量が決定される。このコンポジット材4の分量が十分でないと、プリプレグ1中の無機フィラー5の含有量が低下し、十分な熱伝導率を得る事が困難になる。さらには、芯材3の表面を覆う十分なコンポジット材4の厚みを確保できないため、図3(A)〜図3(B)における内層銅箔パターン13の厚みの吸収効果が低減する。特に、本発明における高熱伝導プリプレグにおいては、無機フィラー5の充填量によって、この厚み吸収効果が変化するため、内層銅箔パターン13の埋め込み不良が発生する。
【0047】
また、あまりに含浸量が多いと、前記プリプレグの取り扱い性の悪影響に加えて、ワニス9からの乾燥不足や半硬化状態の不足によるプリプレグ作成時およびプリント配線板作成時のコンポジット材の搬送部分への粘着やさらには脱落などの影響が考えられる。そのために、コンポジット材のプリプレグの割合は35から95体積%、望ましくは55から90体積%であることが好ましい。
【0048】
(実施の形態4)
次に、実施の形態4を用いて、半硬化コンポジット材4を構成する部材について詳細に説明する。
【0049】
コンポジット材4としては、エポキシ樹脂を主体とする熱硬化性樹脂に、熱伝導性を高める無機フィラーからなり、例えばエポキシ樹脂を主体とする熱硬化性樹脂に、プリント配線板としての成形性を高めるために、ゴム樹脂のかわりに熱可塑性樹脂を添加することができる。なおゴム樹脂同様に熱可塑性樹脂も、微粒子状態として、エポキシ樹脂等にて添加しても良い。こうすることで、少量でも機械強度の改善効果が得られる。更に熱可塑性樹脂の一種であるアクリル系樹脂を微粒子形状とし、これを応力緩和剤、複合材料強化材の用途のため添加することもできる。
【0050】
なおエポキシ樹脂の内、40重量%以上を結晶性エポキシ樹脂とすることで、樹脂部分での熱伝導率を高めることができる。結晶性エポキシ樹脂の、エポキシ樹脂全体に占める割合が40重量%未満の場合、結晶性エポキシ樹脂の添加効果が得られない場合がある。またエポキシ樹脂全てを(あるいは100重量%を)結晶性エポキシとすることで、熱伝導を高められる。また硬化後の結晶性エポキシ樹脂は、場合によっては割れやすくなる場合があるが、ゴム樹脂や熱可塑性樹脂等を添加することで、割れにくくできる。なおこれらを微粒子として添加することで、熱伝導に対する影響を抑えられる。
【0051】
本発明では、熱伝導用無機フィラー5への添加剤として、湿潤分散剤や有機珪素化合物の添加を行なった。
【0052】
ここで、湿潤分散剤としては、無機フィラー5に吸着する極性のある親水基と樹脂と相溶性のある非極性の疎水基の両方とを併せもつ分子構造をもつ分散剤があげられ、たとえば酸基やりん酸基を有する飽和ポリエステル系コポリマーやもしくは不飽和ポリエステル系コポリマー、ポリカルボン酸共重合体、アルキルアンモニウム塩もしくは不飽和ポリアミンアミドの塩、多価アルコールエーテルやポリアクリル酸−ポリスチレン系コポリマーなどが挙げられる。
【0053】
ここで、無機フィラー5に吸着する極性のある親水基においては、無機フィラー5の表面活性に応じて決定することが望ましく、酸化マグネシウムのようなアルカリ性の強い系においては、酸性の吸着基を有することで、親和性の向上が図られ、さらには、その極性基が分子中に複数存在することで、無機フィラー5表面への吸着性の向上が図られる。
【0054】
有機珪素化合物としては、Si−O−Rからなる加水分解基と有機物と相互作用のある有機官能基を有する有機珪素化合物の使用が可能である。例えば、有機官能基にビニル基、エポキシ基、メタクリロキシ基を有するシランカップリング剤から、炭化水素構造からなるアルコキシシランなど例が挙げられる。
【0055】
ここで、有機珪素化合物は、Si原子を起点に1から3個(の複数個)もの加水分解基が無機物表面に吸着(脱水縮合による結合含む)し、有機官能基が有機物系に相互作用を行なうことで、無機フィラー5と樹脂体6との相互性を向上されるものであり、前述の湿潤分散との比較では、分子中の吸着基の密度が大きく、また官能基分子量が小さいものが多い。そのため、酸化マグネシウムなどの系では、湿潤分散では不十分であった無機フィラー吸着面への吸着を補うこととともに、有機官能基の樹脂体6との相互反応性や比較的低分水の炭化水素系の有機官能基では、樹脂体6へ反応性の付与や可塑性の向上などの効果が得られるとともに、無機フィラー5に酸化マグネシウムを用いる系などでは、その物質の課題である耐湿性の向上を得ることも可能である。
【0056】
また、この添加剤の量は、無機フィラー5量に対して0.1〜30wt%の添加が可能であり、望ましくは、0.2〜5wt%の添加が望ましい。
【0057】
次に、実施例および比較例として、以下の(表1)に示すような、メディアン径、BETであることを特徴とする無機フィラーとそれに応じた湿潤分散剤および有機珪素化合物の添加組成において、プリント配線板を作成した。
【0058】
【表1】

【0059】
ここで、湿潤分散剤には、ビックケミー社の多官能タイプの湿潤分散剤BYK-W903、BYK-W9010、酸基を含むブロック共重合物のアルキルアンモニウム塩DISPERBYK-180、顔料に親和性のあるブロックコポリマーDisper-BYK2163 Disper−BYK2164 DisperBYK−2155中から選択し使用し、有機珪素化合物には、アルコキシシランとして、有機鎖にフェニル基を有するフェニルトリエトキシシラン(信越化学工業製 KBM-103)、フェニルトリエトキシシラン(信越化学工業製 KBE-103)、シランカップリング剤として有機鎖にエポキシ基を有する3−グリシドキシプロピルトリメトキシシラン(信越化学工業製 KBM-403)、3−グリシドキシプロピルトリエトキシシラン(信越化学工業製 KBE-403)中から選択し使用した。
【0060】
この実施例として作成したプリント配線板17の特性の測定結果としては、プリント配線板成形体の熱伝導、多層形成時の配線埋め込み性、耐湿耐熱試験結果、薄手プリプレグを用いたときのLine/Spaceの配線形成性、ワニス粘度を評価した。
【0061】
各測定における詳細の構成を以下に示す。
【0062】
ここで、コンポジット材料中のフィラー分量は、40体積%となるように設計を行なった。
【0063】
この、所定の無機フィラー分量となるようにエポキシ樹脂、硬化剤と混合するため、固形分量が80重量%となる所定量の溶剤に混合・溶解し、ワニス化を行ない、粘度の評価を行なった。そののち、粘度の高いもの(500mPa・s以上のもの)については、含浸塗布可能な粘度となるよう固形分に対する溶剤の追加によって調整を行なった。
【0064】
また、コンポジット材料のプリプレグに対する分量は80体積%となるように、含浸塗布を行ない、熱伝導率の測定用成形体、埋め込み作成用成形体、吸湿半田耐熱試験体を形成した。ここで、埋め込み性に関しては、図4(A)において、銅箔パターン13の厚みがプリプレグ1厚みに対して35%の厚みとなるよう設定し、その埋め込み性を確認した。また、吸湿耐熱試験においては、面全面銅箔を有するプリント配線板を形成し、125度−24時間乾燥の前処理後、吸湿処理として、(1)30℃−60RH%において192h放置、(2)85℃−60RH%において174h放置の2条件において吸湿後、260℃3分間での半田フローにおける膨れの発生の有無をn=3のサンプルで確認した。
【0065】
次に、薄手プリプレグの検証として、芯材厚み40μmを用いたプリプレグを形成し、このプリプレグを使用し、銅箔配線パターン(Line/Space=40μm/40μm)でのプリント配線板のパターン形成が可能か確認を行なった。
【0066】
その結果を(表2)に示す。
【0067】
【表2】

【0068】
(表2)に示すように、ワニス粘度においては、比較例1の高BETの無機フィラーを用いた系や比較例2の湿潤分散やシランカップリング材の添加がない系においては、コンポジット材ワニスの粘度が、無機フィラー表面と樹脂との相互凝集作用により、プリプレグの塗布生産性の悪化の要因となるワニス粘度の増加が見られている。
【0069】
それに対して、実施例1から6のフィラーのメディアン径が1μm以上10μm以下であり、BET比表面積が2m/g以下の酸化マグネシウムフィラーにすることと、さらには、湿潤分散剤と有機珪素化合物を1種類以上添加することで、粘度の維持低減が図られ、プリプレグの塗布生産性への悪化を防ぐことが可能である。
【0070】
ついで熱伝導性においては、いずれの組成においても、0.5W/(mK)以上が確保されているが、比較例1の高BETの無機フィラーを用いた系や比較例2の湿潤分散や有機珪素化合物の添加がない系においては、配線埋め込み性において不良が見られている。また、これの比較例1および2においては、成型体界面および銅箔との密着性が悪いため、吸湿後の耐熱試験においても、膨れが生じる不良が生じている。なお、この湿潤分散や有機珪素化合物の添加による効果については、(表3)以下で詳細に述べる。
【0071】
比較例3は、粒子径を大きくすることで、BETを低減したフィラーを用いた系である。このような系では、配線埋め込み性の良化が見られるが、薄手プリプレグにおいて、配線パターンL/S=40μm/40μmでは、ライン形状の凹凸の発生とともに、ラインはがれが発生しており、形成不可となってしまっている。これは、ライン幅に対して大きな粒子が存在するため、表面粗度が薄手プリプレグにおいて大幅に低下したため、ライン直線性の低下と密着性が低下したためと考えられる。
【0072】
それに対して、実施例1から6のフィラーのメディアン径10μm以下であり、BET比表面積が2.0m/g以下の無機フィラーを使用することで、薄手プリプレグにおいても配線パターンの形成可能を確保している。
【0073】
このように、実施例1から6のフィラーのメディアン径が1μm以上10μm以下であり、BET比表面積が2.0m/g以下にすることと、さらには、湿潤分散剤と有機珪素化合物を1種類以上添加することで、熱伝導率と多層形成時の配線埋め込み性を満足することが可能となっているとともに、薄手プリプレグにおいて形成可能な配線パターンも確保している。
【0074】
さらには、湿潤分散剤に加えて、有機珪素化合物を添加することで、実施例1から5のように耐湿試験のさらなる向上が見られる。
【0075】
さらに、湿潤分散剤と有機珪素化合物の添加の影響と、フィラー形状の影響による効果をより詳細に検証するため、(表1)の各組成に対して、フィラー/コンポジット材の分量を20体積%以上80体積%以下まで変化させて、プリプレグおよびプリント配線板を形成し、コンポジット材中のフィラー量に対する熱伝導率と多層形成時の配線埋め込み性の関係の評価を行なった。
【0076】
その結果を(表3)に示す。
【0077】
【表3】

【0078】
(表3)の結果から明らかなように、フィラーの形状に関わらず熱伝導率を0.5/(mK)以上を得るためには、フィラー添加量が35体積%以上必要である。しかし配線埋め込み性においては、フィラーの形状および添加剤の有無によって差異が生じている
(但し、比較例1と2においては、ワニス粘度が調整不能のためプリプレグ形成不可であった)。
【0079】
比較例1のフィラーの粒子径が3μmで、BETが10m/gと高い酸化マグネシウムを用いた結果では、フィラー量が35体積%において、すでに、配線埋め込み性が悪化し、熱伝導率と両方を満足することが不可能である。
【0080】
それに対して、フィラーの粒子径が3μmでBETが1m/gのフィラーを用いた場合では、湿潤分散および有機珪素化合物の添加がない比較例2でも、配線埋め込み性はフィラー量35体積%までやや良好化傾向が見られ、比較例1より良化している。
【0081】
それに加えて、湿潤分散剤を添加した実施例6では、フィラー量50%まで配線埋め込み性は良好にあり、さらに、湿潤分散剤と有機珪素化合物とを両方添加した実施例1では、さらに良好な結果が得られている。
【0082】
さらには、実施例2および3および4および比較例3のように、フィラーの粒子径にかかわらず、BET比表面積を2.0m/g以下(0.6m/gまで)の範囲で、フィラー粒子径を変化させた場合においては、粒子径に関わらず、熱伝導率を満足するフィラー量においても配線埋め込み性は得られている。
【0083】
このように、無機フィラーである酸化マグネシウムにおいて、BETを2.0m/g以下とすることで、埋め込み特性は良化している。これは、一定量のフィラーを充填した場合においても、酸化マグネシウムの表面活性の影響が少なくなるため、フィラー表面およびフィラーとフィラーの間、フィラー内部などに吸着・偏在する樹脂の量が低減し、加熱プレス成型時の樹脂の溶融時の流動も可能になっており、その結果、配線パターンの段差に樹脂が押し込まれるため、良化したためと考えられる。
【0084】
さらに湿潤分散剤を添加することで、加熱プレス時において樹脂の溶解が見られる際に、この湿潤分散剤が予め無機フィラーである酸化マグネシウムの表面に吸着されていることで、溶融した樹脂のフィラー粒子表面やフィラー内部への過剰な吸着・偏在を阻止し、さらには、湿潤分散剤の疎水基部分が樹脂への相互作用を増加させることで、溶融樹脂中でのフィラーの分散効果も増加し、結果、熱プレス時流動性が大幅に向上することで、配線埋め込み性が向上しているものと考えられる。
【0085】
この効果は、さきほどの、BET比表面積低減フィラーにおいて、フィラーの界面活性点が低下し、さらにはフィラー表面が焼結向上によって結晶性の向上なども作用して、より効果的になっている。
【0086】
さらに有機珪素化合物を添加することで、耐湿性の向上と、埋め込み性の更なる向上が見られている。これは、有機珪素化合物の耐湿性とともに、湿潤分散剤で被覆しきれなかったフィラー表面への被覆効果が増すとともに、フィラー分散性の効果も増加し、流動性向上の効果が増したと考えられる。さらには、その中でも炭化水素系のフェニル基を有する有機官能基を選択することで、より溶融時のエポキシ樹脂に対して可塑効果が増加することで効果的であると考えられる。
【0087】
この結果から明らかなように、一定の熱伝導を得るために必要な無機フィラー成分の量を添加された状態では、BET比表面積が2m/g以上では、配線埋め込み性が大幅に低下しており、それに対して、フィラーのメディアン径が1μm以上10μm以下であり、BET比表面積が0.1m/g以上2m/g以下にすることと、さらには、湿潤分散剤を1種類以上添加することで、容易にプリプレグ作成時のワニス粘度の低減を可能にして、均一なプリプレグが容易に作成できるとともに、熱伝導率と多層形成時の配線埋め込み性を満足することが可能で、かつ薄手プリプレグでも微細配線の形成を維持し、吸湿耐熱試験による膨れの発生もなく良好な結果が得られた。
【0088】
さらには、有機珪素化合物を添加することで、配線埋め込み性の更なる向上と吸湿耐熱試験結果の向上が得られるとともに、特に無機フィラーに酸化マグネシウムを用いたときに本効果はさらに有効であった。
【0089】
さらには、硬化後の熱伝導率が0.5W/(mK)以上30.0W/(mK)以下となるプリプレグと、所定パターンに加工した銅箔とを複数枚積層し硬化してなるプリント配線板であって、前記プリプレグが硬化後の熱伝導率が0.5W/(mK)以上30.0W/(mK)以下となるプリプレグであって、このプリプレグは芯材と、この芯材に含浸されたコンポジット材とからなり、コンポジット材は半硬化状態の樹脂体とその樹脂体中に分散された無機フィラーとからなり、コンポジット材のプリプレグ中での割合が75体積%以上95体積%以下であり、かつ、コンポジット材中の無機フィラーの割合が35体積%以上65体積%以下であり、前記無機フィラーが、酸化マグネシウムと炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナ、窒化アルミ、窒化ホウ素、炭化ケイ素、窒化ケイ素、シリカ、酸化亜鉛、酸化チタン、酸化錫、炭素、ジルコン珪酸塩から選ばれた少なくとも1種類以上からなる無機フィラーとからなり、かつ前記フィラーのメディアン径が1μm以上10μm以下であり、かつBET比表面積が0.1m/g以上で2.0m/g以下であり、かつ、湿潤分散剤を1種類以上含んでいること、さらに望ましくは有機珪素化合物を1種類以上含んでいることで、前記無機フィラーが望ましくは酸化マグネシウムであることを特徴とするプリント配線板を提供することで、携帯電話、プラズマテレビ、電装品、産業用の放熱が要求される機器の小型化、高性能化を実現できる。
【産業上の利用可能性】
【0090】
以上のように、本発明に関わるプリプレグ及びその製造方法とこれを用いたプリント配線板を用いることによって、携帯電話、プラズマテレビ、あるいは電装品、あるいは産業用等の放熱が要求される機器の小型化、高性能化が可能となる。
【符号の説明】
【0091】
1 プリプレグ
2 芯材繊維
3 芯材(織布、不織布)
4 コンポジット材
5 無機フィラー
6 半硬化樹脂体
7 矢印
8 ロール
9 コンポジット材ワニス
10 槽
11 プレス
12 銅箔
13 銅箔パターン
14 積層体
15 孔
16 銅めっき部
17 プリント配線板

【特許請求の範囲】
【請求項1】
硬化後の熱伝導率が0.5W/(mK)以上30.0W/(mK)以下となるプリプレグであって、このプリプレグは芯材と、この芯材に含浸されたコンポジット材とからなり、
コンポジット材は半硬化状態の樹脂体とその樹脂体中に分散された無機フィラーと1種類以上の湿潤分散材とからなり、
前記コンポジット材のプリプレグ中の割合が55体積%以上95体積%以下であり、
かつ、前記コンポジット材中の無機フィラーの割合が35体積%以上65体積%以下であり、
前記無機フィラーが、酸化マグネシウムと炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナ、窒化アルミ、窒化ホウ素、炭化ケイ素、窒化ケイ素、シリカ、酸化亜鉛、酸化チタン、酸化錫、炭素、ジルコン珪酸塩から選ばれた少なくとも1種類以上であって、メディアン径が1μm以上10μm以下、BET比表面積が0.1m/g以上2.0m/g以下であるプリプレグ。
【請求項2】
湿潤分散剤が酸性基からなる官能基を1つ以上含むコポリマーからなることを特徴とする請求項1に記載のプリプレグ。
【請求項3】
コンポジット材において、湿潤分散剤に加えて有機珪素化合物を共に含んでいることを特徴とする請求項1に記載のプリプレグ。
【請求項4】
無機フィラー中の酸化マグネシウムの割合が30体積%以上である請求項1から3のいずれか一つに記載のプリプレグ。
【請求項5】
芯材が、開口率50%以下であり、かつ、厚みが10μm以上300μm以下である請求項1に記載のプリプレグ。
【請求項6】
樹脂体はエポキシ樹脂と硬化剤である、請求項1に記載のプリプレグ。
【請求項7】
エポキシ樹脂のうち、40体積%以上は、結晶性エポキシ樹脂である請求項6に記載のプリプレグ。
【請求項8】
プリプレグに占める半硬化樹脂体は、少なくともエポキシ樹脂と硬化剤とからなる樹脂体と、ガラス転移温度が50℃以上130℃以下の熱可塑性樹脂と、ゴム状樹脂の、少なくとも1種類以上からなる、請求項1に記載のプリプレグ。
【請求項9】
樹脂体と無機フィラーからなる硬化後の熱伝導率が0.5W/(mK)以上30.0W/(mK)以下となるコンポジット材を用意する第1工程と、
前記コンポジット材を、厚みが10μm以上300μm以下の芯材に含浸させる第2工程と、
前記樹脂体を半硬化状態とする第3工程とからなるプリプレグの製造方法において、
前記第1工程において、無機フィラーが、メディアン径が1μm以上10μm以下であり、BET比表面積が0.1m/g以上2.0m/g以下である酸化マグネシウムであることと、湿潤分散剤とシランカップリング材を1種類以上含んでいることを特徴とするプリプレグの製造方法。
【請求項10】
硬化後の熱伝導率が0.5W/(mK)以上30W/(mK)以下となるプリプレグと、所定パターンに加工した銅箔とを複数枚積層し硬化してなるプリント配線板であって、
前記プリプレグが芯材と、この芯材に含浸されたコンポジット材とからなり、
コンポジット材は半硬化状態の樹脂体とその樹脂体中に分散された無機フィラーと1種類以上の湿潤分散材とからなり、
コンポジット材のプリプレグの割合が75体積%以上95体積%以下であり、
かつ、コンポジット材中の無機フィラーの割合が35体積%以上65体積%以下であり、
前記無機フィラーが、酸化マグネシウムと炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化カルシウム、水酸化アルミニウム、アルミナ、窒化アルミ、窒化ホウ素、炭化ケイ素、窒化ケイ素、シリカ、酸化亜鉛、酸化チタン、酸化錫、炭素、ジルコン珪酸塩から選ばれた少なくとも1種類以上からなる無機フィラーとからなり、かつ前記フィラーのメディアン径が1μm以上10μm以下であり、BET比表面積が2m/g以下であることを特徴とするプリント配線板。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−260990(P2010−260990A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2009−114300(P2009−114300)
【出願日】平成21年5月11日(2009.5.11)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】