説明

ポジ型感光性樹脂組成物

【課題】短い現像時間で使用しても感度、接着性、残渣除去性に優れるポジ型感光性樹脂組成物の提供する。
【解決手段】下記の一般式(1)で表される繰り返し単位を有するヒドロキシポリアミド100質量部に対し、下記の一般式(2)、(3)、及び(4)で表される化合物群から選択される少なくとも1つのカルボニル基を有する化合物0.1〜30質量部と、感光性ジアゾキノン化合物1〜100質量部とを含有するポジ型感光性樹脂組成物。



【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置の表面保護膜及び層間絶縁膜として使用されるポジ型感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた耐熱性を有する硬化レリーフパターンの製造方法、並びに該硬化レリーフパターンを有してなる半導体装置に関する。
【背景技術】
【0002】
従来から、半導体装置の表面保護膜、層間絶縁膜には、優れた耐熱性と電気特性、機械特性などを併せ持つポリイミド樹脂が用いられている。このポリイミド樹脂は、現在は一般に感光性ポリイミド前駆体組成物の形で供され、塗布、活性光線によるパターニング、現像、熱イミド化処理等を施すことによって、半導体装置上に表面保護膜、層間絶縁膜等を容易に形成させることが出来、従来の非感光性ポリイミド前駆体組成物に比べて大幅な工程短縮が可能となるという特徴を有している。
ところが、感光性ポリイミド前駆体組成物は、その現像工程においては、現像液としてN−メチル−2−ピロリドンなどの大量の有機溶剤を用いる必要があり、近年の環境問題の高まりなどから、脱有機溶剤対策が求められてきている。これを受け、最近になってフォトレジストと同様に、アルカリ性水溶液で現像可能な耐熱性感光性樹脂材料の提案が各種なされている。
【0003】
中でも、アルカリ性水溶液可溶性のヒドロキシポリアミド、例えばポリベンズオキサゾール(以下、PBOともいう)前駆体を、感光性ジアゾキノン化合物などの光活性成分と混合したPBO前駆体組成物をポジ型感光性樹脂組成物として用いる方法が、近年注目され、例えば、特許文献1などに開示されている。
このポジ型感光性樹脂組成物の現像メカニズムは、未露光部の感光性ジアゾキノン化合物がアルカリ性水溶液に不溶であるのに対し、露光することにより該感光性ジアゾキノン化合物が化学変化を起こしインデンカルボン酸化合物となってアルカリ性水溶液に可溶となることを利用したものである。この露光部と未露光部の間の現像液に対する溶解速度の差を利用し、未露光部のみのレリーフパターンの作成が可能となる。
【0004】
上述のPBO前駆体組成物は、露光およびアルカリ性水溶液による現像でポジ型レリーフパターンの形成が可能であり、硬化後のPBO膜はポリイミド膜と同等の熱硬化膜特性を有しているため、有機溶剤現像型ポリイミド前駆体の有望な代替材料として注目されている。しかしながら、これまで開示されている方法によって得られるPBO前駆体組成物には、未だ問題点も多い。
例えば、PBO前駆体組成物を実際に使用する場合、特に問題となるのは現像時における未露光部の膜減り量である。未露光部の膜減り量が大きいと、現像後のレリーフパターンの形状が著しく悪くなり、十分な性能が得られない。そのための対策として、ベース樹脂であるPBO前駆体の分子量を大きくすると、未露光部の膜減り量を小さくすることが出来る。しかし、この場合、本来完全に現像液で溶解除去できるはずの露光部に現像残渣(スカム)が発生し、解像度が悪くなるという欠点があった。また、露光部の現像時間が長くなってしまうという問題もあった。
【0005】
この問題に対して、PBO前駆体組成物に特定のフェノール化合物を加えることによって現像時における未露光部の膜減り量が抑えられることが特許文献2、特許文献3に報告されている。しかしながら後述の比較例にて示すようにその効果は不十分であり、特にPBO前駆体の分子量が高い場合に、現像残渣(スカム)を発生させることなく膜減り抑制効果を奏するものが求められていた。
また、この現像後のPBO前駆体からなるレリーフパターンを加熱処理することにより、耐熱性を有するPBO樹脂からなる硬化レリーフパターンへと変換するのであるが、加えるフェノール化合物によっては、この加熱処理の途中で未硬化のPBO前駆体が流動してしまい、レリーフパターン形状が大きく変化してしまうという問題があるものもあった。
【0006】
一方、未露光部の膜減り量の問題、およびスカムの発生という問題に対して、特定の構造の感光性ジアゾキノン化合物を用いることにより、解決する試みが特許文献4に報告されている。この技術はジアゾキノン部を結合させる骨格部に特定の構造を用いることで、感光性ジアゾキノン化合物がアルカリ性水溶液と接触する際に構造が変化し、感光性樹脂組成物全体の溶解性が向上するというものである。しかしながら、本発明者が検討した結果、この方法では、露光部に照射した光線量が少ない場合、露光部の該感光性ジアゾキノン化合物のうちインデンカルボン酸へと化学変化していない分子は、アルカリ性水溶液に対する溶解性が低く、現像残渣を発生させる。さらに未露光部ではアルカリ性水溶液と接触した該感光性ジアゾキノン化合物は溶解性が増大してしまい、該感光性ジアゾキノン化合物の本来の機能である、未露光部での溶解抑止能が減少してしまう。結果として露光部、未露光部での溶解速度の差が十分ではなくなることにより膜減り量は大きくなり、感光性樹脂組成物として満足できるものではなかった。
【0007】
【特許文献1】特公昭63−096162号公報
【特許文献2】特開平09−302221号公報
【特許文献3】特開2000−292913号公報
【特許文献4】特開2001−133975号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、短い現像時間で使用しても感度、残渣除去性、及び接着性に優れた新規なポジ型感光性樹脂組成物、該組成物を用いた硬化レリーフパターンの製造方法、及び該硬化レリーフパターンを有してなる半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の構造を有するヒドロキシポリアミドに特定の構造を有するカルボニル基を有する化合物を組み合わせることで、上記の課題を解決するポジ型感光性樹脂組成物が得られることを見出し、本発明をなすに至った。
【0010】
すなわち、本発明の第一は、下記の一般式(1)で表わされる繰り返し単位を有するヒドロキシポリアミド100質量部に対し、下記の一般式(2)、(3)、及び(4)で表される化合物群から選択される少なくとも1つのカルボニル基を有する化合物0.1〜30質量部と、感光性ジアゾキノン化合物1〜100質量部とを含有することを特徴とするポジ型感光性樹脂組成物、である。
【化1】

(式中、X1は少なくとも2個以上の炭素原子を有する4価の有機基、X2,Y1およびY2は少なくとも2個以上の炭素原子を有する2価の有機基、mは2〜1000の整数、nは0〜500の整数であって、m/(m+n)>0.5である。なお、X1およびY1を含むm個のジヒドロキシジアミド単位、並びにX2およびY2を含むn個のジアミド単位の配列順序は問わない。)
【0011】
【化2】

(式中、Lは炭素数1〜12の2価の有機基、Rはヒドロキシ基、または炭素原子数1〜9の有機基を示す。)
【0012】
また、本発明のポジ型感光性樹脂組成物組成物においては、カルボニル基を有する化合物が、下記の一般式(3)、(4)、及び(5)で表される化合物群から選択される少なくとも1つの化合物であることが好ましい。
【化3】

(式中、Lは炭素数1〜12の2価の有機基を表す。)
【0013】
さらに、本発明のポジ型感光性樹脂組成物組成物においては、カルボニル基を有する化合物が以下に示される群から選択される少なくとも1つの化合物であることがより好ましい。
【化4】

【0014】
また本発明の第二は、(1)上述のポジ型感光性樹脂組成物を層またはフィルムの形で基板上に形成し、(2)マスクを介して化学線で露光するか、光線、電子線またはイオン線を直接照射し、(3)露光部または照射部を溶出または除去し、(4)得られたレリーフパターンを加熱処理することを特徴とする硬化レリーフパターンの製造方法である。
さらに本発明の第三は、上述硬化レリーフパターンの製造方法で得られた硬化レリーフパターン層を有してなる半導体装置、である。
【発明の効果】
【0015】
本発明によれば、感度、残渣除去性、及び接着性に優れたポジ型感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた硬化レリーフパターンの製造方法、および該硬化レリーフパターンを有してなる半導体装置が提供される。
【発明を実施するための最良の形態】
【0016】
<ポジ型感光性樹脂組成物>
本発明のポジ型感光性樹脂組成物を構成する各成分について、以下具体的に説明する。 (A)ヒドロキシポリアミド
本発明のポジ型感光性樹脂組成物のベースポリマーであるヒドロキシポリアミドは、下記一般式(1)のジヒドロキシジアミド単位m個を含むポリマーである。該ジヒドロキシジアミド単位は、X1(NH22(OH)2の構造を有するビスアミノフェノールおよびY1(COOH)2の構造を有するジカルボン酸からなる。ここで、該ビスアミノフェノールの2組のアミノ基とヒドロキシ基はそれぞれ互いにオルト位にあるものであり、該ヒドロキシポリアミドを約300〜400℃で加熱することによって閉環して、耐熱性樹脂であるポリベンズオキサゾールに変化する。mは2〜1000の範囲が好ましく、3〜50の範囲がより好ましく、3〜20の範囲であることが最も好ましい。該ヒドロキシポリアミドには、必要に応じて、下記一般式(1)のジアミド単位n個を縮合させてもよい。該ジアミド単位は、X2(NH22の構造を有するジアミンおよびY2(COOH)2の構造を有するジカルボン酸からなる。nは0〜500の範囲が好ましく、0〜10の範囲がより好ましい。ヒドロキシポリアミド中における該ジアミド単位の割合が高すぎると現像液として使用するアルカリ性水溶液への溶解性が低下するので、m/(m+n)の値は0.5以上であることが好ましく、0.7以上であることがより好ましく、0.8以上であることが最も好ましい。
【化5】

【0017】
1(NH22(OH)2の構造を有するビスアミノフェノールとしては、例えば、3,3’−ジヒドロキシベンジジン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルスルホン、ビス−(3−アミノ−4−ヒドロキシフェニル)メタン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス−(4−アミノ−3−ヒドロキシフェニル)メタン、2,2−ビス−(4−アミノ−3−ヒドロキシフェニル)プロパン、4,4’−ジアミノ−3,3’−ジヒドロキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジヒドロキシベンゾフェノン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルエーテル、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、1,4−ジアミノ−2,5−ジヒドロキシベンゼン、1,3−ジアミノ−2,4−ジヒドロキシベンゼン、1,3−ジアミノ−4,6−ジヒドロキシベンゼンなどが挙げられる。これらのビスアミノフェノールは単独あるいは混合して使用してもよい。
【0018】
これらのビスアミノフェノールのうち特に好ましいものは、X1が下記から選ばれる芳香族基の場合である。
【化6】

【0019】
また、X2(NH22の構造を有するジアミンとしては、芳香族ジアミン、シリコンジアミンなどが挙げられる。
このうち芳香族ジアミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、2,4−トリレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、
【0020】
1,4−ビス(4−アミノフェノキシ)ベンゼン、4−メチル−2,4−ビス(4−アミノフェニル)−1−ペンテン、4−メチル−2,4−ビス(4−アミノフェニル)−2−ペンテン、1,4−ビス(α,α−ジメチル−4−アミノベンジル)ベンゼン、イミノ−ジ−p−フェニレンジアミン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、4−メチル−2,4−ビス(4−アミノフェニル)ペンタン、5(または6)−アミノ−1−(4−アミノフェニル)−1,3,3−トリメチルインダン、ビス(p−アミノフェニル)ホスフィンオキシド、4,4’−ジアミノアゾベンゼン、4,4’−ジアミノジフェニル尿素、4,4’−ビス(4−アミノフェノキシ)ビフェニル、
【0021】
2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]ベンゾフェノン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、4,4’−ビス[4−(α,α−ジメチル−4−アミノベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(α,α−ジメチル−4−アミノベンジル)フェノキシ]ジフェニルスルホン、4,4’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、フェニルインダンジアミン、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、o−トルイジンスルホン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシフェニル)スルフィド、1,4−(4−アミノフェノキシフェニル)ベンゼン、1,3−(4−アミノフェノキシフェニル)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ジ−(3−アミノフェノキシ)ジフェニルスルホン、4,4’−ジアミノベンズアニリド等、およびこれら芳香族ジアミンの芳香核の水素原子が、塩素原子、フッ素原子、臭素原子、メチル基、メトキシ基、シアノ基、フェニル基からなる群より選ばれた少なくとも一種の基または原子によって置換された化合物が挙げられる。
【0022】
また、基材との接着性を高めるためにシリコンジアミンを選択することができ、この例としては、ビス(4−アミノフェニル)ジメチルシラン、ビス(4−アミノフェニル)テトラメチルシロキサン、ビス(4−アミノフェニル)テトラメチルジシロキサン、ビス(γ−アミノプロピル)テトラメチルジシロキサン、1,4−ビス(γ−アミノプロピルジメチルシリル)ベンゼン、ビス(4−アミノブチル)テトラメチルジシロキサン、ビス(γ−アミノプロピル)テトラフェニルジシロキサン等が挙げられる。
【0023】
また、Y1(COOH)2またはY2(COOH)2の構造を有する好ましいジカルボン酸としては、Y1、Y2が下記から選ばれた芳香族基の場合が挙げられる。
【化7】

(式中、Aは、−CH2−、−O−、−S−、−SO2−、−CO−、−NHCO−、−C(CF32−からなる群から選択される2価の基を意味する。)
これらのうちジカルボン酸としては、例えば、4,4’−ジフェニルエ−テルジカルボン酸が挙げられ、該ジカルボン酸を塩素化した4,4’−ジフェニルエ−テルジカルボニルクロライドがポジ型感光性樹脂組成物に用いられる。
【0024】
上記一般式(1)で示される繰り返し単位を有するヒドロキシポリアミドにおいて、その末端基を特定の有機基で封止することも本発明の範囲に含まれる。
このような封止基としては、例えば、特開平05−197153号公報に記載されているような不飽和結合を有する基、または、4−メチルシクロヘキシル−1,2−ジカルボン酸無水物が挙げられ、これらで封止した場合、加熱硬化後の塗膜の機械物性(特に伸度)や、硬化レリーフパターン形状が良好となることが期待される。このような封止基のうちの好適例としては、下記の如き基が挙げられる。
【化8】

【0025】
(B)カルボニル基を有する化合物
本発明のポジ型感光性樹脂組成物においては、さらに下記の一般式(2)、(3)及び(4)で表される化合物群から選択される少なくとも1つのカルボニル基を有する化合物を含有させることが重要である。
【化9】

(式中、Lは炭素数1〜12の2価の有機基を表し、Rはヒドロキシ基、または炭素数1〜9の有機基を表す。)
【0026】
上記の一般式(2)、(3)及び(4)中のLは、炭素数が2〜12の2価の有機基であることが好ましく、炭素数が2〜7の2価の有機基であることがより好ましく、炭素数が6〜7の2価の有機基であることが最も好ましい。
該カルボニル基を有する化合物としては、コハク酸イミド、マレイミド、グルタルイミド、フタルイミド、1,8−ナフタルイミド、1,2,4,5−ベンゼンテトラカルボキシジイミド、1,4,5,8−ナフタレンテトラカルボキシジイミド等のイミド化合物、N−ヒドロキシコハク酸イミド、N−ヒドロキシフタルイミド、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボン酸イミド等のN−ヒドロキシイミド化合物、ニンヒドリン、ヒドリンダンチン、アロキサンチン等のヒドロキシジケトン等が挙げられる。
【0027】
中でも、該カルボニル基を有する化合物としては、下記の一般式(3)、(4)、及び(5)からなる群から選択される少なくとも1つで表される化合物であることがより好ましい。
【化10】

(式中、Lは炭素数1〜12の2価の有機基を表す。)
【0028】
さらに、該カルボニル基を有する化合物は、以下に示される群から選択される少なくとも1つの化合物であることが最も好ましい。
【化11】

【0029】
上述のカルボニル基を有する化合物を、前述のヒドロキシポリアミド及び後述の感光性ジアゾキノン化合物より構成されるポジ型感光性樹脂組成物に加えると、露光部における溶解速度が増し、感度が向上する。また、ベース樹脂であるPBO前駆体の分子量を小さくして感度を上げた場合に見られるような未露光部の膜減り量も非常に小さい(即ち、未露光部の溶解速度を大きく増加させない)。また、PBO前駆体の分子量を大きくして、未露光部の膜減り量を小さくした場合に発生する露光部の現像残渣(スカム)が該カルボニル基を有する化合物を加えた場合にはほとんど見られなくなり、解像度が大幅に改善される。
該カルボニル基を有する化合物の添加量としては、ヒドロキシポリアミド100質量部に対して、0.1〜30質量部が好ましく、0.3〜15質量部がより好ましい。添加量が0.1質量部未満だと高感度化、高解像度化の効果が得られず、一方、添加量が30質量部を超えると現像時の膜減りが大きくなり実用性に欠ける。
【0030】
(C)感光性ジアゾキノン化合物
本発明で用いる感光性ジアゾキノン化合物は、1,2−ベンゾキノンジアジド構造あるいは1,2−ナフトキノンジアジド構造を有する化合物であり、米国特許第2,772,972号明細書、第2,797,213号明細書、第3,669,658号明細書等により公知の物質である。好ましいものの例としては、例えば、下記のものが挙げられる。
【化12】

(式中、Qは、水素原子または以下に示すナフトキノンジアジドスルホン酸エステル基であり、すべてのQが同時に水素原子であることはない。)
【0031】
【化13】

【0032】
これらの中で特に好ましいものとしては下記のものがある。
【化14】

感光性ジアゾキノン化合物のヒドロキシポリアミドへの配合量は、該ヒドロキシポリアミド100質量部に対し、1〜100質量部が好ましく、10〜30質量部がより好ましい。感光性ジアゾキノン化合物の配合量が1質量部未満だと樹脂のパターニング性が不良であり、逆に100質量部を越えると硬化後の膜の引張り伸び率が著しく低下し、露光部の現像残渣(スカム)が著しく激しくなる。
【0033】
(D)その他の成分
本発明のポジ型感光性樹脂組成物には、必要に応じて、従来、感光性樹脂組成物の添加剤として用いられている染料、界面活性剤、基板との密着性を高めるための接着助剤、架橋剤を添加することも可能である。
上記添加剤について更に具体的に述べると、染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。
染料の添加量としては、ヒドロキシポリアミド100質量部に対して、0.1〜30質量部が好ましい。
また、界面活性剤としては、例えば、ポリプロピレングリコールまたはポリオキシエチレンラウリルエーテル等のポリグリコール類あるいはその誘導体からなる非イオン系界面活性剤、例えばフロラード(商品名、住友3M社製)、メガファック(商品名、大日本インキ化学工業社製)あるいはスルフロン(商品名、旭硝子社製)等のフッ素系界面活性剤、例えばKP341(商品名、信越化学工業社製)、DBE(商品名、チッソ社製)、グラノール(商品名、共栄社化学社製)等の有機シロキサン界面活性剤が挙げられる。
界面活性剤の添加量としては、ヒドロキシポリアミド100質量部に対して、0.01〜10質量部が好ましい。
【0034】
また、接着助剤としては、例えば、アルキルイミダゾリン、酪酸、アルキル酸、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t−ブチルノボラック、エポキシシラン、エポキシポリマー等、および各種シランカップリング剤が挙げられる。
シランカップリング剤の具体的な好ましい例としては、例えば、N−フェニル−3−アミノプロピルトリアルコキシシラン、3−メルカプトプロピルトリアルコキシシラン、2−(トリアルコキシシリルエチル)ピリジン、3−メタクリロキシプロピルトリアルコキシシラン、3−メタクリロキシプロピルジアルコキシアルキルシラン、3−グリシドキシプロピルトリアルコキシシラン、3−グリシドキシプロピルジアルコキシアルキルシラン、3−アミノプロピルトリアルコキシシランもしくは3−アミノプロピルジアルコキシアルキルシラン並びに酸無水物もしくは酸二無水物の反応物、3−アミノプロピルトリアルコキシシランまたは3−アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基またはウレア基に変換したものなどを挙げることができる。なお、この際のアルキル基としてはメチル基、エチル基、ブチル基などが、酸無水物としてはマレイン酸無水物、フタル酸無水物などが、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが、ウレタン基としてはt−ブトキシカルボニルアミノ基などが、ウレア基としてはフェニルアミノカルボニルアミノ基などが挙げられる。
接着助剤の添加量としては、ヒドロキシポリアミド100質量部に対して、0.1〜30質量部が好ましい。
【0035】
架橋剤としては、1,1,2,2−テトラ(p−ヒドロキシフェニル)エタン、テトラグリシジルエーテル、グリセロールトリグリシジルエーテル、オルソセカンダリーブチルフェニルグリシジルエーテル、1,6−ビス(2,3−エポキシプロポキシ)ナフタレン、ジグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテルなどのエポキシ化合物、アセチルアセトンアルミ(III)塩、アセチルアセトンチタン(IV)塩、アセチルアセトンクロム(III)塩、アセチルアセトンマグネシウム(II)塩、アセチルアセトンニッケル(II)塩、トリフルオロアセチルアセトンアルミ(III)塩、トリフルオロアセチルアセトンチタン(IV)塩、トリフルオロアセチルアセトンクロム(III)塩、トリフルオロアセチルアセトンマグネシウム(II)塩、トリフルオロアセチルアセトンニッケル(II)塩などの金属キレート剤、ニカラックMW−30MH、MW−100LH(商品名、三和ケミカル社製)、サイメル300、サイメル303(商品名、三井サイテック社製)などのアルキル化メラミン樹脂が挙げられる。
架橋剤の添加量としては、ヒドロキシポリアミド100質量部に対して、0.1〜30質量部が好ましい。
【0036】
(E)溶剤
本発明においては、これらの成分を溶剤に溶解してワニス状にし、ポジ型感光性樹脂組成物として使用する。このような溶剤としては、N−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル−1,3−ブチレングリコールアセテート、1,3−ブチレングリコール−3−モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル−3−メトキシプロピオネート等を単独または混合して使用できる。これらの溶媒のうち、非アミド系溶媒がフォトレジストなどへの影響が少ない点から好ましく、具体的なより好ましい例としてはγ−ブチロラクトン、シクロペンタノン、シクロヘキサノン、イソホロンなどを挙げることができる。
溶剤の添加量としては、ヒドロキシポリアミド100質量部に対して、50〜1000質量部が好ましい。
【0037】
<硬化レリーフパターン、及び半導体装置の製造方法>
次に、本発明のポジ型感光性樹脂組成物を基板に塗布して硬化レリーフパターンを製造する方法について、以下具体的に説明する。
第一番目に、本発明のポジ型感光性樹脂組成物を、例えば、シリコンウエハー、セラミック基板、アルミ基板等の基板に、スピナーを用いた回転塗布やロールコーターにより塗布する。これをオーブンやホットプレートを用いて50〜140℃で乾燥して溶媒を除去する。
第二番目に、マスクを介して、コンタクトアライナーやステッパーを用いて化学線による露光を行うか、光線、電子線またはイオン線を直接照射する。
第三番目に、照射部を現像液で溶解除去し、引き続きリンス液によるリンスを行うことで所望のレリーフパターンを得る。現像方法としてはスプレー、パドル、ディップ、超音波等の方式が可能である。リンス液は蒸留水、脱イオン水等が使用できる。
【0038】
本発明のポジ型感光性樹脂組成物により形成された感光性樹脂膜を現像するために用いられる現像液は、アルカリ可溶性ポリマーを溶解除去するものであり、アルカリ化合物を溶解したアルカリ性水溶液であることが必要である。現像液中に溶解されるアルカリ化合物は、無機アルカリ化合物、有機アルカリ化合物のいずれであってもよい。
該無機アルカリ化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、リン酸水素二アンモニウム、リン酸水素二カリウム、リン酸水素二ナトリウム、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、アンモニア等が挙げられる。
【0039】
また、該有機アルカリ化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシド、メチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、n−プロピルアミン、ジ−n−プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、メチルジエチルアミン、ジメチルエタノールアミン、エタノールアミン、トリエタノールアミン等が挙げられる。
さらに、必要に応じて、上記アルカリ性水溶液に、メタノール、エタノール、プロパノール、エチレングリコール等の水溶性有機溶媒、界面活性剤、保存安定剤、樹脂の溶解抑止剤等を適量添加することができる。
【0040】
最後に、得られたレリーフパターンを300〜400℃の温度で5〜120分程度加熱処理して、ポリベンズオキサゾール構造を有する耐熱性硬化レリーフパターンを形成することができる。
上述の製造方法によって作成した硬化レリーフパターンは、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、あるいはバンプ構造を有する装置の保護膜として、公知の半導体装置の製造方法と組み合わせることで、半導体装置を製造することができる。また、多層回路の層間絶縁やフレキシブル銅張板のカバーコート、ソルダーレジスト膜や液晶配向膜等としても有用である。
【実施例】
【0041】
本発明を参考例、実施例、比較例に基づいて更に具体的に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。 <ヒドロキシポリアミドの合成> 〔参考例1〕 容量2lのセパラブルフラスコ中で、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)−ヘキサフルオロプロパン197.8g(0.54mol)、ピリジン75.9g(0.96mol)、N,N−ジメチルアセトアミド(以下、「DMAc」という。)692gを室温(25℃)で混合攪拌し溶解させた。これに、別途ジエチレングリコールジメチルエーテル(以下、「DMDG」という。)88g中に5−ノルボルネン−2,3−ジカルボン酸無水物19.7g(0.12mol)を溶解させたものを、滴下ロートより滴下した。滴下に要した時間は40分、反応液温は最大で28℃であった。
滴下終了後、湯浴により50℃に加温し18時間撹拌したのち反応液のIRスペクトルの測定を行い1385cm-1および1772cm-1のイミド基の特性吸収が現れたことを確認した。
【0042】
次にこれを水浴により8℃に冷却し、これに別途DMDG398g中に4,4’−ジフェニルエーテルジカルボン酸ジクロライド142.3g(0.48mol)を溶解させたものを、滴下ロートより滴下した。滴下に要した時間は80分、反応液温は最大で12℃であった。滴下終了から3時間後、上記反応液を12lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、ヒドロキシポリアミドP−1を得た。このようにして合成されたヒドロキシポリアミドのゲルパーミエーションクロマトグラフィー(以下、「GPC」ともいう。)による重量平均分子量は、ポリスチレン換算で14000であった。GPCの分析条件を以下に記す。
カラム:昭和電工社製、商標名;Shodex、KF−807/KF−806M/K F−806M/KF−802.5;直列
容離液:テトラヒドロフラン、40℃
流速 :1.0ml/分
検出器:昭和電工製、商標名;Shodex RI−101
【0043】
〔参考例2〕 容量3lのセパラブルフラスコ中で、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)−ヘキサフルオロプロパン173.1g(0.473モル)、DMAc605.7g、ピリジン71.2g(0.9モル)を室温(25℃)で混合攪拌し、均一溶液とした。これに、4,4’−ジフェニルエ−テルジカルボニルクロリド132.80g(0.45モル)をDMDG531.2gに溶解したものを滴下ロートより滴下した。この際、セパラブルフラスコは15〜20℃の水浴で冷却した。滴下に要した時間は60分、反応液温は最大で30℃であった。
【0044】
滴下終了から3時間後、反応液に4−メチルシクロヘキシル−1,2−ジカルボン酸無水物7.6g(0.045mol)を添加し、室温で15時間撹拌放置し、ポリマー鎖の全アミン末端基の99%を2−カルボキシ−4−メチルシクロヘキシルアミド基で封止した。この際の反応率は投入した4−メチルシクロヘキシル−1,2−ジカルボン酸無水物の残量を高速液体クロマトグラフィー(HPLC)で追跡することにより容易に算出することができる。その後上記反応液を20lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、GPC法で測定した重量平均分子量30000(ポリスチレン換算)のヒドロキシポリアミドP−2を得た。
また、更にポリマーの精製が必要な場合は、以下の方法にて実施することが可能である。すなわち、上記で得られたポリマーをDMDGに再溶解した後、これを陽イオン交換樹脂および陰イオン交換樹脂にて処理し、それにより得られた溶液をイオン交換水中に投入後、析出したポリマーを濾別、水洗、真空乾燥することにより精製されたポリマーを得ることができる。
【0045】
<感光性ジアゾキノン化合物の合成>
〔参考例3〕
容量1lのセパラブルフラスコに2,2−ビス(3−アミノ−4−ヒドロキシフェニル)−ヘキサフルオロプロパン109.9g(0.3mol)、テトラヒドロフラン(THF)330g、ピリジン47.5g(0.6mol)を入れ、これに室温下で5−ノルボルネン−2,3−ジカルボン酸無水物98.5g(0.6mol)を粉体のまま加えた。そのまま室温で3日間撹拌反応を行ったあと、HPLCにて反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。この反応液をそのまま1lのイオン交換水中に撹拌下で滴下し、析出物を濾別した後、これにTHF500mLを加え撹拌溶解し、この均一溶液を陽イオン交換樹脂:アンバーリスト15(オルガノ社製)100gが充填されたガラスカラムを通し残存するピリジンを除去した。次にこの溶液を3lのイオン交換水中に高速撹拌下で滴下することにより生成物を析出させ、これを濾別した後、真空乾燥した。
生成物がイミド化していることは、IRスペクトルで1394cm-1および1774cm-1のイミド基の特性吸収が現れ1540cm-1および1650cm-1付近のアミド基の特性吸収が存在しないこと、およびNMRスペクトルでアミドおよびカルボン酸のプロトンのピークが存在しないことにより確認した。
【0046】
次に、該生成物65.9g(0.1mol)、1,2−ナフトキノンジアジド−4−スルホニルクロライドを53.7g(0.2mol)、アセトン560g加え、20℃で撹拌溶解した。これに、トリエチルアミン21.2g(0.21mol)をアセトン106.2gで希釈したものを、30分かけて一定速度で滴下した。この際、反応液は氷水浴などを用いて20〜30℃の範囲で温度制御した。
滴下終了後、更に30分間、20℃で撹拌放置した後、36重量%濃度の塩酸水溶液5.6gを一気に投入し、次いで反応液を氷水浴で冷却し、析出した固形分を吸引濾別した。この際得られた濾液を、0.5重量%濃度の塩酸水溶液5lに、その撹拌下で1時間かけて滴下し、目的物を析出させ、吸引濾別して回収した。得られたケーク状回収物を、再度イオン交換水5lに分散させ、撹拌、洗浄、濾別回収し、この水洗操作を3回繰り返した。最後に得られたケーク状物を、40℃で24時間真空乾燥し、感光性ジアゾキノン化合物Q−1を得た。
【0047】
〔参考例4〕
レゾルシノール102.4g(0.92mol)、ヘキサナール92.0g(0.92mol)をエタノール920ml中に溶解した。これを0℃に冷やし12N塩酸を148ml滴下、攪拌した。次にこの混合物を窒素雰囲気下70℃で10時間攪拌した。室温にしたのち濾過によって沈殿物を除去した。濾液を80℃の水で洗浄後乾燥し得られた固体をメタノール及びヘキサン、アセトン混合溶媒で再結晶を行った。その後真空乾燥を行い、レゾルシン環状4量体を収率50%で得た。
次に先に合成したレゾルシン環状4量体を76.9g(0.1mol)、1,2−ナフトキノンジアジド−4−スルホニルクロライドを134.3g(0.5mol、ナフトキノンジアジドスルホン酸エステル化率62.5%相当)、テトラヒドロフラン1057gを加え、20℃で撹拌溶解した。これに、トリエチルアミン53.1g(0.525mol)をテトラヒドロフラン266gで希釈したものを、30分かけて一定速度で滴下した。この際、反応液は氷水浴を用いて20〜30℃の範囲で温度制御した。滴下終了後、更に30分間、20℃で撹拌放置した後、36重量%濃度の塩酸水溶液6.8gを一気に投入し、次いで反応液を氷水浴で冷却し、析出した固形分を吸引濾別した。
この際得られた濾液を、0.5重量%濃度の塩酸水溶液10lに、その撹拌下で1時間かけて滴下し、目的物を析出させ、吸引濾別して回収した。得られたケーク状回収物を、再度イオン交換水5lに分散させ、撹拌、洗浄、濾別回収し、この水洗操作を3回繰り返した。最後に得られたケーク状物を、40℃で24時間真空乾燥し、目的の感光性ジアゾキノン化合物Q−2を得た。
【0048】
<ポジ型感光性樹脂組成物の調製>
[実施例1〜4、比較例1、2]
上記参考例1、2で得られたヒドロキシポリアミド(P−1またはP−2)100質量部に対して、上記参考例3、4で得られた感光性ジアゾキノン化合物(Q−1またはQ−2)20質量部を加え、さらに下記式で表されるカルボニル基を有する化合物(E−1〜E−4(全て東京化成工業社製))、またはビスフェノールA(E−5)を表中に記載の量添加してGBL170質量部に溶解した後、0.2μmのフィルターで濾過して、表1に記載した実施例1〜4、及び比較例1〜2のポジ型感光性樹脂組成物を調製した。
【0049】
【化15】

【0050】
<ポジ型感光性樹脂組成物の評価>
(1)パターニング特性評価
上記ポジ型感光性樹脂組成物を東京エレクトロン社製スピンコーター(クリーントラックMark−8)にて、6インチシリコンウエハーにスピン塗布し、ホットプレートにて120℃、180秒間プリベークを行い、膜厚10.7μmの塗膜を形成した。膜厚は大日本スクリーン製造社製膜厚測定装置(ラムダエース)にて測定した。
得られた塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するニコン社製ステッパ(NSR2005i8A)を用いて露光量を段階的に変化させて露光した。これをAZエレクトロニックマテリアルズ社製、アルカリ現像液(AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で現像後膜厚が9.1μmとなるように現像時間を調整して現像を行い、ポジ型のレリーフパターンを形成した。ポジ型感光性樹脂組成物の現像時間、感度、残渣除去性及び接着性を表2に示した。
【0051】
なお、ポジ型感光性樹脂組成物の感度、残渣除去性、及び接着性は、次のようにして評価した。
[感度(mJ/cm2)]
上記現像時間において、塗膜の露光部を完全に溶解除去しうる最小露光量。
[残渣除去性]
解像したパターンから残渣が除去されている程度。現像後のレリーフパターンを光学顕微鏡で観察し、感度以上の露光量において、露光部に残渣が観察されなければ○、残渣が観察されれば×とした。
[接着性(μm)]
ウエハーに接着している最小パターン寸法。
表2から、本発明のポジ型感光性樹脂組成物を用いることにより、高感度、高接着性のレリーフパターンを形成することができることが分かる。さらに、現像後の残渣の発生が観察されず、キュアによるレリーフパターン形状の変化もほとんどない。
これに対し、本発明の要件であるカルボニル基を有する化合物を含まない比較例1及び2の組成物は感度、接着性共に低く、現像後に残渣が発生した。
【0052】
【表1】

【0053】
【表2】

【産業上の利用可能性】
【0054】
本発明のポジ型感光性樹脂組成物は、半導体装置の表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、及びバンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、並びに液晶配向膜等として好適に利用できる。

【特許請求の範囲】
【請求項1】
下記の一般式(1)で表される繰り返し単位を有するヒドロキシポリアミド100質量部に対し、下記の一般式(2)、(3)、及び(4)で表される化合物群から選択される少なくとも1つのカルボニル基を有する化合物0.1〜30質量部と、感光性ジアゾキノン化合物1〜100質量部とを含有することを特徴とするポジ型感光性樹脂組成物。
【化1】

(式中、X1は少なくとも2個以上の炭素原子を有する4価の有機基、X2、Y1およびY2は少なくとも2個以上の炭素原子を有する2価の有機基、mは2〜1000の整数、nは0〜500の整数であって、m/(m+n)>0.5である。なお、X1およびY1を含むm個のジヒドロキシジアミド単位、並びにX2およびY2を含むn個のジアミド単位の配列順序は問わない。)
【化2】

(式中、Lは炭素数1〜12の2価の有機基を表し、Rはヒドロキシ基、または炭素原子数1〜9の有機基を表す。)
【請求項2】
カルボニル基を有する化合物が、下記の一般式(3)、(4)、及び(5)で表される化合物群から選択される少なくとも1つの化合物であることを特徴とする請求項1に記載のポジ型感光性樹脂組成物。
【化3】

(式中、Lは炭素数1〜12の2価の有機基を表す。)
【請求項3】
カルボニル基を有する化合物が下記に示される化合物群から選択される少なくとも1つの化合物であることを特徴とする請求項1又は2のいずれかに記載のポジ型感光性樹脂組成物。
【化4】

【請求項4】
(1)請求項1〜3のいずれかに記載のポジ型感光性樹脂組成物を層またはフィルムの形で基板上に形成し、(2)マスクを介して化学線で露光するか、光線、電子線またはイオン線を直接照射し、(3)露光部または照射部を溶出除去し、(4)得られたレリーフパターンを加熱処理することを特徴とする硬化レリーフパターンの製造方法。
【請求項5】
請求項4に記載の硬化レリーフパターンの製造方法により得られる硬化レリーフパターン層を有してなる半導体装置。

【公開番号】特開2009−3202(P2009−3202A)
【公開日】平成21年1月8日(2009.1.8)
【国際特許分類】
【出願番号】特願2007−164470(P2007−164470)
【出願日】平成19年6月22日(2007.6.22)
【出願人】(303046277)旭化成エレクトロニクス株式会社 (840)
【Fターム(参考)】