説明

三次元形状推定システム及び画像生成システム

【課題】ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することができる技術を提供すること。
【解決手段】複数の物体に共通の照明基底データと該照明基底データに対応する三次元形状情報を予め準備する。ある物体の二次元画像に最も類似する画像を表す照明基底データと照明基底データの重みと照明ベクトルとの組み合わせを求める。照明基底データと照明基底データの重みから定まるある物体の照明基底を偏微分して相対形状情報を求める。二次元画像と相対形状情報との間の特徴点の位置関係を求める。位置関係を利用して三次元形状情報を補正してある物体の三次元形状情報とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ある物体が写っている二次元画像からその物体の三次元形状を推定するシステム、その方法、及びそのプログラムに関する。また、本発明は、ある物体が写っている二次元画像から、照明条件の異なる二次元画像、あるいは照明条件及びその物体の向きが異なる二次元画像を生成するシステム、その方法、及びそのプログラムに関する。
【背景技術】
【0002】
二次元画像から物体の三次元形状を構成・推定する一般的な技術として、例えば、特開平11−242745号公報(特許文献1)に開示された技術が知られている。この技術によれば、2台以上のカメラで撮影されたステレオ/多眼画像や、可視光や赤外光で照射された既知パタンが撮影されたパタン照射画像などが用いられる。対象の形状が限定されている場合には、その形状による制約を利用することによって、一つの画像からその対象の三次元形状を推定することも可能である。例えば、建物のように鉛直線と水平線が直角に交差する場合や、平面上に繰り返し模様などの特定パタンが描かれている場合、消失点原理や複比などの幾何学情報を用いることによって、対象の三次元形状を計算できることもある。しかしながら、「顔」の場合、すなわち、形状に平面や球体のような定型的な幾何的な制約がなく、色・輝度にも特定パタンがない対象に関しては、上述の一般的なステレオ/多眼画像やパタン照射画像などが用いられている。
【0003】
しかしながら、このような方法によれば、複数台のカメラ(ステレオ/多眼カメラ)やパタン光を照射するパタン照射器、赤外光などの光を検出するためのカメラなど、通常のカメラ撮影とは異なる計測専用の装置が必要となる。このことは、コストの増大や、計測ができる環境が制約されるといった問題を引き起こす。更に、撮影時のカメラの位置やパタン照射器の照射位置といった計測時の情報を保存しておく必要がある。このことは、計測環境が制約されることや、あらかじめ計測を目的にした環境で撮影された画像しか用いることができないといった問題を引き起こす。「顔」は、計測を考慮せずに単一の画像として撮像されることが多い。従って、この従来技術では、このような単一の顔画像から顔の三次元形状を推定することは不可能である。
【0004】
上記に関連して、特開2001−84362号公報(特許文献2)に開示された技術によれば、表面反射率が略一定である部分を含む3次元形状を有する物体が、実質的な単一光源下において撮影される。この撮影により得られる画像に基づいて、上記光源の方向と上記物体の3次元形状とが推定される。また、特開平5−266173号公報(特許文献3)に開示された顔分類システムは、顔を3次元フレームの2次元表示内に位置させる第1手段と、該表示内の顔を検出する第2手段と、顔の特徴ベクトルを発生させる第3手段と、今検出された顔の特徴ベクトルを先に検出された顔の特徴ベクトルと比較し今検出された顔が先に検出された顔に一致するかを決定する第4手段とを備える。また、国際公開WO−02/007095−A1(特許文献4)には、時系列的に取り込まれる入力画像から人物の顔の向きを逐次推定する顔の3次元方向追跡装置が開示されている。
【0005】
顔は平面や球体のような定型的な幾何学形状を有していないが、目や口といった特徴点の概略的な配置やトポロジカルな形状は同じである。標準的な顔からの特徴点の配置のずれの大小によって、個々の異なる顔形状が生成され得る。更に、撮影された顔画像に関しては、圧倒的に正面を向いた画像が多いので、顔画像においてもトポロジカルな形状の制約はある。このような観点から、複数の人物の三次元顔形状から得られる学習型のモデルを用いることによって、単一の顔画像から三次元顔形状の推定が行われている(非特許文献1)。しかしながら、この方法によれば、顔画像と学習モデルを合わせるために、顔画像中の特徴点を手動で指定する必要があった。
【0006】
【特許文献1】特開平11−242745号公報
【特許文献2】特開2001−84362号公報
【特許文献3】特開平5−266173号公報
【特許文献4】国際公開WO−02/007095−A1
【非特許文献1】T. Vetter et al., "A Morphable Model For The Synthesis of 3D Faces", ACM Conf. SIGGRAPH 99, pp. 187-194, 1999.
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の1つの目的は、特別な計測装置を用いることなく、ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することができる技術を提供することにある。
【課題を解決するための手段】
【0008】
複数の物体に共通の照明基底データと該照明基底データに対応する三次元形状情報を予め準備する。ある物体の二次元画像に最も類似する画像を表す照明基底データと照明基底データの重みと照明ベクトルとの組み合わせを求め、照明基底データと照明基底データの重みから定まるある物体の照明基底を偏微分して相対形状情報を求める。二次元画像と相対形状情報との間の特徴点の位置関係を求める。位置関係を利用して三次元形状情報を補正して上記ある物体の三次元形状情報とする。
【発明の効果】
【0009】
本発明によれば、特別な計測装置を用いることなく、ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することが可能となる。よって、コストが低減される。
【発明を実施するための最良の形態】
【0010】
添付図面を参照して、本発明による三次元形状推定システム、三次元形状推定プログラム、三次元形状推定方法、画像生成システム、画像生成プログラム、及び画像生成方法を説明する。
【0011】
まず、本発明の実施の形態の説明で用いられる概念を説明する。本発明の実施の形態においては、三次元形状が推定される対象物体として、人間の「顔」が例示される。
【0012】
図1は、ある顔の三次元形状を表現する「形状関数」を説明するための図である。このような物体の三次元形状は、例えば、レンジファインダによって計測することが可能である。レンジファインダは、物体の形状(相対位置情報)や色情報を取得してコンピュータに取り込む装置である。レンジファインダによって、物体表面の正面座標x,y及び奥行きの座標zが得られる。すなわち、顔の三次元形状は、図1に示されるようにxyz座標系で表され、その三次元形状を表現する「形状関数z」は、次の式で与えられる。
【0013】
【数1】

【0014】
また、この形状関数zの偏微分形は、次の式で与えられる。
【0015】
【数2】

【0016】
この関数群(f,f)は、形状関数zの微分情報を示し、物体表面の曲率といった物体の相対的な形状を表現するためのパラメータとなる。そのため、この関数群(f,f)は、以下、「相対形状関数」と参照される。
【0017】
また、図2は、ある顔の二次元画像を示す概略図である。この二次元画像は、xy平面上で表現され、図2においては、顔の横方向がx方向、顔の縦方向がy方向に対応している。また、x、y方向の画素数は、それぞれw,hで与えられる。つまり、この二次元画像の総画素数sは、s=w×hで与えられる。
【0018】
顔の二次元画像は、輝度情報や色情報を含んでいる。この輝度・色情報は、顔の形状の反射によって決まるため、顔の位置、姿勢が同じであれば、複数の照明を宛てて撮影することによって、顔形状を推定することが可能となる。このような考え方の一つに、Peter N. Belhumeur et al., "What Is the Set of Images of an Object Under All Possible Illumination Conditions ?", International Journal of Computer Vision, Vol. No.28, pp. 245-260, 1998、に記載されてる「照明基底(illumination basis)」がある。この照明基底(測地照明基底、GIB:Geodesic Illumination Basis)は、顔表皮各位置における、照明変動の記述子である。
【0019】
まず、二次元画像のi番目の画素Pにおける、顔表面の拡散反射率(diffuse reflectance)がaで与えられ、法線ベクトルnがn=(ni,x,ni,y,ni,z)で与えられるとする。また、その画素Pでの照明方向を示す照明輝度ベクトルsが、s=(s,s,s)で与えられるとする。この時、その画素Pでの「輝度X」は、次の式で与えられる。
【0020】
【数3】

ここで、ベクトルbは、次の式で与えられる。
【0021】
【数4】

【0022】
よって、二次元画像に含まれる全ての画素pに対する輝度Xを示す「輝度ベクトルX」は、次の式で与えられる。
【0023】
【数5】

【0024】
これらの式において、拡散反射率aと法線ベクトルn、すなわちベクトルbは、物体の形状・性質にだけ依存し、照明の強度・方向には依存しない。照明を変えたときに変動するのは、照明強度ベクトルsである。照明を変えたときに作成される二次元画像の輝度ベクトルXの集合Iは、次のように表される。
【0025】
【数6】

ここで、Bは、次のように表される
【0026】
【数7】

【0027】
つまり、B={bi,x}=(b0,x,・・・,bs,x)であり、B={bi,y}=(b0,y,・・・,bs,y)であり、B={bi,z}=(b0,z,・・・,bs,z)である。そして、このBが「照明基底」と参照される。つまり、照明基底(反射情報)は、照明変動の記述子であり、照明変動に対する輝度の変化を表すことができる。また、上述のように、画像の輝度は、照明と顔形状によって決まる。従って、この照明基底(反射情報)を、顔形状に関連するパラメータであるということもできる。本発明においては、この「照明基底」という概念が用いられる。
【0028】
本発明は、図2に示されたある「二次元画像」から、最終的に、図1に示された「三次元形状(形状関数f(x,y))」を精度良く推定することを目的とする。また、本発明は、図2に示されたある「二次元画像」から、照明条件の異なる二次元画像、あるいは、照明条件及び顔の向きが異なる二次元画像を生成することを目的とする。このような技術は、例えば、顔個人認証技術などのセキュリティ分野、美容・整形の分野、アミューズメントの分野等に適用することが可能である。以下に、本発明の構成及び動作が詳細に記述される。
【0029】
(第1の実施の形態)
図3は、本発明の第1の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。この三次元形状推定システム1は、相対形状分析装置10、特徴点位置探索装置20、及び絶対形状分析装置30を備えている。相対形状分析装置10は、ある顔の二次元画像を示す顔画像データ50を受け取り、輝度情報及び予め蓄積された学習反射情報に基づいて、その顔の相対形状関数(f,f)を推定する。推定された相対形状関数(f,f)を示す相対形状データ51は、特徴点位置探索装置20及び絶対形状分析装置30に出力される。特徴点位置探索装置20は、顔画像データ50及び相対形状データ51を受け取り、両目、鼻などの顔の「特徴点」を自動的に検出する。その「特徴点」の位置を示す特徴点位置データ52は、絶対形状分析装置30に出力される。絶対形状分析装置30は、相対形状関数(f,f)、特徴点の位置及び予め蓄積された学習形状データに基づいて、その顔の形状関数f(x,y)を推定する。推定された形状関数f(x,y)を示す三次元絶対形状データ53は、絶対形状分析装置30から出力される。このように、本実施の形態に係る三次元形状推定システム1によれば、顔画像データ50(図2参照)から、三次元絶対形状データ53(図1参照)が得られる。
【0030】
以下、各装置の構成・動作が詳細に説明される。
【0031】
図4は、本発明に係る相対形状分析装置10の構成を示すブロック図である。この相対形状分析装置10は、入力部11、学習データ作成部12、記憶部13、相対形状算出部14、及び出力部15を備えている。記憶部13には、相対形状データ51及び一般化照明基底データ61が格納される。この一般化照明基底データ(第1学習データ)61は、複数の人物の顔(複数の同種の物体)に対する一般化された照明基底を示し、あらかじめ学習により蓄積される。学習データ作成部12は、この一般化照明基底データ61を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。相対形状算出部14は、相対形状データ51を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部13としては、ハードディスクドライブやメモリが例示される。
【0032】
まず、一般化照明基底データ61の作成が行われる。図5は、その一般化照明基底データ61を作成する際の相対形状分析装置10の動作、すなわち学習データ作成部12の動作を示すフローチャートである。
【0033】
ステップS101:
まず、複数の人物の顔に対して様々な方向から照明が照射され、撮影が行われる。これにより、テクスチャ付きの複数の三次元形状データ60が得られる。この複数人の顔の三次元形状データ60が、入力部11を介して学習データ作成部12に入力される。
【0034】
ステップS102:
次に、学習データ作成部12は、上述の式(6)に基づいて、三次元形状データ60から各人の顔の照明基底Bを算出する。
【0035】
ステップS103:
次に、学習データ作成部12は、主成分分析などの方法によって、複数の人物の顔の照明基底Bを成分A,A,…Aに分解する。これにより、一般的な顔の照明基底(一般化照明基底)Bを、次のように記述することが可能となる。
【0036】
【数8】

ここで、β,β,…βは、個人ごとに異なるパラメータである。
【0037】
ステップS104:
学習データ作成部12は、上記ステップS103で求められた一般化照明基底Bを示す一般化照明基底データ61を、記憶部13に出力し格納する。
【0038】
次に、ある人物の顔の二次元画像を示す顔画像データ50から、その人物の顔の相対形状関数(f,f)を示す相対形状データ51を推定する方法が示される。この人物の顔の向きは既知であるが、この人物の照明基底Bは未知である。図6は、相対形状分析装置10の相対形状算出部14の動作を示すフローチャートである。
【0039】
ステップS111:
まず、ある人物の顔の二次元画像を示す顔画像データ50(図2参照)が、入力部11を介して相対形状算出部14に入力される。
【0040】
ステップS112:
二次元顔画像は、輝度情報と色情報を有している。よって、相対形状算出部14は、顔画像データ50から、上述の式(5)に示される輝度ベクトルX={X}を抽出することができる。
【0041】
ステップS113:
次に、相対形状算出部14は、記憶部13から一般化照明基底データ61を読み出し、一般化照明基底F(β,β,…β,A,A,…A)を取得する。これら輝度ベクトルX、一般化照明基底F、及び照明強度ベクトルsを用いて、相対形状算出部14は、次式で表される汎関数E1を作成する。
【0042】
【数9】

【0043】
ステップS114:
次に、相対形状算出部14は、この汎関数E1が最小となるパラメータβ,β,…βを求める。計算が非線形になる場合、相対形状算出部14は、山登り法など反復計算法を用いてそれらパラメータを計算する。そして、相対形状算出部14は、求められたパラメータβ,β,…βの場合の照明基底F(β,β,…β,A,A,…A)を、この顔の照明基底Bとする。このように、一般化照明基底データ(第1学習データ)61を用いることによって、ある顔の二次元画像からその顔の照明基底Bが算出される。
【0044】
ステップS115:
照明基底Bは、上記式(7)で表されることもできる。本発明によれば、相対形状算出部14は、この照明基底Bに基づき、この顔に関する相対形状関数(f,f)を次の式によって算出する。
【0045】
【数10】

【0046】
このように、ある顔の二次元画像からその顔の相対形状関数(f,f)が算出される。式(2)に示されたように、この相対形状関数(f,f)は、形状関数f(x,y)の偏微分を表す。以上の処理は、照明基底に基づく方法のみならず、画像と相対形状である微分情報を結びつけるあらゆるモデルに対して有効である。
【0047】
ステップS116:
相対形状算出部14は、求められた相対形状関数(f,f)を示す相対形状データ51を、出力部15を介して、特徴点位置探索装置20及び絶対形状分析装置30に出力する。また、相対形状算出部14は、その相対形状データ15を、記憶部13に格納してもよい。
【0048】
以上に示されたように、本発明に係る相対形状分析装置10によれば、ある物体が写っている単一の二次元画像から、その物体の照明基底Bを推定することが可能となる。また、その単一の二次元画像から、その物体の相対形状関数(f,f)を推定することが可能となる。ここで、その物体を、ステレオ/多眼カメラ等の特別な撮影装置で撮影する必要はない。よって、コストが削減される。また、撮影時の情報を保存しておく必要はなく、その二次元画像の撮影環境に対する制約もない。
【0049】
図7は、本発明に係る特徴点位置探索装置20の構成を示すブロック図である。この特徴点位置探索装置20は、入力部21、特徴点抽出部22、記憶部25、及び出力部26を備えている。特徴点抽出部22は、色・輝度特徴点抽出部23と形状特徴点抽出部24を含んでいる。記憶部25には、ある顔における複数の「特徴点」の位置を示す特徴点位置データ52が格納される。特徴点抽出部22は、この特徴点位置データ52を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部25としては、ハードディスクドライブやメモリが例示される。
【0050】
顔の「特徴点」とは、目の中心、鼻の頂点、鼻の下など、顔の特徴的な点のことである。この特徴点は、色や輝度に特徴がある「色・輝度特徴点(第1特徴点)」と、形状に特徴がある「形状特徴点(第2特徴点)」を含む。色・輝度特徴点としては、目や口が例示される。例えば、唇は周囲より強い赤み成分を有しており、東洋人の場合であれば目は黒い。よって、これらは画像に含まれる色・輝度情報から抽出することが可能である。一方、形状特徴点としては、鼻や鼻の下が例示される。これらは形状に特徴があるので、相対形状関数(f,f)を用いて抽出することが可能である。
【0051】
図8は、本発明に係る特徴点位置探索装置20の動作を示すフローチャートである。
ステップS201:
上述の顔画像データ50及び相対形状分析装置10によって得られた相対形状データ51が、入力部21を介して特徴点抽出部22に入力される。
【0052】
ステップS202:
まず、色・輝度特徴点抽出部23が、顔画像データ50に含まれる色・輝度情報を用いることによって、「色・輝度特徴点」を抽出する。この色・輝度特徴点の位置に関する情報は、形状特徴点抽出部24に出力される。
【0053】
ステップS203:
次に、鼻などの形状特徴点の抽出が行われる。図9は、側面から見た時のある顔の輪郭、すなわち、あるx座標における形状関数z=f(y)を示している。ここで、そのあるx座標は、両目の中心に対応しているものとする。図9に示されるように、目の位置a1から+y方向にある形状関数z=f(y)で、最初の極小点が鼻の頂点の位置a2に対応すると考えられる。また、最初の極大点が鼻の下の位置a3に対応すると考えられる。更に、次の極小点が、唇の頂点の位置a4に対応すると考えられる。よって、このような極小点・極大点を探索すればよい。ここで、顔の形状関数f(x,y)は、未だ得られていない。従って、形状特徴点抽出部24は、次の式に基づいて、顔表面の曲率Hを計算する。
【0054】
【数11】

【0055】
ここで、(f,f)は、相対形状データ51から知ることができる。また、fxx,fyy,fxyは、形状関数f(x,y)の二階偏微分であり、相対形状データ51が示す相対形状関数(f,f)から知ることができる。つまり、形状特徴点抽出部24は、曲率Hを計算することができる。また、両目の位置a1は、色・輝度特徴点抽出部23によって得られた色・輝度特徴点情報から知ることができる。従って、形状特徴点抽出部24は、両目の中心位置a1から+y方向で、曲率Hの最大点を鼻の頂点の位置a2として決定する。同様に、鼻の下の位置a3や、唇頂点の位置a4も決定される。このようにして、形状特徴点抽出部24は、顔の二次元画像及び相対形状関数(f,f)に基づいて、「形状特徴点」を抽出する。
【0056】
ステップS204:
特徴点抽出部22は、上記ステップS202、S203で得られた色・輝度特徴点と形状特徴点の位置を示す特徴点位置データ52を出力する。この特徴点位置データ52は、出力部26を介して絶対形状分析装置30に出力される。また、この特徴点位置データ52は、記憶部25に格納されてもよい。
【0057】
以上に示されたように、本発明に係る特徴点位置装置20によれば、ある物体が写っている単一の二次元画像から、その物体の特徴点を自動的に見つけることが可能となる。それは、相対形状分析装置10によって推定された相対形状関数(f,f)に基づいて、形状特徴点を抽出することができるからである。顔画像中の特徴点を手動で指定する必要はなくなる。
【0058】
図10は、本発明に係る絶対形状分析装置30の構成を示すブロック図である。この絶対形状分析装置30は、入力部31、学習データ作成部32、記憶部33、絶対形状算出部34、及び出力部35を備えている。記憶部33には、三次元絶対形状データ53及び三次元形状学習データ62が格納される。この三次元形状学習データ(第2学習データ)62は、複数の人物の顔(複数の同種の物体)の三次元形状に関する情報を示し、あらかじめ学習により蓄積される。学習データ作成部32は、この三次元形状学習データ62を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。絶対形状算出部34は、三次元絶対形状データ53を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部33としては、ハードディスクドライブやメモリが例示される。
【0059】
まず、三次元形状学習データ62の作成が行われる。図11は、その三次元形状学習データ62を作成する際の絶対形状分析装置30の動作、すなわち学習データ作成部32の動作を示すフローチャートである。
【0060】
ステップS301:
まず、レンジファインダ等の三次元形状計測機器を用いることによって、複数の人物の顔の三次元形状データ(形状関数z=f(x,y))が取得される。取得された三次元形状データにおいて、正面はxy面で表され、奥行きやz方向で表される(図1参照)。この複数人の顔の三次元形状データ60が、入力部31を介して学習データ作成部32に入力される。
【0061】
ステップS302:
次に、学習データ作成部32は、取得した複数の三次元形状データのそれぞれにおいて、特徴点を見つける。具体的には、学習データ作成部32は、上述の特徴点抽出部22と同様の方法で、特徴点の位置を探索する。すなわち、特徴点抽出部22が抽出する部位と同じ部位が抽出される。ここで、各々の顔の形状関数z=f(x,y)がわかっているので、学習データ作成部32は、その形状関数zを用いて特徴点の位置を探索してもよい。あるいは、この学習データの作成は事前に一度だけ行われるものなので、ユーザが手動で行ってもよい。このステップにおいて、一人一人の顔について、複数の特徴点の位置が決定される。
【0062】
ステップS303:
次に、学習データ作成部32は、抽出された複数の特徴点(部位)のうち一点を「基点O」として設定する。この「基点O」は、全ての三次元顔形状の座標を固定するための基準点(原点)であり、全ての顔で共通に設定される。例えば、この基点Oとして、顔の中心付近に存在する鼻の下が選択される。
【0063】
ステップS304:
次に、学習データ作成部32は、基点O以外の複数の特徴点の、基点Oに対する相対位置を計算する。例えば、図12は、ある人物の顔を示している。この顔において、両目の中心(P1,P2)、鼻の下、口の左右両端(P3,P4)の5点が特徴点として抽出されている。また、そのうち鼻の下が、基点Oとして選択されている。この時、基点(原点)Oに対する特徴点P1〜P4のそれぞれの相対位置、すなわち、基点Oを原点とする座標系における特徴点P1〜P4のぞれぞれの座標が計算される。この計算は、全ての三次元形状データ60に対して実行される。その後、学習データ作成部32は、全ての顔に対する相対位置の平均値(平均相対位置)を、各特徴点(P1,P2,P3,P4)に対して計算する。つまり、各特徴点の座標の平均値が計算され、特徴点P1〜P4のそれぞれに対する4つの平均相対位置が算出される。
【0064】
ステップS305:
次に、学習データ作成部32は、全ての顔に対して、複数の特徴点がそれぞれの平均相対位置と一致するように、形状関数f(x,y)を座標変換する。具体的には、各特徴点の周辺領域の拡大/縮小が行われる。例えば、図12において、基点Oを通る座標軸uvによって、顔が4つの領域R1〜R4に区分けされている。領域R1〜R4のそれぞれは、特徴点P1〜P4のそれぞれを含んでいる。この時、複数の特徴点P1〜P4がそれぞれの平均相対位置と一致するような拡大/縮小率で、領域R1〜R4のそれぞれが拡大/縮小される。例えば、基点Oと特徴点P1との間の距離をOP1、基点Oと領域R1内の任意の点X1との間の距離をOX1とする。また、基点Oから特徴点P1の平均相対位置への距離をOP1’とする。また、領域R1内の任意の点X1が、拡大/縮小操作によって点X1’に移動し、基点Oと点X1’との間の距離がOX1’であるとする。この時、距離OP1、OP1’、OX1、OX1’の間には、以下の関係が成り立つ。
【0065】
【数12】

【0066】
逆に、式(12)の関係が成り立つように、点X1が点X1’に移動されればよい。このようにして、領域R1〜R4の拡大/縮小が行われる。すなわち、全ての顔の形状関数f(x,y)に対して座標変換処理が行われる。この座標変換によって生成される関数は、以下、「修正形状関数z’」と参照される。修正形状関数z’は、次の式で与えられる。
【0067】
【数13】

【0068】
また、修正形状関数z’=g(x,y)の偏微分は、相対形状関数(f,f)に対応して、「修正相対形状関数(g,g)」と参照される。この修正相対形状関数(g,g)は、次の式で与えられる。
【0069】
【数14】

尚、実際には、画像処理と同じく微分は差分に近似して計算される。
【0070】
ステップS306:
次に、学習データ作成部32は、全ての顔の修正形状関数g(x,y)を用いて成分分析を行い、成分分析データを作成する。上記ステップS305で得られた全ての修正形状関数g(x,y)においては、基点Oを含めた複数の特徴点が一致している。これらを一致させて主成分分析などの成分分析が行われる。例えば、n個の修正形状関数z’があるとする。このうち第1番目の修正形状関数g(x,y)の、あるデータ(画素)の位置x,yにおける値をzで表す。ここで、kは、二次元上の画素の位置を一次元で表すためのパラメータであり、k=y×w+x(wは、x方向の画素数;図2参照)で表される。また、第n番目の修正形状関数g(x,y)のその位置kでの値は、zで表される。この時、その位置(画素)kに対して、次の式で表されるn次のベクトルZが定義される。
【0071】
【数15】

【0072】
このベクトルZを画素数s(s=w×h;図2参照)だけ並べることによって、次の式で表されるs×n行列Zが得られる。
【0073】
【数16】

【0074】
この行列Zを特異値分解することによって、次の式が得られる。
【0075】
【数17】

【0076】
ここで、Uはs×n行列であり、Vはn×n行列であり、Sはn×n対角行列である。こうして得られた行列Uの列ベクトルをして主成分を得ることができる。
【0077】
ステップS307:
同様に、学習データ作成部32は、全ての顔の修正相対形状関数(g,g)を用いて成分分析を行い、成分分析データを作成する。第1番目の修正相対形状関数gのある位置(画素)kにおける値をdで表す。また、第n番目の修正相対形状関数gのその位置kにおける値をdで表す。また、第1番目の修正相対形状関数gのその位置kにおける値をeで表す。また、第n番目の修正相対形状関数gのその位置kにおける値をeで表す。この時、その位置kに対して、次の式で表されるn次のベクトルD,Eが定義される。
【0078】
【数18】

【0079】
これらベクトルD,Eを画素数s(s=w×h)だけ並べることによって、次の式で表されるs×n行列D及びs×n行列Eが得られる。
【0080】
【数19】

【0081】
これら行列D,Eを特異値分解することによって、次の式が得られる。
【0082】
【数20】

【0083】
【数21】

【0084】
ここで、U,Uはs×n行列であり、V,Vはn×n行列であり、S,Sはn×n対角行列である。こうして得られた行列U,Uの列ベクトルをして主成分を得ることができる。
【0085】
ステップS308:
学習データ作成部32は、このようにして得られた修正形状関数g(x,y)に関する情報Uz、修正相対形状関数(gx,gy)に関する情報U,U、及び各特徴点の平均相対位置を示すデータを、三次元形状学習データ62として記憶部33に格納する。
【0086】
次に、上述のある人物に関する相対形状データ51及び特徴点位置データ52から、その人物の顔の形状関数f(x,y)を示す三次元絶対形状データ53を推定する方法が示される。図13は、絶対形状分析装置30の絶対形状算出部34の動作を示すフローチャートである。
【0087】
ステップS311:
まず、相対形状分析装置10によって作成された相対形状データ51及び特徴点位置探索装置20によって作成された特徴点位置データ52が、入力部31を介して絶対形状算出部34に入力される。
【0088】
ステップS312:
次に、絶対形状算出部34は、特徴点位置データ52に示される複数の特徴点の位置に基づいて、相対形状データ51に示される相対形状関数(f,f)中に特徴点を設定する。また、絶対形状算出部34は、それら複数の特徴点の中から1つを「基点」として設定する。この基点は、上述のステップS303で設定された基点と同じ場所を示す。更に、絶対形状算出部34は、基点O以外の複数の特徴点の、基点Oに対する相対位置を計算する。これにより、処理中の人物の顔における複数の特徴点のそれぞれについて相対位置が得られる。
【0089】
ステップS313:
次に、絶対形状算出部34は、記憶部33に格納された三次元学習データ62を読み込み、各特徴点の「平均相対位置」を取得する。そして、絶対形状算出部34は、複数の特徴点がそれぞれの平均相対位置と一致するように、相対形状関数(f,f)を座標変換する。具体的には、上述のステップS305と同様の方法で、各特徴点の周辺領域の拡大/縮小が行われる。この座標変換処理によって、相対形状データ51に示される相対形状関数(f,f)から、処理中の顔に関する修正相対形状関数z’=(g,g)が算出される(式(14)参照)。
【0090】
ステップS314:
次に、絶対形状算出部34は、三次元学習データ62から、複数人の修正形状関数g(x,y)に関する情報U、修正相対形状関数(g,g)に関する情報U,Uを取得する。これら学習データと上記ステップS313で算出された修正相対形状関数(g,g)に基づいて、絶対形状算出部34は、処理中の顔に関する修正形状関数g(x,y)を算出する。具体的には、ある位置k(k=y×w+x)における修正相対形状関数(g,g)の値をそれぞれg(k)及びg(k)とする時、絶対形状算出部34は、次の式で与えられる列ベクトルG及びn次の列ベクトルcを作成する。
【0091】
【数22】

【0092】
【数23】

【0093】
これら列ベクトルG、列ベクトルc及び上記三次元形状学習データ62が示す情報U,Uを用いることによって、次の式で与えられる汎関数E2が定義される。
【0094】
【数24】

【0095】
そして、絶対形状算出部34は、この汎関数E2が最小になるn次の列ベクトルcを計算する。更に、その算出された列ベクトルcと上記三次元形状学習データ62が示す情報Uとを用いて、次の式で与えられるs次の列ベクトルG2が得られる。
【0096】
【数25】

【0097】
ここでs(s=w×h)は画素数であり、g(k)は上記位置k(k=y×w+x)における修正形状関数g(x,y)の値である。すなわち、上記式(25)によって、処理中の顔の修正形状関数g(x,y)が算出される。
【0098】
ステップS315:
次に、絶対形状算出部34は、得られた修正形状関数g(x,y)における複数の特徴点の位置が、特徴点位置データ52が示す元の位置に戻るように、その修正形状関数g(x,y)を座標変換する。具体的には、上述のステップS305と逆の処理で、各特徴点の周辺領域の拡大/縮小が行われる。この座標変換処理によって、修正形状関数g(x,y)から、処理中の顔に関する形状関数f(x,y)が算出される。すなわち、処理中の顔の三次元形状が推定される。
【0099】
ステップS316:
絶対形状算出部34は、このようにして得られた形状関数f(x,y)を示す三次元絶対形状データ53を、出力部35を介して出力する。また、絶対形状算出部34は、その三次元絶対形状データ53を、記憶部33に格納してもよい。このように、絶対形状分析装置30は、三次元形状学習データ62と特徴点位置データ52を参照することによって、相対形状データ51に示されたある顔の相対形状関数(f,f)を、その顔の形状関数f(x,y)に変換する。
【0100】
以上に説明されたように、本発明に係る三次元形状推定システム1及び三次元形状推定方法によれば、ある顔画像データ50から三次元絶対形状データ53を得ることが可能となる。すなわち、ある物体が写っている単一の二次元画像から、その物体の三次元形状を推定することが可能となる。ここで、その物体を、ステレオ/多眼カメラ等の特別な撮影装置で撮影しておく必要はない。よって、コストが削減される。また、撮影時の情報を保存しておく必要はなく、その二次元画像の撮影環境に対する制約もなくなる。その処理途中においては、その二次元画像から、その物体の照明基底Bや相対形状関数(f,f)が推定される。また、手動で指定することなく、その物体の特徴点を自動的に見つけることが可能となる。
【0101】
(第2の実施の形態)
第1の実施の形態による機能は、コンピュータシステム及びコンピュータプログラムによって実現することも可能である。図14は、本発明の第2の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。この三次元形状推定システム1’は、記憶装置70、演算処理装置71、入力装置72、表示装置73、データ入出力インターフェース74、及び三次元形状推定プログラム80を備えている。
【0102】
記憶装置70は、ハードディスクドライブ(HDD)やRAM等のメモリである。この記憶装置70には、上述の顔画像データ50、相対形状データ51、特徴点位置データ52、三次元絶対形状データ53、一般化照明基底データ61、及び三次元形状学習データ62が格納される。演算処理装置71は、各装置に接続され、データのやりとりや各種演算を実行する。
【0103】
入力装置72としては、キーボードやマウスが例示される。ユーザは、この入力装置72を用いることによって、データを入力したり各種コマンドを指定することができる。また、表示装置73はディスプレイであり、この表示装置73によって各種情報がユーザに通知される。ユーザは、通知された情報に基づいて、新たなコマンドを入力したりデータを入力したりできる。データ入出力インターフェース74は、顔画像データ50や三次元形状データ60の入力に用いられる。そのため、データ入出力インターフェース74は、レンジファインダやデジタルカメラ等の撮像装置、CD/DVDドライブ、他の端末などに接続される。
【0104】
三次元形状推定プログラム80は、演算処理装置71によって実行されるソフトウェアプログラムである。この三次元形状推定プログラム80は、相対形状分析部81、特徴点位置探索部82、絶対形状分析部83、及び学習データ作成部84を含んでいる。これらプログラム群は、記憶装置70に格納されていてもよい。これらプログラムが演算処理装置71によって実行されることにより、第1の実施の形態において提供された機能と同じ機能が実現される。
【0105】
具体的には、三次元形状推定プログラム80の相対形状分析部81の命令に従い、演算処理装置71は、顔画像データ50から相対形状データ51を作成する。これは、図4における相対形状算出部14の機能と同じである(図6参照)。また、三次元形状推定プログラム80の特徴点位置探索部82の命令に従い、演算処理装置71は、顔画像データ50及び相対形状データ51から特徴点位置データ52を作成する。これは、図7における特徴点抽出部22の機能と同じである(図8参照)。また、三次元形状推定プログラム80の絶対形状分析部83の命令に従い、演算処理装置71は、相対形状データ51及び特徴点位置データ52から三次元絶対形状データ53を作成する。これは、図10における絶対形状算出部34の機能と同じである(図13参照)。また、三次元形状推定プログラム80の学習データ作成部84の命令に従い、演算処理装置71は、一般化照明基底データ61や三次元形状学習データ62を作成する。これは、図4や図10における学習データ作成部12、32の機能と同じである(図5、図11参照)。
【0106】
以上に示された三次元形状推定システム1’及び三次元形状推定プログラム80によれば、ある物体が写っている単一の二次元画像からその物体の三次元形状を推定することが可能となる。ここで、特別な計測装置を用いる必要はないので、コストが低減される。また、その単一の二次元画像から、その物体の照明基底Bや相対形状関数f,fを推定することが可能となる。更に、その単一の二次元画像から、その物体の特徴点を自動的に見つけることが可能となる。
【0107】
(第3の実施の形態)
図15は、本発明の第3の実施の形態に係る画像生成システムの構成を示すブロック図である。この画像生成システム100は、相対形状分析装置110、特徴点位置探索装置120、絶対形状分析装置130、及び画像生成装置140を備えている。この画像生成システム100は、ある顔の二次元画像を示す顔画像データ50(図2参照)から、異なる照明条件を有する二次元画像(照明変換画像)、あるいは異なる照明条件と異なる顔の向きを有する二次元画像(回転変換画像)を示す変換画像データ55を作成する。
【0108】
本実施の形態における相対形状分析装置110は、第1の実施の形態における相対形状分析装置10と同様の構成を有する。つまり、この相対形状分析装置110は、顔画像データ50から相対形状データ51を作成し、その相対形状データ51を特頂点位置探索装置120及び絶対形状分析装置130に出力する。また、本実施の形態において、相対形状分析装置110は、上記ステップS114で算出される照明基底Bを示す照明基底データ54を、画像生成装置140に出力する。
【0109】
本実施の形態における特徴点位置探索装置120は、第1の実施の形態における特徴点位置探索装置20と同様の構成を有する。つまり、この特徴点位置探索装置120は、顔画像データ50と相対形状データ51から特徴点位置データ52を作成し、その特徴点位置データ52を絶対形状分析装置130に出力する。
【0110】
本実施の形態における絶対形状分析装置130は、第1の実施の形態における絶対形状分析装置30と同様の構成を有する。つまり、この絶対形状分析装置130は、相対形状データ51と特徴点位置データ52から三次元絶対形状データ53を作成する。本実施の形態において、その三次元絶対形状データ53は、画像生成装置140に出力される。
【0111】
画像生成装置140は、三次元絶対形状データ53及び照明基底データ54を受け取り、変換画像データ55を作成する。図16は、本実施の形態における画像生成装置140の構成を示すブロック図である。この画像生成装置140は、入力部141、画像生成部142、記憶部145、及び出力部146を備えている。画像生成部142は、二次元画像変換部143と三次元画像変換部144を含んでいる。記憶部145には、変換画像データ55が格納される。画像生成部142は、この変換画像データ55を作成するためのユニットであり、CPUとコンピュータプログラムによって実現される。記憶部145としては、ハードディスクドライブやメモリが例示される。
【0112】
図17は、本発明に係る画像生成装置140の動作を示すフローチャートである。
ステップS401:
まず、相対形状分析装置110から照明基底データ54が、また、絶対形状分析装置130から三次元絶対形状データ53が、入力部141を介して画像生成部142に入力される。
【0113】
ステップS402:
二次元画像変換部143は、上記式(6)のように、照明基底データ54が示すある人物の照明基底Bに、任意の照明強度ベクトルsを掛け合わせる。これによって、顔画像データ50が示す二次元顔画像とは異なる照明条件の下での二次元顔画像(照明変換画像)が得られる。二次元画像変換部143は、この照明変換画像を示す照明変換画像データ56を出力する。
【0114】
回転変換画像が必要でない場合(ステップS403;No)、作成された照明変換画像データ56は、変換画像データ55として、出力部146を介して出力される(ステップS406)。また、その照明変換画像データ56は、変換画像データ55として、記憶部145に格納されてもよい。このように、本実施の形態によれば、相対形状分析装置110と画像生成装置140だけで、照明条件の異なる照明変換画像を作成することが可能となる。
【0115】
ステップS404:
回転変換画像が必要な場合(ステップS403;Yes)、三次元画像変換部144は、三次元絶対形状データ53に加えて、上記ステップS402で作成された照明変換画像データ56を受け取る。つまり、三次元画像変換部144は、処理中の顔に関する、「推定された三次元形状(形状関数f(x,y))」と「照明条件の異なる照明変換画像」を取得する。そして、三次元画像変換部144は、その照明変換画像とその三次元形状を組み合わせる、すなわち、その照明変換画像をその三次元形状に張り合わせる。これによって、「照明条件の異なる新たな三次元形状」が作成される。
【0116】
ステップS405:
次に、三次元画像変換部144は、その新たな三次元形状を三次元的に回転させ、顔の向きを所望の向きに設定する。これによって、元の二次元画像と異なる照明条件・顔の向きを有する二次元画像(回転変換画像)が得られる。三次元画像変換部144は、この回転変換画像を示す回転変換データ57を出力する。
【0117】
ステップS406:
画像生成部142は、このようにして作成された照明変換画像データ56及び回転変換画像データ57の少なくとも1つを、変換画像データ55として出力する。その変換画像データ55は、出力部146を介して外部に出力される、あるいは記憶部145に格納される。
【0118】
以上に説明されたように、本発明に係る画像生成システム100及び画像生成方法によれば、ある物体が写っている単一の二次元画像から、その物体の向きや照明条件が異なる画像を生成することが可能となる。
【0119】
(第4の実施の形態)
第3の実施の形態による機能は、コンピュータシステム及びコンピュータプログラムによって実現することも可能である。図18は、本発明の第4の実施の形態に係る画像生成システムの構成を示すブロック図である。この画像生成システム100’は、記憶装置170、演算処理装置171、入力装置172、表示装置173、データ入出力インターフェース174、及び画像生成プログラム180を備えている。
【0120】
記憶装置170は、ハードディスクドライブ(HDD)やRAM等のメモリである。この記憶装置170には、上述の顔画像データ50、相対形状データ51、特徴点位置データ52、三次元絶対形状データ53、照明基底データ54、変換画像データ55、一般化照明基底データ61、及び三次元形状学習データ62が格納される。演算処理装置71は、各装置に接続され、データのやりとりや各種演算を実行する。
【0121】
入力装置172としては、キーボードやマウスが例示される。ユーザは、この入力装置172を用いることによって、データを入力したり各種コマンドを指定することができる。また、表示装置173はディスプレイであり、この表示装置173によって各種情報がユーザに通知される。ユーザは、通知された情報に基づいて、新たなコマンドを入力したりデータを入力したりできる。データ入出力インターフェース174は、顔画像データ50や三次元形状データ60の入力に用いられる。そのため、データ入出力インターフェース174は、レンジファインダやデジタルカメラ等の撮像装置、CD/DVDドライブ、他の端末などに接続される。
【0122】
画像生成プログラム180は、演算処理装置171によって実行されるソフトウェアプログラムである。この画像生成プログラム180は、相対形状分析部181、特徴点位置探索部182、絶対形状分析部183、画像生成部184、及び学習データ作成部185を含んでいる。これらプログラム群は、記憶装置170に格納されていてもよい。これらプログラムが演算処理装置171によって実行されることにより、第3の実施の形態において提供された機能と同じ機能が実現される。
【0123】
具体的には、画像生成プログラム180の相対形状分析部181の命令に従い、演算処理装置171は、顔画像データ50から相対形状データ51及び照明基底データ54を作成する。これは、図15における相対形状分析装置110の機能と同じである。また、画像生成プログラム180の特徴点位置探索部182の命令に従い、演算処理装置171は、顔画像データ50及び相対形状データ51から特徴点位置データ52を作成する。これは、図15における特徴点位置探索装置120の機能と同じである。また、画像生成プログラム180の絶対形状分析部183の命令に従い、演算処理装置171は、相対形状データ51及び特徴点位置データ52から三次元絶対形状データ53を作成する。これは、図15における絶対形状分析装置130の機能と同じである。また、画像生成プログラム180の画像生成部184の命令に従い、演算処理装置171は、照明基底データ54及び三次元絶対形状データ53から変換画像データ55を作成する。これは、図15における画像生成装置140の機能と同じである。また、画像生成プログラム180の学習データ作成部185の命令に従い、演算処理装置171は、一般化照明基底データ61や三次元形状学習データ62を作成する。これは、図4や図10における学習データ作成部12、32と同じ機能である。
【0124】
以上に説明されたように、本発明に係る画像生成システム100’及び画像生成プログラム180によれば、ある物体が写っている単一の二次元画像から、その物体の向きや照明条件が異なる画像を生成することが可能となる。
【0125】
以上に説明された本発明は、特に、顔個人認証技術などのセキュリティ分野、美容・整形の分野、アミューズメントの分野等において利用されることが期待される。
【図面の簡単な説明】
【0126】
【図1】図1は、ある顔の三次元形状を表現する形状関数を説明するための図である。
【図2】図2は、ある顔の二次元画像を示す概略図である。
【図3】図3は、本発明の第1の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。
【図4】図4は、本発明に係る相対形状分析装置の構成を示すブロック図である。
【図5】図5は、本発明に係る相対形状分析装置の動作を示すフローチャートである。
【図6】図6は、本発明に係る相対形状分析装置の動作を示すフローチャートである。
【図7】図7は、本発明に係る特徴点位置探索装置の構成を示すブロック図である。
【図8】図8は、本発明に係る特徴点位置探索装置の動作を示すフローチャートである。
【図9】図9は、本発明に係る特徴点位置探索装置の動作を説明するための図である。
【図10】図10は、本発明に係る絶対形状分析装置の構成を示すブロック図である。
【図11】図11は、本発明に係る絶対形状分析装置の動作を示すフローチャートである。
【図12】図12は、本発明に係る絶対形状分析装置の動作を説明するための図である。
【図13】図13は、本発明に係る絶対形状分析装置の動作を示すフローチャートである。
【図14】図14は、本発明の第2の実施の形態に係る三次元形状推定システムの構成を示すブロック図である。
【図15】図15は、本発明の第3の実施の形態に係る画像生成システムの構成を示すブロック図である。
【図16】図16は、本発明に係る画像生成装置の構成を示すブロック図である。
【図17】図17は、本発明に係る画像生成装置の動作を示すフローチャートである。
【図18】図18は、本発明の第4の実施の形態に係る画像生成システムの構成を示すブロック図である。
【符号の説明】
【0127】
1 三次元形状推定システム
10 相対形状分析装置
12 学習データ作成部
13 記憶部
14 相対形状算出部
20 特徴点位置探索装置
22 特徴点抽出部
23 色・輝度特徴点抽出部
24 形状特徴点抽出部
25 記憶部
30 絶対形状分析装置
32 学習データ作成部
33 記憶部
34 絶対形状算出部
50 顔画像データ
51 相対形状データ
52 特徴点位置データ
53 三次元絶対形状データ
54 照明基底データ
55 変換画像データ
56 照明変換画像データ
57 回転変換画像データ
60 三次元形状データ
61 一般化照明基底データ
62 三次元形状学習データ
70 記憶装置
71 演算処理装置
72 入力装置
73 表示装置
74 データ入出力インターフェース
80 三次元形状推定プログラム
81 相対形状分析部
82 特徴点位置探索部
83 絶対形状分析部
84 学習データ作成部
100 画像生成システム
110 相対形状分析装置
120 特徴点位置探索装置
130 絶対形状分析装置
140 画像生成装置
142 画像生成部
143 二次元画像変換部
144 三次元画像変換部
145 記憶部
170 記憶装置
171 演算処理装置
172 入力装置
173 表示装置
174 データ入出力インターフェース
180 画像生成プログラム
181 相対形状分析部
182 特徴点位置探索部
183 絶対形状分析部
184 画像生成部
185 学習データ作成部

【特許請求の範囲】
【請求項1】
複数の物体に共通の照明基底データと該照明基底データに対応する三次元形状情報を予め準備し、
ある物体の二次元画像に最も類似する画像を表す前記照明基底データと前記照明基底データの重みと照明ベクトルとの組み合わせを求め、
前記照明基底データと前記照明基底データの重みから定まる前記ある物体の照明基底を偏微分して相対形状情報を求め、
前記二次元画像と前記相対形状情報との間の特徴点の位置関係を求め、
前記位置関係を利用して前記三次元形状情報を補正して前記ある物体の三次元形状情報とすることを特徴とする三次元形状推定方法。
【請求項2】
前記複数の物体に共通の照明基底データは、前記複数の物体に共通の三次元形状情報から生成されることを特徴とする請求項1に記載の三次元形状推定方法。
【請求項3】
前記物体は人間の顔であることを特徴とする請求項1に記載の三次元形状推定方法。
【請求項4】
複数の物体に共通の照明基底データと該照明基底データに対応する三次元形状情報を予め準備し、
ある物体の二次元画像に最も類似する画像を表す前記照明基底データと前記照明基底データの重みと照明ベクトルとの組み合わせを求め、
前記照明基底データと前記照明基底データの重みから定まる前記ある物体の照明基底を偏微分して相対形状情報を求め、
前記二次元画像と前記相対形状情報との間の特徴点の位置関係を求め、
前記位置関係を利用して前記三次元形状情報を補正して前記ある物体の三次元形状情報とすることをコンピュータに実行させる三次元形状推定プログラム。
【請求項5】
前記複数の物体に共通の照明基底データは、前記複数の物体に共通の三次元形状情報から生成されることを特徴とする請求項4に記載の三次元形状推定プログラム。
【請求項6】
前記物体は人間の顔であることを特徴とする請求項4に記載の三次元形状推定プログラム。
【請求項7】
複数の物体に共通の照明基底データと該照明基底データに対応する三次元形状情報が格納された記憶装置と、
ある物体の二次元画像に最も類似する画像を表す前記照明基底データと前記照明基底データの重みと照明ベクトルとの組み合わせを求め、前記照明基底データと前記照明基底データの重みから定まる前記ある物体の照明基底を偏微分して相対形状情報を求める相対形状分析装置と、
前記二次元画像と前記相対形状情報との間の特徴点の位置関係を求める特徴点位置探索装置と、
前記位置関係を利用して前記三次元形状情報を補正して前記ある物体の三次元形状情報とする絶対形状分析装置と
を備えることを特徴とする三次元形状推定システム。
【請求項8】
前記複数の物体に共通の照明基底データは、前記複数の物体に共通の三次元形状情報から生成されることを特徴とする請求項7に記載の三次元形状推定システム。
【請求項9】
前記物体は人間の顔であることを特徴とする請求項7に記載の三次元形状推定システム。
【請求項10】
複数の物体に共通の照明基底データと該照明基底データに対応する三次元形状情報が格納された記憶手段と、
ある物体の二次元画像に最も類似する画像を表す前記照明基底データと前記照明基底データの重みと照明ベクトルとの組み合わせを求め、前記照明基底データと前記照明基底データの重みから定まる前記ある物体の照明基底を偏微分して相対形状情報を求める相対形状分析手段と、
前記二次元画像と前記相対形状情報との間の特徴点の位置関係を求める特徴点位置探索手段と、
前記位置関係を利用して前記三次元形状情報を補正して前記ある物体の三次元形状情報とする絶対形状分析手段と
を備えることを特徴とする三次元形状推定装置。
【請求項11】
前記複数の物体に共通の照明基底データは、前記複数の物体に共通の三次元形状情報から生成されることを特徴とする請求項10に記載の三次元形状推定装置。
【請求項12】
前記物体は人間の顔であることを特徴とする請求項10に記載の三次元形状推定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2008−16054(P2008−16054A)
【公開日】平成20年1月24日(2008.1.24)
【国際特許分類】
【出願番号】特願2007−223223(P2007−223223)
【出願日】平成19年8月29日(2007.8.29)
【分割の表示】特願2006−542385(P2006−542385)の分割
【原出願日】平成17年11月1日(2005.11.1)
【出願人】(000004237)日本電気株式会社 (19,353)
【Fターム(参考)】